ScoreVision / player.py
gloriforge's picture
Upload folder using huggingface_hub
9e8231e verified
import cv2
import numpy as np
from sklearn.cluster import KMeans
import warnings
import time
import torch
from torchvision.ops import batched_nms
from numpy import ndarray
# Suppress ALL runtime and sklearn warnings
warnings.filterwarnings('ignore', category=RuntimeWarning)
warnings.filterwarnings('ignore', category=FutureWarning)
warnings.filterwarnings('ignore', category=UserWarning)
# Suppress sklearn warnings specifically
import logging
logging.getLogger('sklearn').setLevel(logging.ERROR)
def get_grass_color(img):
# Convert image to HSV color space
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
# Define range of green color in HSV
lower_green = np.array([30, 40, 40])
upper_green = np.array([80, 255, 255])
# Threshold the HSV image to get only green colors
mask = cv2.inRange(hsv, lower_green, upper_green)
# Calculate the mean value of the pixels that are not masked
masked_img = cv2.bitwise_and(img, img, mask=mask)
grass_color = cv2.mean(img, mask=mask)
return grass_color[:3]
def get_players_boxes(frame, result):
players_imgs = []
players_boxes = []
for (box, score, cls) in result:
label = int(cls)
if label == 0:
x1, y1, x2, y2 = box.astype(int)
player_img = frame[y1: y2, x1: x2]
players_imgs.append(player_img)
players_boxes.append([box, score, cls])
return players_imgs, players_boxes
def get_kits_colors(players, grass_hsv=None, frame=None):
kits_colors = []
if grass_hsv is None:
grass_color = get_grass_color(frame)
grass_hsv = cv2.cvtColor(np.uint8([[list(grass_color)]]), cv2.COLOR_BGR2HSV)
for player_img in players:
# Skip empty or invalid images
if player_img is None or player_img.size == 0 or len(player_img.shape) != 3:
continue
# Convert image to HSV color space
hsv = cv2.cvtColor(player_img, cv2.COLOR_BGR2HSV)
# Define range of green color in HSV
lower_green = np.array([grass_hsv[0, 0, 0] - 10, 40, 40])
upper_green = np.array([grass_hsv[0, 0, 0] + 10, 255, 255])
# Threshold the HSV image to get only green colors
mask = cv2.inRange(hsv, lower_green, upper_green)
# Bitwise-AND mask and original image
mask = cv2.bitwise_not(mask)
upper_mask = np.zeros(player_img.shape[:2], np.uint8)
upper_mask[0:player_img.shape[0]//2, 0:player_img.shape[1]] = 255
mask = cv2.bitwise_and(mask, upper_mask)
kit_color = np.array(cv2.mean(player_img, mask=mask)[:3])
kits_colors.append(kit_color)
return kits_colors
def get_kits_classifier(kits_colors):
if len(kits_colors) == 0:
return None
if len(kits_colors) == 1:
# Only one kit color, create a dummy classifier
return None
kits_kmeans = KMeans(n_clusters=2)
kits_kmeans.fit(kits_colors)
return kits_kmeans
def classify_kits(kits_classifer, kits_colors):
if kits_classifer is None or len(kits_colors) == 0:
return np.array([0]) # Default to team 0
team = kits_classifer.predict(kits_colors)
return team
def get_left_team_label(players_boxes, kits_colors, kits_clf):
left_team_label = 0
team_0 = []
team_1 = []
for i in range(len(players_boxes)):
x1, y1, x2, y2 = players_boxes[i][0].astype(int)
team = classify_kits(kits_clf, [kits_colors[i]]).item()
if team == 0:
team_0.append(np.array([x1]))
else:
team_1.append(np.array([x1]))
team_0 = np.array(team_0)
team_1 = np.array(team_1)
# Safely calculate averages with fallback for empty arrays
avg_team_0 = np.average(team_0) if len(team_0) > 0 else 0
avg_team_1 = np.average(team_1) if len(team_1) > 0 else 0
if avg_team_0 - avg_team_1 > 0:
left_team_label = 1
return left_team_label
def check_box_boundaries(boxes, img_height, img_width):
"""
Check if bounding boxes are within image boundaries and clip them if necessary.
Args:
boxes: numpy array of shape (N, 4) with [x1, y1, x2, y2] format
img_height: height of the image
img_width: width of the image
Returns:
valid_boxes: numpy array of valid boxes within boundaries
valid_indices: indices of valid boxes
"""
x1, y1, x2, y2 = boxes[:, 0], boxes[:, 1], boxes[:, 2], boxes[:, 3]
# Check if boxes are within boundaries
valid_mask = (x1 >= 0) & (y1 >= 0) & (x2 < img_width) & (y2 < img_height) & (x1 < x2) & (y1 < y2)
if not np.any(valid_mask):
return np.array([]), np.array([])
valid_boxes = boxes[valid_mask]
valid_indices = np.where(valid_mask)[0]
# Clip boxes to image boundaries
valid_boxes[:, 0] = np.clip(valid_boxes[:, 0], 0, img_width - 1) # x1
valid_boxes[:, 1] = np.clip(valid_boxes[:, 1], 0, img_height - 1) # y1
valid_boxes[:, 2] = np.clip(valid_boxes[:, 2], 0, img_width - 1) # x2
valid_boxes[:, 3] = np.clip(valid_boxes[:, 3], 0, img_height - 1) # y2
return valid_boxes, valid_indices
def process_team_identification_batch(frames, results, kits_clf, left_team_label, grass_hsv):
"""
Process team identification and label formatting for batch results.
Args:
frames: list of frames
results: list of detection results for each frame
kits_clf: trained kit classifier
left_team_label: label for left team
grass_hsv: grass color in HSV format
Returns:
processed_results: list of processed results with team identification
"""
processed_results = []
for frame_idx, frame in enumerate(frames):
frame_results = []
frame_detections = results[frame_idx]
if not frame_detections:
processed_results.append([])
continue
# Extract player boxes and images
players_imgs = []
players_boxes = []
player_indices = []
for idx, (box, score, cls) in enumerate(frame_detections):
label = int(cls)
if label == 0: # Player detection
x1, y1, x2, y2 = box.astype(int)
# Check boundaries
if (x1 >= 0 and y1 >= 0 and x2 < frame.shape[1] and y2 < frame.shape[0] and x1 < x2 and y1 < y2):
player_img = frame[y1:y2, x1:x2]
if player_img.size > 0: # Ensure valid image
players_imgs.append(player_img)
players_boxes.append([box, score, cls])
player_indices.append(idx)
# Initialize player team mapping
player_team_map = {}
# Process team identification if we have players
if players_imgs and kits_clf is not None:
kits_colors = get_kits_colors(players_imgs, grass_hsv)
teams = classify_kits(kits_clf, kits_colors)
# Create mapping from player index to team
for i, team in enumerate(teams):
player_team_map[player_indices[i]] = team.item()
id = 0
# Process all detections with team identification
for idx, (box, score, cls) in enumerate(frame_detections):
label = int(cls)
x1, y1, x2, y2 = box.astype(int)
# Check boundaries
valid_boxes, valid_indices = check_box_boundaries(
np.array([[x1, y1, x2, y2]]), frame.shape[0], frame.shape[1]
)
if len(valid_boxes) == 0:
continue
x1, y1, x2, y2 = valid_boxes[0].astype(int)
# Apply team identification logic
if label == 0: # Player
if players_imgs and kits_clf is not None and idx in player_team_map:
team = player_team_map[idx]
if team == left_team_label:
final_label = 6 # Player-L (Left team)
else:
final_label = 7 # Player-R (Right team)
else:
final_label = 6 # Default player label
elif label == 1: # Goalkeeper
final_label = 1 # GK
elif label == 2: # Ball
final_label = 0 # Ball
elif label == 3 or label == 4: # Referee or other
final_label = 3 # Referee
else:
continue
# final_label = int(label) # Keep original label, ensure it's int
frame_results.append({
"id": int(id),
"bbox": [int(x1), int(y1), int(x2), int(y2)],
"class_id": int(final_label),
"conf": float(score)
})
id = id + 1
processed_results.append(frame_results)
return processed_results
def convert_numpy_types(obj):
"""Convert numpy types to native Python types for JSON serialization."""
if isinstance(obj, np.integer):
return int(obj)
elif isinstance(obj, np.floating):
return float(obj)
elif isinstance(obj, np.ndarray):
return obj.tolist()
elif isinstance(obj, dict):
return {key: convert_numpy_types(value) for key, value in obj.items()}
elif isinstance(obj, list):
return [convert_numpy_types(item) for item in obj]
else:
return obj
def pre_process_img(frames, scale):
imgs = np.stack([cv2.resize(frame, (int(scale), int(scale))) for frame in frames])
imgs = imgs.transpose(0, 3, 1, 2)
imgs = imgs.astype(np.float32) / 255.0 # Normalize
return imgs
def post_process_output(outputs, x_scale, y_scale, conf_thresh=0.6, nms_thresh=0.75):
B, C, N = outputs.shape
outputs = torch.from_numpy(outputs)
outputs = outputs.permute(0, 2, 1)
boxes = outputs[..., :4]
class_scores = 1 / (1 + torch.exp(-outputs[..., 4:]))
conf, class_id = class_scores.max(dim=2)
mask = conf > conf_thresh
for i in range(class_id.shape[0]): # loop over batch
# Find detections that are balls
ball_idx = np.where(class_id[i] == 2)[0]
if ball_idx.size > 0:
# Pick the one with the highest confidence
top = ball_idx[np.argmax(conf[i, ball_idx])]
if conf[i, top] > 0.55: # apply confidence threshold
mask[i, top] = True
# ball_mask = (class_id == 2) & (conf > 0.51)
# mask = mask | ball_mask
batch_idx, pred_idx = mask.nonzero(as_tuple=True)
if len(batch_idx) == 0:
return [[] for _ in range(B)]
boxes = boxes[batch_idx, pred_idx]
conf = conf[batch_idx, pred_idx]
class_id = class_id[batch_idx, pred_idx]
x, y, w, h = boxes[:, 0], boxes[:, 1], boxes[:, 2], boxes[:, 3]
x1 = (x - w / 2) * x_scale
y1 = (y - h / 2) * y_scale
x2 = (x + w / 2) * x_scale
y2 = (y + h / 2) * y_scale
boxes_xyxy = torch.stack([x1, y1, x2, y2], dim=1)
max_coord = 1e4
offset = batch_idx.to(boxes_xyxy) * max_coord
boxes_for_nms = boxes_xyxy + offset[:, None]
keep = batched_nms(boxes_for_nms, conf, batch_idx, nms_thresh)
boxes_final = boxes_xyxy[keep]
conf_final = conf[keep]
class_final = class_id[keep]
batch_final = batch_idx[keep]
results = [[] for _ in range(B)]
for b in range(B):
mask_b = batch_final == b
if mask_b.sum() == 0:
continue
results[b] = list(zip(boxes_final[mask_b].numpy(),
conf_final[mask_b].numpy(),
class_final[mask_b].numpy()))
return results
def player_detection_result(frames: list[ndarray], batch_size, model, kits_clf=None, left_team_label=None, grass_hsv=None):
start_time = time.time()
# input_layer = model.input(0)
# output_layer = model.output(0)
height, width = frames[0].shape[:2]
scale = 640.0
x_scale = width / scale
y_scale = height / scale
# infer_queue = AsyncInferQueue(model, len(frames))
infer_time = time.time()
kits_clf = kits_clf
left_team_label = left_team_label
grass_hsv = grass_hsv
results = []
for i in range(0, len(frames), batch_size):
if i + batch_size > len(frames):
batch_size = len(frames) - i
batch_frames = frames[i:i + batch_size]
imgs = pre_process_img(batch_frames, scale)
input_name = model.get_inputs()[0].name
outputs = model.run(None, {input_name: imgs})[0]
raw_results = post_process_output(np.array(outputs), x_scale, y_scale)
if kits_clf is None or left_team_label is None or grass_hsv is None:
# Use first frame to initialize team classification
first_frame = batch_frames[0]
first_frame_results = raw_results[0] if raw_results else []
if first_frame_results:
players_imgs, players_boxes = get_players_boxes(first_frame, first_frame_results)
if players_imgs:
grass_color = get_grass_color(first_frame)
grass_hsv = cv2.cvtColor(np.uint8([[list(grass_color)]]), cv2.COLOR_BGR2HSV)
kits_colors = get_kits_colors(players_imgs, grass_hsv)
if kits_colors: # Only proceed if we have valid kit colors
kits_clf = get_kits_classifier(kits_colors)
if kits_clf is not None:
left_team_label = int(get_left_team_label(players_boxes, kits_colors, kits_clf))
# Process team identification and boundary checking
processed_results = process_team_identification_batch(
batch_frames, raw_results, kits_clf, left_team_label, grass_hsv
)
processed_results = convert_numpy_types(processed_results)
results.extend(processed_results)
# Return the same format as before for compatibility
return results, kits_clf, left_team_label, grass_hsv