Alvaro Bartolome
commited on
Add custom `handler.py`
Browse files- handler.py +59 -0
handler.py
ADDED
|
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Any, Dict, List
|
| 2 |
+
|
| 3 |
+
import requests
|
| 4 |
+
import torch
|
| 5 |
+
|
| 6 |
+
from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
|
| 7 |
+
from PIL import Image
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class EndpointHandler:
|
| 11 |
+
def __init__(
|
| 12 |
+
self,
|
| 13 |
+
model_dir: str = "/opt/huggingface/model",
|
| 14 |
+
**kwargs: Any,
|
| 15 |
+
) -> None:
|
| 16 |
+
self.model = PaliGemmaForConditionalGeneration.from_pretrained(
|
| 17 |
+
"google/paligemma-3b-mix-448",
|
| 18 |
+
revision="bfloat16",
|
| 19 |
+
torch_dtype=torch.bfloat16,
|
| 20 |
+
low_cpu_mem_usage=True,
|
| 21 |
+
device_map="auto",
|
| 22 |
+
).eval()
|
| 23 |
+
|
| 24 |
+
self.processor = AutoProcessor.from_pretrained("google/paligemma-3b-mix-448")
|
| 25 |
+
|
| 26 |
+
def __call__(self, data: Dict[str, Any]) -> Dict[str, List[Any]]:
|
| 27 |
+
if "instances" not in data:
|
| 28 |
+
raise ValueError(
|
| 29 |
+
"The request body must contain a key `instances` with a list of instances."
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
predictions = []
|
| 33 |
+
for input in data["instances"]:
|
| 34 |
+
if any(key not in input for key in {"prompt", "image_url"}):
|
| 35 |
+
raise ValueError(
|
| 36 |
+
"The request body for each instance should contain both the `prompt` and the `image_url` key with a valid image URL."
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
try:
|
| 40 |
+
image = Image.open(requests.get(input["image_url"], stream=True).raw) # type: ignore
|
| 41 |
+
except Exception as e:
|
| 42 |
+
raise ValueError(
|
| 43 |
+
f"The provided image URL ({input['image_url']}) cannot be downloaded (with exception {e}), make sure it's public and accessible."
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
inputs = self.processor(
|
| 47 |
+
text=input["prompt"], images=image, return_tensors="pt"
|
| 48 |
+
).to(self.model.device)
|
| 49 |
+
input_len = inputs["input_ids"].shape[-1]
|
| 50 |
+
|
| 51 |
+
with torch.inference_mode():
|
| 52 |
+
generation_kwargs = data.get(
|
| 53 |
+
"generation_kwargs", {"max_new_tokens": 100, "do_sample": False}
|
| 54 |
+
)
|
| 55 |
+
generation = self.model.generate(**inputs, **generation_kwargs)
|
| 56 |
+
generation = generation[0][input_len:]
|
| 57 |
+
response = self.processor.decode(generation, skip_special_tokens=True)
|
| 58 |
+
predictions.append(response)
|
| 59 |
+
return {"predictions": predictions}
|