gloriforge commited on
Commit
bea6690
·
verified ·
1 Parent(s): 83aafe5

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ SV_kp.engine filter=lfs diff=lfs merge=lfs -text
37
+ keypoint filter=lfs diff=lfs merge=lfs -text
38
+ osnet_model.pth.tar-100 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 🚀 Example Chute for Turbovision 🪂
2
+
3
+ This repository demonstrates how to deploy a **Chute** via the **Turbovision CLI**, hosted on **Hugging Face Hub**.
4
+ It serves as a minimal example showcasing the required structure and workflow for integrating machine learning models, preprocessing, and orchestration into a reproducible Chute environment.
5
+
6
+ ## Repository Structure
7
+ The following two files **must be present** (in their current locations) for a successful deployment — their content can be modified as needed:
8
+
9
+ | File | Purpose |
10
+ |------|----------|
11
+ | `miner.py` | Defines the ML model type(s), orchestration, and all pre/postprocessing logic. |
12
+ | `config.yml` | Specifies machine configuration (e.g., GPU type, memory, environment variables). |
13
+
14
+ Other files — e.g., model weights, utility scripts, or dependencies — are **optional** and can be included as needed for your model. Note: Any required assets must be defined or contained **within this repo**, which is fully open-source, since all network-related operations (downloading challenge data, weights, etc.) are disabled **inside the Chute**
15
+
16
+ ## Overview
17
+
18
+ Below is a high-level diagram showing the interaction between Huggingface, Chutes and Turbovision:
19
+
20
+ ![](../images/miner.png)
21
+
22
+ ## Local Testing
23
+ After editing the `config.yml` and `miner.py` and saving it into your Huggingface Repo, you will want to test it works locally.
24
+
25
+ 1. Copy the file `scorevision/chute_tmeplate/turbovision_chute.py.j2` as a python file called `my_chute.py` and fill in the missing variables:
26
+ ```python
27
+ HF_REPO_NAME = "{{ huggingface_repository_name }}"
28
+ HF_REPO_REVISION = "{{ huggingface_repository_revision }}"
29
+ CHUTES_USERNAME = "{{ chute_username }}"
30
+ CHUTE_NAME = "{{ chute_name }}"
31
+ ```
32
+
33
+ 2. Run the following command to build the chute locally (Caution: there are known issues with the docker location when running this on a mac)
34
+ ```bash
35
+ chutes build my_chute:chute --local --public
36
+ ```
37
+
38
+ 3. Run the name of the docker image just built (i.e. `CHUTE_NAME`) and enter it
39
+ ```bash
40
+ docker run -p 8000:8000 -e CHUTES_EXECUTION_CONTEXT=REMOTE -it <image-name> /bin/bash
41
+ ```
42
+
43
+ 4. Run the file from within the container
44
+ ```bash
45
+ chutes run my_chute:chute --dev --debug
46
+ ```
47
+
48
+ 5. In another terminal, test the local endpoints to ensure there are no bugs
49
+ ```bash
50
+ curl -X POST http://localhost:8000/health -d '{}'
51
+ curl -X POST http://localhost:8000/predict -d '{"url": "https://scoredata.me/2025_03_14/35ae7a/h1_0f2ca0.mp4","meta": {}}'
52
+ ```
53
+
54
+ ## Live Testing
55
+ 1. If you have any chute with the same name (ie from a previous deployment), ensure you delete that first (or you will get an error when trying to build).
56
+ ```bash
57
+ chutes chutes list
58
+ ```
59
+ Take note of the chute id that you wish to delete (if any)
60
+ ```bash
61
+ chutes chutes delete <chute-id>
62
+ ```
63
+
64
+ You should also delete its associated image
65
+ ```bash
66
+ chutes images list
67
+ ```
68
+ Take note of the chute image id
69
+ ```bash
70
+ chutes images delete <chute-image-id>
71
+ ```
72
+
73
+ 2. Use Turbovision's CLI to build, deploy and commit on-chain (Note: you can skip the on-chain commit using `--no-commit`. You can also specify a past huggingface revision to point to using `--revision` and/or the local files you want to upload to your huggingface repo using `--model-path`)
74
+ ```bash
75
+ sv -vv push
76
+ ```
77
+
78
+ 3. When completed, warm up the chute (if its cold 🧊). (You can confirm its status using `chutes chutes list` or `chutes chutes get <chute-id>` if you already know its id). Note: Warming up can sometimes take a while but if the chute runs without errors (should be if you've tested locally first) and there are sufficient nodes (i.e. machines) available matching the `config.yml` you specified, the chute should become hot 🔥!
79
+ ```bash
80
+ chutes warmup <chute-id>
81
+ ```
82
+
83
+ 4. Test the chute's endpoints
84
+ ```bash
85
+ curl -X POST https://<YOUR-CHUTE-SLUG>.chutes.ai/health -d '{}' -H "Authorization: Bearer $CHUTES_API_KEY"
86
+ curl -X POST https://<YOUR-CHUTE-SLUG>.chutes.ai/predict -d '{"url": "https://scoredata.me/2025_03_14/35ae7a/h1_0f2ca0.mp4","meta": {}}' -H "Authorization: Bearer $CHUTES_API_KEY"
87
+ ```
88
+
89
+ 5. Test what your chute would get on a validator (this also applies any validation/integrity checks which may fail if you did not use the Turbovision CLI above to deploy the chute)
90
+ ```bash
91
+ sv -vv run-once
92
+ ```
__pycache__/miner.cpython-312.pyc ADDED
Binary file (24.9 kB). View file
 
__pycache__/pitch.cpython-312.pyc ADDED
Binary file (31.3 kB). View file
 
config.yml ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Image:
2
+ from_base: parachutes/python:3.12
3
+ run_command:
4
+ - pip install --upgrade setuptools wheel
5
+ - pip install "ultralytics==8.3.222" "opencv-python-headless" "numpy" "pydantic"
6
+ - pip install "tensorflow" "torch==2.7.1" "torchvision==0.22.1" "torch-tensorrt==2.7"
7
+ set_workdir: /app
8
+
9
+ NodeSelector:
10
+ gpu_count: 1
11
+ min_vram_gb_per_gpu: 16
12
+ exclude:
13
+ - "5090"
14
+ - b200
15
+ - h200
16
+ - mi300x
17
+
18
+ Chute:
19
+ timeout_seconds: 900
20
+ concurrency: 4
21
+ max_instances: 5
22
+ scaling_threshold: 0.5
hrnetv2_w48.yaml ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MODEL:
2
+ IMAGE_SIZE: [960, 540]
3
+ NUM_JOINTS: 58
4
+ PRETRAIN: ''
5
+ EXTRA:
6
+ FINAL_CONV_KERNEL: 1
7
+ STAGE1:
8
+ NUM_MODULES: 1
9
+ NUM_BRANCHES: 1
10
+ BLOCK: BOTTLENECK
11
+ NUM_BLOCKS: [4]
12
+ NUM_CHANNELS: [64]
13
+ FUSE_METHOD: SUM
14
+ STAGE2:
15
+ NUM_MODULES: 1
16
+ NUM_BRANCHES: 2
17
+ BLOCK: BASIC
18
+ NUM_BLOCKS: [4, 4]
19
+ NUM_CHANNELS: [48, 96]
20
+ FUSE_METHOD: SUM
21
+ STAGE3:
22
+ NUM_MODULES: 4
23
+ NUM_BRANCHES: 3
24
+ BLOCK: BASIC
25
+ NUM_BLOCKS: [4, 4, 4]
26
+ NUM_CHANNELS: [48, 96, 192]
27
+ FUSE_METHOD: SUM
28
+ STAGE4:
29
+ NUM_MODULES: 3
30
+ NUM_BRANCHES: 4
31
+ BLOCK: BASIC
32
+ NUM_BLOCKS: [4, 4, 4, 4]
33
+ NUM_CHANNELS: [48, 96, 192, 384]
34
+ FUSE_METHOD: SUM
35
+
keypoint ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7ea78fa76aaf94976a8eca428d6e3c59697a93430cba1a4603e20284b61f5113
3
+ size 264964645
miner.py ADDED
@@ -0,0 +1,561 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pathlib import Path
2
+ from typing import List, Tuple, Dict
3
+ import sys
4
+ import os
5
+
6
+ from numpy import ndarray
7
+ import numpy as np
8
+ from pydantic import BaseModel
9
+ import cv2
10
+
11
+ import onnxruntime as ort
12
+ from torchvision.ops import batched_nms
13
+ from ultralytics import YOLO
14
+ from team_cluster import TeamClassifier
15
+ from utils import (
16
+ BoundingBox,
17
+ Constants,
18
+ suppress_small_contained_boxes,
19
+ classify_teams_batch,
20
+ )
21
+
22
+ sys.path.append(os.path.dirname(os.path.abspath(__file__)))
23
+
24
+ os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
25
+ os.environ["OMP_NUM_THREADS"] = "16"
26
+ os.environ["TF_NUM_INTRAOP_THREADS"] = "16"
27
+ os.environ["TF_NUM_INTEROP_THREADS"] = "2"
28
+ os.environ["CUDA_LAUNCH_BLOCKING"] = "0"
29
+ os.environ["ORT_LOGGING_LEVEL"] = "3"
30
+ os.environ["TF_ENABLE_ONEDNN_OPTS"] = "0"
31
+
32
+ import logging
33
+ import tensorflow as tf
34
+ from tensorflow.keras import mixed_precision
35
+ import torch._dynamo
36
+ import torch
37
+ # import torch_tensorrt
38
+ import gc
39
+ from ultralytics import YOLO
40
+ from pitch import process_batch_input, get_cls_net
41
+ import yaml
42
+
43
+ logging.getLogger("tensorflow").setLevel(logging.ERROR)
44
+ tf.config.threading.set_intra_op_parallelism_threads(16)
45
+ tf.config.threading.set_inter_op_parallelism_threads(2)
46
+ tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
47
+ tf.get_logger().setLevel("ERROR")
48
+ tf.autograph.set_verbosity(0)
49
+ mixed_precision.set_global_policy("mixed_float16")
50
+ tf.config.optimizer.set_jit(True)
51
+ torch._dynamo.config.suppress_errors = True
52
+
53
+
54
+ class BoundingBox(BaseModel):
55
+ x1: int
56
+ y1: int
57
+ x2: int
58
+ y2: int
59
+ cls_id: int
60
+ conf: float
61
+
62
+
63
+ class TVFrameResult(BaseModel):
64
+ frame_id: int
65
+ boxes: List[BoundingBox]
66
+ keypoints: List[Tuple[int, int]]
67
+
68
+
69
+ class Miner:
70
+ QUASI_TOTAL_IOA: float = 0.90
71
+ SMALL_CONTAINED_IOA: float = 0.85
72
+ SMALL_RATIO_MAX: float = 0.50
73
+ SINGLE_PLAYER_HUE_PIVOT: float = 90.0
74
+
75
+ # Use constants from utils
76
+ SMALL_CONTAINED_IOA = Constants.SMALL_CONTAINED_IOA
77
+ SMALL_RATIO_MAX = Constants.SMALL_RATIO_MAX
78
+ SINGLE_PLAYER_HUE_PIVOT = Constants.SINGLE_PLAYER_HUE_PIVOT
79
+ CORNER_INDICES = Constants.CORNER_INDICES
80
+ KEYPOINTS_CONFIDENCE = Constants.KEYPOINTS_CONFIDENCE
81
+ CORNER_CONFIDENCE = Constants.CORNER_CONFIDENCE
82
+ GOALKEEPER_POSITION_MARGIN = Constants.GOALKEEPER_POSITION_MARGIN
83
+ MIN_SAMPLES_FOR_FIT = 16 # Minimum player crops needed before fitting TeamClassifier
84
+ MAX_SAMPLES_FOR_FIT = 500 # Maximum samples to avoid overfitting
85
+
86
+ def __init__(self, path_hf_repo: Path) -> None:
87
+ try:
88
+ device = "cuda" if torch.cuda.is_available() else "cpu"
89
+ print(device)
90
+
91
+ providers = [
92
+ 'CUDAExecutionProvider',
93
+ 'CPUExecutionProvider'
94
+ ]
95
+ model_path = path_hf_repo / "objdetect.onnx"
96
+ session = ort.InferenceSession(model_path, providers=providers)
97
+
98
+ input_name = session.get_inputs()[0].name
99
+ height = width = 640
100
+ dummy = np.zeros((1, 3, height, width), dtype=np.float32)
101
+ session.run(None, {input_name: dummy})
102
+ model = session
103
+ self.bbox_model = model
104
+
105
+ print("BBox Model Loaded")
106
+
107
+ team_model_path = path_hf_repo / "osnet_model.pth.tar-100"
108
+ self.team_classifier = TeamClassifier(
109
+ device=device,
110
+ batch_size=32,
111
+ model_name=str(team_model_path)
112
+ )
113
+ print("Team Classifier Loaded")
114
+
115
+ # Team classification state
116
+ self.team_classifier_fitted = False
117
+ self.player_crops_for_fit = []
118
+
119
+ model_kp_path = path_hf_repo / 'keypoint'
120
+ config_kp_path = path_hf_repo / 'hrnetv2_w48.yaml'
121
+ cfg_kp = yaml.safe_load(open(config_kp_path, 'r'))
122
+
123
+ loaded_state_kp = torch.load(model_kp_path, map_location=device)
124
+ model = get_cls_net(cfg_kp)
125
+ model.load_state_dict(loaded_state_kp)
126
+ model.to(device)
127
+ model.eval()
128
+
129
+ # @torch.inference_mode()
130
+ # def run_inference(model, input_tensor: torch.Tensor):
131
+ # input_tensor = input_tensor.to(device).to(memory_format=torch.channels_last)
132
+ # output = model.module().forward(input_tensor)
133
+ # return output
134
+
135
+ # run_inference(model_kp, torch.randn(8, 3, 540, 960, device=device, dtype=torch.float32))
136
+ self.keypoints_model = model
137
+ self.kp_threshold = 0.1
138
+ self.pitch_batch_size = 8
139
+ self.health = "✅ Miner initialized successfully"
140
+ print("✅ Keypoints Model Loaded")
141
+ except Exception as e:
142
+ self.health = "❌ Miner initialization failed: " + str(e)
143
+ print(self.health)
144
+
145
+ def __repr__(self) -> str:
146
+ return (
147
+ f"BBox Model: {type(self.bbox_model).__name__}\n"
148
+ f"Keypoints Model: {type(self.keypoints_model).__name__}"
149
+ )
150
+
151
+ def _handle_multiple_goalkeepers(self, boxes: List[BoundingBox]) -> List[BoundingBox]:
152
+ """
153
+ Handle goalkeeper detection issues:
154
+ 1. Fix misplaced goalkeepers (standing in middle of field)
155
+ 2. Limit to maximum 2 goalkeepers (one from each team)
156
+
157
+ Returns:
158
+ Filtered list of boxes with corrected goalkeepers
159
+ """
160
+ # Step 1: Fix misplaced goalkeepers first
161
+ # Convert goalkeepers in middle of field to regular players
162
+ boxes = self._fix_misplaced_goalkeepers(boxes)
163
+
164
+ # Step 2: Handle multiple goalkeepers (after fixing misplaced ones)
165
+ gk_idxs = [i for i, bb in enumerate(boxes) if int(bb.cls_id) == 1]
166
+ if len(gk_idxs) <= 2:
167
+ return boxes
168
+
169
+ # Sort goalkeepers by confidence (highest first)
170
+ gk_idxs_sorted = sorted(gk_idxs, key=lambda i: boxes[i].conf, reverse=True)
171
+ keep_gk_idxs = set(gk_idxs_sorted[:2]) # Keep top 2 goalkeepers
172
+
173
+ # Create new list keeping only top 2 goalkeepers
174
+ filtered_boxes = []
175
+ for i, box in enumerate(boxes):
176
+ if int(box.cls_id) == 1:
177
+ # Only keep the top 2 goalkeepers by confidence
178
+ if i in keep_gk_idxs:
179
+ filtered_boxes.append(box)
180
+ # Skip extra goalkeepers
181
+ else:
182
+ # Keep all non-goalkeeper boxes
183
+ filtered_boxes.append(box)
184
+
185
+ return filtered_boxes
186
+
187
+ def _fix_misplaced_goalkeepers(self, boxes: List[BoundingBox]) -> List[BoundingBox]:
188
+ """
189
+ """
190
+ gk_idxs = [i for i, bb in enumerate(boxes) if int(bb.cls_id) == 1]
191
+ player_idxs = [i for i, bb in enumerate(boxes) if int(bb.cls_id) == 2]
192
+
193
+ if len(gk_idxs) == 0 or len(player_idxs) < 2:
194
+ return boxes
195
+
196
+ updated_boxes = boxes.copy()
197
+
198
+ for gk_idx in gk_idxs:
199
+ if boxes[gk_idx].conf < 0.3:
200
+ updated_boxes[gk_idx].cls_id = 2
201
+
202
+ return updated_boxes
203
+
204
+
205
+ def _pre_process_img(self, frames: List[np.ndarray], scale: float = 640.0) -> np.ndarray:
206
+ """
207
+ Preprocess images for ONNX inference.
208
+
209
+ Args:
210
+ frames: List of BGR frames
211
+ scale: Target scale for resizing
212
+
213
+ Returns:
214
+ Preprocessed numpy array ready for ONNX inference
215
+ """
216
+ imgs = np.stack([cv2.resize(frame, (int(scale), int(scale))) for frame in frames])
217
+ imgs = imgs.transpose(0, 3, 1, 2) # BHWC to BCHW
218
+ imgs = imgs.astype(np.float32) / 255.0 # Normalize to [0, 1]
219
+ return imgs
220
+
221
+ def _post_process_output(self, outputs: np.ndarray, x_scale: float, y_scale: float,
222
+ conf_thresh: float = 0.6, nms_thresh: float = 0.55) -> List[List[Tuple]]:
223
+ """
224
+ Post-process ONNX model outputs to get detections.
225
+
226
+ Args:
227
+ outputs: Raw ONNX model outputs
228
+ x_scale: X-axis scaling factor
229
+ y_scale: Y-axis scaling factor
230
+ conf_thresh: Confidence threshold
231
+ nms_thresh: NMS threshold
232
+
233
+ Returns:
234
+ List of detections for each frame: [(box, conf, class_id), ...]
235
+ """
236
+ B, C, N = outputs.shape
237
+ outputs = torch.from_numpy(outputs)
238
+ outputs = outputs.permute(0, 2, 1) # B,C,N -> B,N,C
239
+
240
+ boxes = outputs[..., :4]
241
+ class_scores = 1 / (1 + torch.exp(-outputs[..., 4:])) # Sigmoid activation
242
+ conf, class_id = class_scores.max(dim=2)
243
+
244
+ mask = conf > conf_thresh
245
+
246
+ # Special handling for balls - keep best one even with lower confidence
247
+ for i in range(class_id.shape[0]): # loop over batch
248
+ # Find detections that are balls
249
+ ball_mask = class_id[i] == 0
250
+ ball_idx = ball_mask.nonzero(as_tuple=True)[0]
251
+ if ball_idx.numel() > 0:
252
+ # Pick the one with the highest confidence
253
+ best_ball_idx = ball_idx[conf[i, ball_idx].argmax()]
254
+ if conf[i, best_ball_idx] >= 0.55: # apply confidence threshold
255
+ mask[i, best_ball_idx] = True
256
+
257
+ batch_idx, pred_idx = mask.nonzero(as_tuple=True)
258
+
259
+ if len(batch_idx) == 0:
260
+ return [[] for _ in range(B)]
261
+
262
+ boxes = boxes[batch_idx, pred_idx]
263
+ conf = conf[batch_idx, pred_idx]
264
+ class_id = class_id[batch_idx, pred_idx]
265
+
266
+ # Convert from center format to xyxy format
267
+ x, y, w, h = boxes[:, 0], boxes[:, 1], boxes[:, 2], boxes[:, 3]
268
+ x1 = (x - w / 2) * x_scale
269
+ y1 = (y - h / 2) * y_scale
270
+ x2 = (x + w / 2) * x_scale
271
+ y2 = (y + h / 2) * y_scale
272
+ boxes_xyxy = torch.stack([x1, y1, x2, y2], dim=1)
273
+
274
+ # Apply batched NMS
275
+ max_coord = 1e4
276
+ offset = batch_idx.to(boxes_xyxy) * max_coord
277
+ boxes_for_nms = boxes_xyxy + offset[:, None]
278
+
279
+ keep = batched_nms(boxes_for_nms, conf, batch_idx, nms_thresh)
280
+
281
+ boxes_final = boxes_xyxy[keep]
282
+ conf_final = conf[keep]
283
+ class_final = class_id[keep]
284
+ batch_final = batch_idx[keep]
285
+
286
+ # Group results by batch
287
+ results = [[] for _ in range(B)]
288
+ for b in range(B):
289
+ mask_b = batch_final == b
290
+ if mask_b.sum() == 0:
291
+ continue
292
+ results[b] = list(zip(boxes_final[mask_b].numpy(),
293
+ conf_final[mask_b].numpy(),
294
+ class_final[mask_b].numpy()))
295
+ return results
296
+
297
+ def _ioa(self, a: BoundingBox, b: BoundingBox) -> float:
298
+ inter = self._intersect_area(a, b)
299
+ aa = self._area(a)
300
+ if aa <= 0:
301
+ return 0.0
302
+ return inter / aa
303
+
304
+ def suppress_small_contained(self, boxes: List[BoundingBox]) -> List[BoundingBox]:
305
+ if len(boxes) <= 1:
306
+ return boxes
307
+ keep = [True] * len(boxes)
308
+ areas = [self._area(bb) for bb in boxes]
309
+ for i in range(len(boxes)):
310
+ if not keep[i]:
311
+ continue
312
+ for j in range(len(boxes)):
313
+ if i == j or not keep[j]:
314
+ continue
315
+ ai, aj = areas[i], areas[j]
316
+ if ai == 0 or aj == 0:
317
+ continue
318
+ if ai <= aj:
319
+ ratio = ai / aj
320
+ if ratio <= self.SMALL_RATIO_MAX:
321
+ ioa_i_in_j = self._ioa(boxes[i], boxes[j])
322
+ if ioa_i_in_j >= self.SMALL_CONTAINED_IOA:
323
+ keep[i] = False
324
+ break
325
+ else:
326
+ ratio = aj / ai
327
+ if ratio <= self.SMALL_RATIO_MAX:
328
+ ioa_j_in_i = self._ioa(boxes[j], boxes[i])
329
+ if ioa_j_in_i >= self.SMALL_CONTAINED_IOA:
330
+ keep[j] = False
331
+ return [bb for bb, k in zip(boxes, keep) if k]
332
+
333
+ def _detect_objects_batch(self, batch_images: List[ndarray], offset: int) -> Dict[int, List[BoundingBox]]:
334
+ """
335
+ Phase 1: Object detection for all frames in batch.
336
+ Returns detected objects with players still having class_id=2 (before team classification).
337
+
338
+ Args:
339
+ batch_images: List of images to process
340
+ offset: Frame offset for numbering
341
+
342
+ Returns:
343
+ Dictionary mapping frame_id to list of detected boxes
344
+ """
345
+ bboxes: Dict[int, List[BoundingBox]] = {}
346
+
347
+ if len(batch_images) == 0:
348
+ return bboxes
349
+
350
+ print(f"Processing batch of {len(batch_images)} images")
351
+
352
+ # Get original image dimensions for scaling
353
+ height, width = batch_images[0].shape[:2]
354
+ scale = 640.0
355
+ x_scale = width / scale
356
+ y_scale = height / scale
357
+
358
+ # Memory optimization: Process smaller batches if needed
359
+ max_batch_size = 32 # Reduce batch size further to prevent memory issues
360
+ if len(batch_images) > max_batch_size:
361
+ print(f"Large batch detected ({len(batch_images)} images), splitting into smaller batches of {max_batch_size}")
362
+ # Process in smaller chunks
363
+ all_bboxes = {}
364
+ for chunk_start in range(0, len(batch_images), max_batch_size):
365
+ chunk_end = min(chunk_start + max_batch_size, len(batch_images))
366
+ chunk_images = batch_images[chunk_start:chunk_end]
367
+ chunk_offset = offset + chunk_start
368
+ print(f"Processing chunk {chunk_start//max_batch_size + 1}: images {chunk_start}-{chunk_end-1}")
369
+ chunk_bboxes = self._detect_objects_batch(chunk_images, chunk_offset)
370
+ all_bboxes.update(chunk_bboxes)
371
+ return all_bboxes
372
+
373
+ # Preprocess images for ONNX inference
374
+ imgs = self._pre_process_img(batch_images, scale)
375
+ actual_batch_size = len(batch_images)
376
+
377
+ # Handle batch size mismatch - pad if needed
378
+ model_batch_size = self.bbox_model.get_inputs()[0].shape[0]
379
+ print(f"Model input shape: {self.bbox_model.get_inputs()[0].shape}, batch_size: {model_batch_size}")
380
+
381
+ if model_batch_size is not None:
382
+ try:
383
+ # Handle dynamic batch size (None, -1, 'None')
384
+ if str(model_batch_size) in ['None', '-1'] or model_batch_size == -1:
385
+ model_batch_size = None
386
+ else:
387
+ model_batch_size = int(model_batch_size)
388
+ except (ValueError, TypeError):
389
+ model_batch_size = None
390
+
391
+ print(f"Processed model_batch_size: {model_batch_size}, actual_batch_size: {actual_batch_size}")
392
+
393
+ if model_batch_size and actual_batch_size < model_batch_size:
394
+ padding_size = model_batch_size - actual_batch_size
395
+ dummy_img = np.zeros((1, 3, int(scale), int(scale)), dtype=np.float32)
396
+ padding = np.repeat(dummy_img, padding_size, axis=0)
397
+ imgs = np.vstack([imgs, padding])
398
+
399
+ # ONNX inference with error handling
400
+ try:
401
+ input_name = self.bbox_model.get_inputs()[0].name
402
+ import time
403
+ start_time = time.time()
404
+ outputs = self.bbox_model.run(None, {input_name: imgs})[0]
405
+ inference_time = time.time() - start_time
406
+ print(f"Inference time: {inference_time:.3f}s for {actual_batch_size} images")
407
+
408
+ # Remove padded results if we added padding
409
+ if model_batch_size and isinstance(model_batch_size, int) and actual_batch_size < model_batch_size:
410
+ outputs = outputs[:actual_batch_size]
411
+
412
+ # Post-process outputs to get detections
413
+ raw_results = self._post_process_output(np.array(outputs), x_scale, y_scale)
414
+
415
+ except Exception as e:
416
+ print(f"Error during ONNX inference: {e}")
417
+ return bboxes
418
+
419
+ if not raw_results:
420
+ return bboxes
421
+
422
+ # Convert raw results to BoundingBox objects and apply processing
423
+ for frame_idx_in_batch, frame_detections in enumerate(raw_results):
424
+ if not frame_detections:
425
+ continue
426
+
427
+ # Convert to BoundingBox objects
428
+ boxes: List[BoundingBox] = []
429
+ for box, conf, cls_id in frame_detections:
430
+ x1, y1, x2, y2 = box
431
+ if int(cls_id) < 4:
432
+ boxes.append(
433
+ BoundingBox(
434
+ x1=int(x1),
435
+ y1=int(y1),
436
+ x2=int(x2),
437
+ y2=int(y2),
438
+ cls_id=int(cls_id),
439
+ conf=float(conf),
440
+ )
441
+ )
442
+
443
+ # Handle footballs - keep only the best one
444
+ footballs = [bb for bb in boxes if int(bb.cls_id) == 0]
445
+ if len(footballs) > 1:
446
+ best_ball = max(footballs, key=lambda b: b.conf)
447
+ boxes = [bb for bb in boxes if int(bb.cls_id) != 0]
448
+ boxes.append(best_ball)
449
+
450
+ # Remove overlapping small boxes
451
+ boxes = suppress_small_contained_boxes(boxes, self.SMALL_CONTAINED_IOA, self.SMALL_RATIO_MAX)
452
+
453
+ # Handle goalkeeper detection issues:
454
+ # 1. Fix misplaced goalkeepers (convert to players if standing in middle)
455
+ # 2. Allow up to 2 goalkeepers maximum (one from each team)
456
+ # Goalkeepers remain class_id = 1 (no team assignment)
457
+ boxes = self._handle_multiple_goalkeepers(boxes)
458
+
459
+ # Store results (players still have class_id=2, will be classified in phase 2)
460
+ frame_id = offset + frame_idx_in_batch
461
+ bboxes[frame_id] = boxes
462
+
463
+ return bboxes
464
+
465
+ def predict_batch(self, batch_images: List[ndarray], offset: int, n_keypoints: int) -> List[TVFrameResult]:
466
+ bboxes: Dict[int, List[BoundingBox]] = {}
467
+
468
+ bboxes = self._detect_objects_batch(batch_images, offset)
469
+ if bboxes:
470
+ bboxes, self.team_classifier_fitted, self.player_crops_for_fit = classify_teams_batch(
471
+ self.team_classifier,
472
+ self.team_classifier_fitted,
473
+ self.player_crops_for_fit,
474
+ batch_images,
475
+ bboxes,
476
+ offset,
477
+ self.MIN_SAMPLES_FOR_FIT,
478
+ self.MAX_SAMPLES_FOR_FIT,
479
+ self.SINGLE_PLAYER_HUE_PIVOT
480
+ )
481
+ self.team_classifier_fitted = False
482
+ self.player_crops_for_fit = []
483
+
484
+ pitch_batch_size = min(self.pitch_batch_size, len(batch_images))
485
+ keypoints: Dict[int, List[Tuple[int, int]]] = {}
486
+ while True:
487
+ # try:
488
+ gc.collect()
489
+ if torch.cuda.is_available():
490
+ tf.keras.backend.clear_session()
491
+ torch.cuda.empty_cache()
492
+ torch.cuda.synchronize()
493
+ device_str = "cuda" if torch.cuda.is_available() else "cpu"
494
+ keypoints_result = process_batch_input(
495
+ batch_images,
496
+ self.keypoints_model,
497
+ self.kp_threshold,
498
+ device_str,
499
+ batch_size=pitch_batch_size,
500
+ )
501
+ if keypoints_result is not None and len(keypoints_result) > 0:
502
+ for frame_number_in_batch, kp_dict in enumerate(keypoints_result):
503
+ if frame_number_in_batch >= len(batch_images):
504
+ break
505
+ frame_keypoints: List[Tuple[int, int]] = []
506
+ try:
507
+ height, width = batch_images[frame_number_in_batch].shape[:2]
508
+ if kp_dict is not None and isinstance(kp_dict, dict):
509
+ for idx in range(32):
510
+ x, y = 0, 0
511
+ kp_idx = idx + 1
512
+ if kp_idx in kp_dict:
513
+ try:
514
+ kp_data = kp_dict[kp_idx]
515
+ if isinstance(kp_data, dict) and "x" in kp_data and "y" in kp_data:
516
+ x = int(kp_data["x"] * width)
517
+ y = int(kp_data["y"] * height)
518
+ except (KeyError, TypeError, ValueError):
519
+ pass
520
+ frame_keypoints.append((x, y))
521
+ except (IndexError, ValueError, AttributeError):
522
+ frame_keypoints = [(0, 0)] * 32
523
+ if len(frame_keypoints) < n_keypoints:
524
+ frame_keypoints.extend([(0, 0)] * (n_keypoints - len(frame_keypoints)))
525
+ else:
526
+ frame_keypoints = frame_keypoints[:n_keypoints]
527
+ keypoints[offset + frame_number_in_batch] = frame_keypoints
528
+ print("✅ Keypoints predicted")
529
+ break
530
+ # except RuntimeError as e:
531
+ # print(self.pitch_batch_size)
532
+ # print(e)
533
+ # if "out of memory" in str(e):
534
+ # if self.pitch_batch_size == 1:
535
+ # break
536
+ # self.pitch_batch_size = self.pitch_batch_size // 2 if self.pitch_batch_size > 1 else 1
537
+ # pitch_batch_size = min(self.pitch_batch_size, len(batch_images))
538
+ # else:
539
+ # break
540
+ # except Exception as e:
541
+ # print(f"❌ Error during keypoints prediction: {e}")
542
+ # break
543
+
544
+ results: List[TVFrameResult] = []
545
+ for frame_number in range(offset, offset + len(batch_images)):
546
+ frame_boxes = bboxes.get(frame_number, [])
547
+ frame_keypoints = keypoints.get(frame_number, [(0, 0) for _ in range(n_keypoints)])
548
+ result = TVFrameResult(
549
+ frame_id=frame_number,
550
+ boxes=frame_boxes,
551
+ keypoints=frame_keypoints,
552
+ )
553
+ results.append(result)
554
+
555
+ gc.collect()
556
+ if torch.cuda.is_available():
557
+ tf.keras.backend.clear_session()
558
+ torch.cuda.empty_cache()
559
+ torch.cuda.synchronize()
560
+
561
+ return results
objdetect.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7b51470cb703f5a9a789df38674b67d4bbe7f8f31846d69dbc97ce484f790cf9
3
+ size 10245169
osnet_ain.pyc ADDED
Binary file (24.2 kB). View file
 
osnet_model.pth.tar-100 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:64873ef0e8abf28df31facd113f27634e2d085a2dcf8d19123409b1d0e2566c8
3
+ size 36189526
pitch.py ADDED
@@ -0,0 +1,688 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import absolute_import
2
+ from __future__ import division
3
+ from __future__ import print_function
4
+
5
+ import os
6
+ import sys
7
+ import time
8
+ from typing import List, Optional, Tuple
9
+
10
+ import cv2
11
+ import numpy as np
12
+ import torch
13
+ import torch.nn as nn
14
+ import torch.nn.functional as F
15
+ import torchvision.transforms as T
16
+ import torchvision.transforms.functional as f
17
+ from pydantic import BaseModel
18
+
19
+ import logging
20
+ logger = logging.getLogger(__name__)
21
+
22
+
23
+ class BoundingBox(BaseModel):
24
+ x1: int
25
+ y1: int
26
+ x2: int
27
+ y2: int
28
+ cls_id: int
29
+ conf: float
30
+
31
+
32
+ class TVFrameResult(BaseModel):
33
+ frame_id: int
34
+ boxes: list[BoundingBox]
35
+ keypoints: list[tuple[int, int]]
36
+
37
+ BatchNorm2d = nn.BatchNorm2d
38
+ BN_MOMENTUM = 0.1
39
+
40
+ def conv3x3(in_planes, out_planes, stride=1):
41
+ """3x3 convolution with padding"""
42
+ return nn.Conv2d(in_planes, out_planes, kernel_size=3,
43
+ stride=stride, padding=1, bias=False)
44
+
45
+
46
+ class BasicBlock(nn.Module):
47
+ expansion = 1
48
+
49
+ def __init__(self, inplanes, planes, stride=1, downsample=None):
50
+ super(BasicBlock, self).__init__()
51
+ self.conv1 = conv3x3(inplanes, planes, stride)
52
+ self.bn1 = BatchNorm2d(planes, momentum=BN_MOMENTUM)
53
+ self.relu = nn.ReLU(inplace=True)
54
+ self.conv2 = conv3x3(planes, planes)
55
+ self.bn2 = BatchNorm2d(planes, momentum=BN_MOMENTUM)
56
+ self.downsample = downsample
57
+ self.stride = stride
58
+
59
+ def forward(self, x):
60
+ residual = x
61
+
62
+ out = self.conv1(x)
63
+ out = self.bn1(out)
64
+ out = self.relu(out)
65
+
66
+ out = self.conv2(out)
67
+ out = self.bn2(out)
68
+
69
+ if self.downsample is not None:
70
+ residual = self.downsample(x)
71
+
72
+ out += residual
73
+ out = self.relu(out)
74
+
75
+ return out
76
+
77
+
78
+ class Bottleneck(nn.Module):
79
+ expansion = 4
80
+
81
+ def __init__(self, inplanes, planes, stride=1, downsample=None):
82
+ super(Bottleneck, self).__init__()
83
+ self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
84
+ self.bn1 = BatchNorm2d(planes, momentum=BN_MOMENTUM)
85
+ self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
86
+ padding=1, bias=False)
87
+ self.bn2 = BatchNorm2d(planes, momentum=BN_MOMENTUM)
88
+ self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1,
89
+ bias=False)
90
+ self.bn3 = BatchNorm2d(planes * self.expansion,
91
+ momentum=BN_MOMENTUM)
92
+ self.relu = nn.ReLU(inplace=True)
93
+ self.downsample = downsample
94
+ self.stride = stride
95
+
96
+ def forward(self, x):
97
+ residual = x
98
+
99
+ out = self.conv1(x)
100
+ out = self.bn1(out)
101
+ out = self.relu(out)
102
+
103
+ out = self.conv2(out)
104
+ out = self.bn2(out)
105
+ out = self.relu(out)
106
+
107
+ out = self.conv3(out)
108
+ out = self.bn3(out)
109
+
110
+ if self.downsample is not None:
111
+ residual = self.downsample(x)
112
+
113
+ out += residual
114
+ out = self.relu(out)
115
+
116
+ return out
117
+
118
+
119
+ class HighResolutionModule(nn.Module):
120
+ def __init__(self, num_branches, blocks, num_blocks, num_inchannels,
121
+ num_channels, fuse_method, multi_scale_output=True):
122
+ super(HighResolutionModule, self).__init__()
123
+ self._check_branches(
124
+ num_branches, blocks, num_blocks, num_inchannels, num_channels)
125
+
126
+ self.num_inchannels = num_inchannels
127
+ self.fuse_method = fuse_method
128
+ self.num_branches = num_branches
129
+
130
+ self.multi_scale_output = multi_scale_output
131
+
132
+ self.branches = self._make_branches(
133
+ num_branches, blocks, num_blocks, num_channels)
134
+ self.fuse_layers = self._make_fuse_layers()
135
+ self.relu = nn.ReLU(inplace=True)
136
+
137
+ def _check_branches(self, num_branches, blocks, num_blocks,
138
+ num_inchannels, num_channels):
139
+ if num_branches != len(num_blocks):
140
+ error_msg = 'NUM_BRANCHES({}) <> NUM_BLOCKS({})'.format(
141
+ num_branches, len(num_blocks))
142
+ logger.error(error_msg)
143
+ raise ValueError(error_msg)
144
+
145
+ if num_branches != len(num_channels):
146
+ error_msg = 'NUM_BRANCHES({}) <> NUM_CHANNELS({})'.format(
147
+ num_branches, len(num_channels))
148
+ logger.error(error_msg)
149
+ raise ValueError(error_msg)
150
+
151
+ if num_branches != len(num_inchannels):
152
+ error_msg = 'NUM_BRANCHES({}) <> NUM_INCHANNELS({})'.format(
153
+ num_branches, len(num_inchannels))
154
+ logger.error(error_msg)
155
+ raise ValueError(error_msg)
156
+
157
+ def _make_one_branch(self, branch_index, block, num_blocks, num_channels,
158
+ stride=1):
159
+ downsample = None
160
+ if stride != 1 or \
161
+ self.num_inchannels[branch_index] != num_channels[branch_index] * block.expansion:
162
+ downsample = nn.Sequential(
163
+ nn.Conv2d(self.num_inchannels[branch_index],
164
+ num_channels[branch_index] * block.expansion,
165
+ kernel_size=1, stride=stride, bias=False),
166
+ BatchNorm2d(num_channels[branch_index] * block.expansion,
167
+ momentum=BN_MOMENTUM),
168
+ )
169
+
170
+ layers = []
171
+ layers.append(block(self.num_inchannels[branch_index],
172
+ num_channels[branch_index], stride, downsample))
173
+ self.num_inchannels[branch_index] = \
174
+ num_channels[branch_index] * block.expansion
175
+ for i in range(1, num_blocks[branch_index]):
176
+ layers.append(block(self.num_inchannels[branch_index],
177
+ num_channels[branch_index]))
178
+
179
+ return nn.Sequential(*layers)
180
+
181
+ def _make_branches(self, num_branches, block, num_blocks, num_channels):
182
+ branches = []
183
+
184
+ for i in range(num_branches):
185
+ branches.append(
186
+ self._make_one_branch(i, block, num_blocks, num_channels))
187
+
188
+ return nn.ModuleList(branches)
189
+
190
+ def _make_fuse_layers(self):
191
+ if self.num_branches == 1:
192
+ return None
193
+
194
+ num_branches = self.num_branches
195
+ num_inchannels = self.num_inchannels
196
+ fuse_layers = []
197
+ for i in range(num_branches if self.multi_scale_output else 1):
198
+ fuse_layer = []
199
+ for j in range(num_branches):
200
+ if j > i:
201
+ fuse_layer.append(nn.Sequential(
202
+ nn.Conv2d(num_inchannels[j],
203
+ num_inchannels[i],
204
+ 1,
205
+ 1,
206
+ 0,
207
+ bias=False),
208
+ BatchNorm2d(num_inchannels[i], momentum=BN_MOMENTUM)))
209
+ # nn.Upsample(scale_factor=2**(j-i), mode='nearest')))
210
+ elif j == i:
211
+ fuse_layer.append(None)
212
+ else:
213
+ conv3x3s = []
214
+ for k in range(i - j):
215
+ if k == i - j - 1:
216
+ num_outchannels_conv3x3 = num_inchannels[i]
217
+ conv3x3s.append(nn.Sequential(
218
+ nn.Conv2d(num_inchannels[j],
219
+ num_outchannels_conv3x3,
220
+ 3, 2, 1, bias=False),
221
+ BatchNorm2d(num_outchannels_conv3x3, momentum=BN_MOMENTUM)))
222
+ else:
223
+ num_outchannels_conv3x3 = num_inchannels[j]
224
+ conv3x3s.append(nn.Sequential(
225
+ nn.Conv2d(num_inchannels[j],
226
+ num_outchannels_conv3x3,
227
+ 3, 2, 1, bias=False),
228
+ BatchNorm2d(num_outchannels_conv3x3,
229
+ momentum=BN_MOMENTUM),
230
+ nn.ReLU(inplace=True)))
231
+ fuse_layer.append(nn.Sequential(*conv3x3s))
232
+ fuse_layers.append(nn.ModuleList(fuse_layer))
233
+
234
+ return nn.ModuleList(fuse_layers)
235
+
236
+ def get_num_inchannels(self):
237
+ return self.num_inchannels
238
+
239
+ def forward(self, x):
240
+ if self.num_branches == 1:
241
+ return [self.branches[0](x[0])]
242
+
243
+ for i in range(self.num_branches):
244
+ x[i] = self.branches[i](x[i])
245
+
246
+ x_fuse = []
247
+ for i in range(len(self.fuse_layers)):
248
+ y = x[0] if i == 0 else self.fuse_layers[i][0](x[0])
249
+ for j in range(1, self.num_branches):
250
+ if i == j:
251
+ y = y + x[j]
252
+ elif j > i:
253
+ y = y + F.interpolate(
254
+ self.fuse_layers[i][j](x[j]),
255
+ size=[x[i].shape[2], x[i].shape[3]],
256
+ mode='bilinear')
257
+ else:
258
+ y = y + self.fuse_layers[i][j](x[j])
259
+ x_fuse.append(self.relu(y))
260
+
261
+ return x_fuse
262
+
263
+
264
+ blocks_dict = {
265
+ 'BASIC': BasicBlock,
266
+ 'BOTTLENECK': Bottleneck
267
+ }
268
+
269
+
270
+ class HighResolutionNet(nn.Module):
271
+
272
+ def __init__(self, config, **kwargs):
273
+ self.inplanes = 64
274
+ extra = config['MODEL']['EXTRA']
275
+ super(HighResolutionNet, self).__init__()
276
+
277
+ # stem net
278
+ self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=3, stride=2, padding=1,
279
+ bias=False)
280
+ self.bn1 = BatchNorm2d(self.inplanes, momentum=BN_MOMENTUM)
281
+ self.conv2 = nn.Conv2d(self.inplanes, self.inplanes, kernel_size=3, stride=2, padding=1,
282
+ bias=False)
283
+ self.bn2 = BatchNorm2d(self.inplanes, momentum=BN_MOMENTUM)
284
+ self.relu = nn.ReLU(inplace=True)
285
+ self.sf = nn.Softmax(dim=1)
286
+ self.layer1 = self._make_layer(Bottleneck, 64, 64, 4)
287
+
288
+ self.stage2_cfg = extra['STAGE2']
289
+ num_channels = self.stage2_cfg['NUM_CHANNELS']
290
+ block = blocks_dict[self.stage2_cfg['BLOCK']]
291
+ num_channels = [
292
+ num_channels[i] * block.expansion for i in range(len(num_channels))]
293
+ self.transition1 = self._make_transition_layer(
294
+ [256], num_channels)
295
+ self.stage2, pre_stage_channels = self._make_stage(
296
+ self.stage2_cfg, num_channels)
297
+
298
+ self.stage3_cfg = extra['STAGE3']
299
+ num_channels = self.stage3_cfg['NUM_CHANNELS']
300
+ block = blocks_dict[self.stage3_cfg['BLOCK']]
301
+ num_channels = [
302
+ num_channels[i] * block.expansion for i in range(len(num_channels))]
303
+ self.transition2 = self._make_transition_layer(
304
+ pre_stage_channels, num_channels)
305
+ self.stage3, pre_stage_channels = self._make_stage(
306
+ self.stage3_cfg, num_channels)
307
+
308
+ self.stage4_cfg = extra['STAGE4']
309
+ num_channels = self.stage4_cfg['NUM_CHANNELS']
310
+ block = blocks_dict[self.stage4_cfg['BLOCK']]
311
+ num_channels = [
312
+ num_channels[i] * block.expansion for i in range(len(num_channels))]
313
+ self.transition3 = self._make_transition_layer(
314
+ pre_stage_channels, num_channels)
315
+ self.stage4, pre_stage_channels = self._make_stage(
316
+ self.stage4_cfg, num_channels, multi_scale_output=True)
317
+
318
+ self.upsample = nn.Upsample(scale_factor=2, mode='nearest')
319
+ final_inp_channels = sum(pre_stage_channels) + self.inplanes
320
+
321
+ self.head = nn.Sequential(nn.Sequential(
322
+ nn.Conv2d(
323
+ in_channels=final_inp_channels,
324
+ out_channels=final_inp_channels,
325
+ kernel_size=1),
326
+ BatchNorm2d(final_inp_channels, momentum=BN_MOMENTUM),
327
+ nn.ReLU(inplace=True),
328
+ nn.Conv2d(
329
+ in_channels=final_inp_channels,
330
+ out_channels=config['MODEL']['NUM_JOINTS'],
331
+ kernel_size=extra['FINAL_CONV_KERNEL']),
332
+ nn.Softmax(dim=1)))
333
+
334
+
335
+
336
+ def _make_head(self, x, x_skip):
337
+ x = self.upsample(x)
338
+ x = torch.cat([x, x_skip], dim=1)
339
+ x = self.head(x)
340
+
341
+ return x
342
+
343
+ def _make_transition_layer(
344
+ self, num_channels_pre_layer, num_channels_cur_layer):
345
+ num_branches_cur = len(num_channels_cur_layer)
346
+ num_branches_pre = len(num_channels_pre_layer)
347
+
348
+ transition_layers = []
349
+ for i in range(num_branches_cur):
350
+ if i < num_branches_pre:
351
+ if num_channels_cur_layer[i] != num_channels_pre_layer[i]:
352
+ transition_layers.append(nn.Sequential(
353
+ nn.Conv2d(num_channels_pre_layer[i],
354
+ num_channels_cur_layer[i],
355
+ 3,
356
+ 1,
357
+ 1,
358
+ bias=False),
359
+ BatchNorm2d(
360
+ num_channels_cur_layer[i], momentum=BN_MOMENTUM),
361
+ nn.ReLU(inplace=True)))
362
+ else:
363
+ transition_layers.append(None)
364
+ else:
365
+ conv3x3s = []
366
+ for j in range(i + 1 - num_branches_pre):
367
+ inchannels = num_channels_pre_layer[-1]
368
+ outchannels = num_channels_cur_layer[i] \
369
+ if j == i - num_branches_pre else inchannels
370
+ conv3x3s.append(nn.Sequential(
371
+ nn.Conv2d(
372
+ inchannels, outchannels, 3, 2, 1, bias=False),
373
+ BatchNorm2d(outchannels, momentum=BN_MOMENTUM),
374
+ nn.ReLU(inplace=True)))
375
+ transition_layers.append(nn.Sequential(*conv3x3s))
376
+
377
+ return nn.ModuleList(transition_layers)
378
+
379
+ def _make_layer(self, block, inplanes, planes, blocks, stride=1):
380
+ downsample = None
381
+ if stride != 1 or inplanes != planes * block.expansion:
382
+ downsample = nn.Sequential(
383
+ nn.Conv2d(inplanes, planes * block.expansion,
384
+ kernel_size=1, stride=stride, bias=False),
385
+ BatchNorm2d(planes * block.expansion, momentum=BN_MOMENTUM),
386
+ )
387
+
388
+ layers = []
389
+ layers.append(block(inplanes, planes, stride, downsample))
390
+ inplanes = planes * block.expansion
391
+ for i in range(1, blocks):
392
+ layers.append(block(inplanes, planes))
393
+
394
+ return nn.Sequential(*layers)
395
+
396
+ def _make_stage(self, layer_config, num_inchannels,
397
+ multi_scale_output=True):
398
+ num_modules = layer_config['NUM_MODULES']
399
+ num_branches = layer_config['NUM_BRANCHES']
400
+ num_blocks = layer_config['NUM_BLOCKS']
401
+ num_channels = layer_config['NUM_CHANNELS']
402
+ block = blocks_dict[layer_config['BLOCK']]
403
+ fuse_method = layer_config['FUSE_METHOD']
404
+
405
+ modules = []
406
+ for i in range(num_modules):
407
+ # multi_scale_output is only used last module
408
+ if not multi_scale_output and i == num_modules - 1:
409
+ reset_multi_scale_output = False
410
+ else:
411
+ reset_multi_scale_output = True
412
+ modules.append(
413
+ HighResolutionModule(num_branches,
414
+ block,
415
+ num_blocks,
416
+ num_inchannels,
417
+ num_channels,
418
+ fuse_method,
419
+ reset_multi_scale_output)
420
+ )
421
+ num_inchannels = modules[-1].get_num_inchannels()
422
+
423
+ return nn.Sequential(*modules), num_inchannels
424
+
425
+ def forward(self, x):
426
+ # h, w = x.size(2), x.size(3)
427
+ x = self.conv1(x)
428
+ x_skip = x.clone()
429
+ x = self.bn1(x)
430
+ x = self.relu(x)
431
+ x = self.conv2(x)
432
+ x = self.bn2(x)
433
+ x = self.relu(x)
434
+ x = self.layer1(x)
435
+
436
+ x_list = []
437
+ for i in range(self.stage2_cfg['NUM_BRANCHES']):
438
+ if self.transition1[i] is not None:
439
+ x_list.append(self.transition1[i](x))
440
+ else:
441
+ x_list.append(x)
442
+ y_list = self.stage2(x_list)
443
+
444
+ x_list = []
445
+ for i in range(self.stage3_cfg['NUM_BRANCHES']):
446
+ if self.transition2[i] is not None:
447
+ x_list.append(self.transition2[i](y_list[-1]))
448
+ else:
449
+ x_list.append(y_list[i])
450
+ y_list = self.stage3(x_list)
451
+
452
+ x_list = []
453
+ for i in range(self.stage4_cfg['NUM_BRANCHES']):
454
+ if self.transition3[i] is not None:
455
+ x_list.append(self.transition3[i](y_list[-1]))
456
+ else:
457
+ x_list.append(y_list[i])
458
+ x = self.stage4(x_list)
459
+
460
+ # Head Part
461
+ height, width = x[0].size(2), x[0].size(3)
462
+ x1 = F.interpolate(x[1], size=(height, width), mode='bilinear', align_corners=False)
463
+ x2 = F.interpolate(x[2], size=(height, width), mode='bilinear', align_corners=False)
464
+ x3 = F.interpolate(x[3], size=(height, width), mode='bilinear', align_corners=False)
465
+ x = torch.cat([x[0], x1, x2, x3], 1)
466
+ x = self._make_head(x, x_skip)
467
+
468
+ return x
469
+
470
+ def init_weights(self, pretrained=''):
471
+ for m in self.modules():
472
+ if isinstance(m, nn.Conv2d):
473
+ nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
474
+ #nn.init.normal_(m.weight, std=0.001)
475
+ #nn.init.constant_(m.bias, 0)
476
+ elif isinstance(m, nn.BatchNorm2d):
477
+ nn.init.constant_(m.weight, 1)
478
+ nn.init.constant_(m.bias, 0)
479
+ if pretrained != '':
480
+ if os.path.isfile(pretrained):
481
+ pretrained_dict = torch.load(pretrained)
482
+ model_dict = self.state_dict()
483
+ pretrained_dict = {k: v for k, v in pretrained_dict.items()
484
+ if k in model_dict.keys()}
485
+ model_dict.update(pretrained_dict)
486
+ self.load_state_dict(model_dict)
487
+ else:
488
+ sys.exit(f'Weights {pretrained} not found.')
489
+
490
+
491
+ def get_cls_net(config, pretrained='', **kwargs):
492
+ """Create keypoint detection model with softmax activation"""
493
+ model = HighResolutionNet(config, **kwargs)
494
+ model.init_weights(pretrained)
495
+ return model
496
+
497
+
498
+ def get_cls_net_l(config, pretrained='', **kwargs):
499
+ """Create line detection model with sigmoid activation"""
500
+ model = HighResolutionNet(config, **kwargs)
501
+ model.init_weights(pretrained)
502
+
503
+ # After loading weights, replace just the activation function
504
+ # The saved model expects the nested Sequential structure
505
+ inner_seq = model.head[0]
506
+ # Replace softmax (index 4) with sigmoid
507
+ model.head[0][4] = nn.Sigmoid()
508
+
509
+ return model
510
+
511
+ # Simplified utility functions - removed complex Gaussian generation functions
512
+ # These were mainly used for training data generation, not inference
513
+
514
+
515
+
516
+ # generate_gaussian_array_vectorized_dist_l function removed - not used in current implementation
517
+ @torch.inference_mode()
518
+ def run_inference(model, input_tensor: torch.Tensor, device):
519
+ input_tensor = input_tensor.to(device).to(memory_format=torch.channels_last)
520
+ output = model.module().forward(input_tensor)
521
+ return output
522
+
523
+ def preprocess_batch_fast(frames):
524
+ """Ultra-fast batch preprocessing using optimized tensor operations"""
525
+ target_size = (540, 960) # H, W format for model input
526
+ batch = []
527
+ for i, frame in enumerate(frames):
528
+ frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
529
+ img = cv2.resize(frame_rgb, (target_size[1], target_size[0]))
530
+ img = img.astype(np.float32) / 255.0
531
+ img = np.transpose(img, (2, 0, 1)) # HWC -> CHW
532
+ batch.append(img)
533
+ batch = torch.from_numpy(np.stack(batch)).float()
534
+
535
+ return batch
536
+
537
+ def extract_keypoints_from_heatmap(heatmap: torch.Tensor, scale: int = 2, max_keypoints: int = 1):
538
+ """Optimized keypoint extraction from heatmaps"""
539
+ batch_size, n_channels, height, width = heatmap.shape
540
+
541
+ # Find local maxima using max pooling (keep on GPU)
542
+ kernel = 3
543
+ pad = 1
544
+ max_pooled = F.max_pool2d(heatmap, kernel, stride=1, padding=pad)
545
+ local_maxima = (max_pooled == heatmap)
546
+ heatmap = heatmap * local_maxima
547
+
548
+ # Get top keypoints (keep on GPU longer)
549
+ scores, indices = torch.topk(heatmap.view(batch_size, n_channels, -1), max_keypoints, sorted=False)
550
+ y_coords = torch.div(indices, width, rounding_mode="floor")
551
+ x_coords = indices % width
552
+
553
+ # Optimized tensor operations
554
+ x_coords = x_coords * scale
555
+ y_coords = y_coords * scale
556
+
557
+ # Create result tensor directly on GPU
558
+ results = torch.stack([x_coords.float(), y_coords.float(), scores], dim=-1)
559
+
560
+ return results
561
+
562
+
563
+ def extract_keypoints_from_heatmap_fast(heatmap: torch.Tensor, scale: int = 2, max_keypoints: int = 1):
564
+ """Ultra-fast keypoint extraction optimized for speed"""
565
+ batch_size, n_channels, height, width = heatmap.shape
566
+
567
+ # Simplified local maxima detection (faster but slightly less accurate)
568
+ max_pooled = F.max_pool2d(heatmap, 3, stride=1, padding=1)
569
+ local_maxima = (max_pooled == heatmap)
570
+
571
+ # Apply mask and get top keypoints in one go
572
+ masked_heatmap = heatmap * local_maxima
573
+ flat_heatmap = masked_heatmap.view(batch_size, n_channels, -1)
574
+ scores, indices = torch.topk(flat_heatmap, max_keypoints, dim=-1, sorted=False)
575
+
576
+ # Vectorized coordinate calculation
577
+ y_coords = torch.div(indices, width, rounding_mode="floor") * scale
578
+ x_coords = (indices % width) * scale
579
+
580
+ # Stack results efficiently
581
+ results = torch.stack([x_coords.float(), y_coords.float(), scores], dim=-1)
582
+ return results
583
+
584
+
585
+ def process_keypoints_vectorized(kp_coords, kp_threshold, w, h, batch_size):
586
+ """Ultra-fast vectorized keypoint processing"""
587
+ batch_results = []
588
+
589
+ # Convert to numpy once for faster CPU operations
590
+ kp_np = kp_coords.cpu().numpy()
591
+
592
+ for batch_idx in range(batch_size):
593
+ kp_dict = {}
594
+ # Vectorized threshold check
595
+ valid_kps = kp_np[batch_idx, :, 0, 2] > kp_threshold
596
+ valid_indices = np.where(valid_kps)[0]
597
+
598
+ for ch_idx in valid_indices:
599
+ x = float(kp_np[batch_idx, ch_idx, 0, 0]) / w
600
+ y = float(kp_np[batch_idx, ch_idx, 0, 1]) / h
601
+ p = float(kp_np[batch_idx, ch_idx, 0, 2])
602
+ kp_dict[ch_idx + 1] = {'x': x, 'y': y, 'p': p}
603
+
604
+ batch_results.append(kp_dict)
605
+
606
+ return batch_results
607
+
608
+ def inference_batch(frames, model, kp_threshold, device, batch_size=8):
609
+ """Optimized batch inference for multiple frames"""
610
+ results = []
611
+ num_frames = len(frames)
612
+
613
+ # Get the device from the model itself
614
+ model_device = next(model.parameters()).device
615
+ print(model_device)
616
+
617
+ # Process all frames in optimally-sized batches
618
+ for i in range(0, num_frames, batch_size):
619
+ current_batch_size = min(batch_size, num_frames - i)
620
+ batch_frames = frames[i:i + current_batch_size]
621
+
622
+ # Fast preprocessing - create on CPU first
623
+ batch = preprocess_batch_fast(batch_frames)
624
+ b, c, h, w = batch.size()
625
+
626
+ # Move batch to model device
627
+ batch = batch.to(model_device)
628
+
629
+ with torch.no_grad():
630
+ heatmaps = model(batch)
631
+
632
+ # Ultra-fast keypoint extraction
633
+ kp_coords = extract_keypoints_from_heatmap_fast(heatmaps[:,:-1,:,:], scale=2, max_keypoints=1)
634
+
635
+ # Vectorized batch processing - no loops
636
+ batch_results = process_keypoints_vectorized(kp_coords, kp_threshold, 960, 540, current_batch_size)
637
+ results.extend(batch_results)
638
+
639
+ # Minimal cleanup
640
+ del heatmaps, kp_coords, batch
641
+
642
+ return results
643
+
644
+ # Keypoint mapping from detection indices to standard football pitch keypoint IDs
645
+ map_keypoints = {
646
+ 1: 1, 2: 14, 3: 25, 4: 2, 5: 10, 6: 18, 7: 26, 8: 3, 9: 7, 10: 23,
647
+ 11: 27, 20: 4, 21: 8, 22: 24, 23: 28, 24: 5, 25: 13, 26: 21, 27: 29,
648
+ 28: 6, 29: 17, 30: 30, 31: 11, 32: 15, 33: 19, 34: 12, 35: 16, 36: 20,
649
+ 45: 9, 50: 31, 52: 32, 57: 22
650
+ }
651
+
652
+ def get_mapped_keypoints(kp_points):
653
+ """Apply keypoint mapping to detection results"""
654
+ mapped_points = {}
655
+ for key, value in kp_points.items():
656
+ if key in map_keypoints:
657
+ mapped_key = map_keypoints[key]
658
+ mapped_points[mapped_key] = value
659
+ # else:
660
+ # Keep unmapped keypoints with original key
661
+ # mapped_points[key] = value
662
+ return mapped_points
663
+
664
+ def process_batch_input(frames, model, kp_threshold, device, batch_size=8):
665
+ """Process multiple input images in batch"""
666
+ # Batch inference
667
+ kp_results = inference_batch(frames, model, kp_threshold, device, batch_size)
668
+ kp_results = [get_mapped_keypoints(kp) for kp in kp_results]
669
+ # Draw results and save
670
+ # for i, (frame, kp_points, input_path) in enumerate(zip(frames, kp_results, valid_paths)):
671
+ # height, width = frame.shape[:2]
672
+
673
+ # # Apply mapping to get standard keypoint IDs
674
+ # mapped_kp_points = get_mapped_keypoints(kp_points)
675
+
676
+ # for key, value in mapped_kp_points.items():
677
+ # x = int(value['x'] * width)
678
+ # y = int(value['y'] * height)
679
+ # cv2.circle(frame, (x, y), 5, (0, 255, 0), -1) # Green circles
680
+ # cv2.putText(frame, str(key), (x+10, y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2)
681
+
682
+ # # Save result
683
+ # output_path = input_path.replace('.png', '_result.png').replace('.jpg', '_result.jpg')
684
+ # cv2.imwrite(output_path, frame)
685
+
686
+ # print(f"Batch processing complete. Processed {len(frames)} images.")
687
+
688
+ return kp_results
team_cluster.pyc ADDED
Binary file (7.62 kB). View file
 
utils.pyc ADDED
Binary file (20.6 kB). View file