hamzamalik11 commited on
Commit
18009c4
·
1 Parent(s): bd6c122

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +29 -31
README.md CHANGED
@@ -35,8 +35,8 @@ In training i use 70000 radiology reports to train the model to summarize radiol
35
 
36
  ### Model Sources
37
  - **Repository:** [GanjinZero/biobart-v2-base]
38
- - **Paper [optional]:** [BioBART: Pretraining and Evaluation of A Biomedical Generative Language Model]
39
- - **Demo [optional]:** [hamzamalik11/radiology_summarizer]
40
 
41
  ## Uses
42
 
@@ -77,9 +77,9 @@ output= summarizer("heart size normal mediastinal hilar contours remain stable s
77
  ## Training Details
78
 
79
  ### Training Data
80
- Data Source: The training data was a custom dataset of 70,000 radiology reports.
81
- Data Cleaning: The data was cleaned to remove any personal or confidential information. The data was also tokenized and normalized.
82
- Data Split: The training data was split into a training set and a validation set. The training set consisted of 63,000 radiology reports, and the validation set consisted of 7,000 radiology reports.
83
 
84
 
85
 
@@ -91,23 +91,21 @@ The model was trained using the Hugging Face Transformers library: https://huggi
91
  #### Training Hyperparameters
92
 
93
  - **Training regime:**
94
- - evaluation_strategy="epoch",
95
- learning_rate=5.6e-5,
96
- per_device_train_batch_size=batch_size //4,
97
- per_device_eval_batch_size=batch_size //4,
98
- weight_decay=0.01,
99
- save_total_limit=3,
100
- num_train_epochs=num_train_epochs,
101
- predict_with_generate=True,
102
- logging_steps=logging_steps,
103
- push_to_hub=False,
104
 
105
 
106
 
107
  ## Evaluation
108
 
109
-
110
-
111
  ### Testing Data, Factors & Metrics
112
 
113
  #### Testing Data
@@ -115,17 +113,17 @@ The testing data consisted of 10,000 radiology reports.
115
 
116
  #### Factors
117
  The following factors were evaluated:
118
- ROUGE-1
119
- ROUGE-2
120
- ROUGE-L
121
- ROUGELSUM
122
 
123
  #### Metrics
124
  The following metrics were used to evaluate the model:
125
- ROUGE-1 score: 44.857
126
- ROUGE-2 score: 29.015
127
- ROUGE-L score: 42.032
128
- ROUGELSUM score: 42.038
129
 
130
 
131
  ### Results
@@ -138,13 +136,13 @@ The model was trained on a custom dataset of 70,000 radiology reports. The model
138
 
139
 
140
  ## Model Card Authors
141
- Name: Engr. Hamza Iqbal Malik
142
- LinkedIn: [www.linkedin.com/in/hamza-iqbal-malik-42366a239](www.linkedin.com/in/hamza-iqbal-malik-42366a239)
143
- GitHub: [https://github.com/hamza4344](https://github.com/hamza4344)
144
 
145
  ## Model Card Contact
146
- Name: Engr. Hamza Iqbal Malik
147
- LinkedIn: [www.linkedin.com/in/hamza-iqbal-malik-42366a239](www.linkedin.com/in/hamza-iqbal-malik-42366a239)
148
- GitHub: [https://github.com/hamza4344](https://github.com/hamza4344)
149
 
150
 
 
35
 
36
  ### Model Sources
37
  - **Repository:** [GanjinZero/biobart-v2-base]
38
+ - **Paper:** [BioBART: Pretraining and Evaluation of A Biomedical Generative Language Model]
39
+ - **Demo:** [hamzamalik11/radiology_summarizer]
40
 
41
  ## Uses
42
 
 
77
  ## Training Details
78
 
79
  ### Training Data
80
+ -Data Source: The training data was a custom dataset of 70,000 radiology reports.
81
+ -Data Cleaning: The data was cleaned to remove any personal or confidential information. The data was also tokenized and normalized.
82
+ -Data Split: The training data was split into a training set and a validation set. The training set consisted of 63,000 radiology reports, and the validation set consisted of 7,000 radiology reports.
83
 
84
 
85
 
 
91
  #### Training Hyperparameters
92
 
93
  - **Training regime:**
94
+ -evaluation_strategy="epoch",
95
+ -learning_rate=5.6e-5,
96
+ -per_device_train_batch_size=batch_size //4,
97
+ -per_device_eval_batch_size=batch_size //4,
98
+ -weight_decay=0.01,
99
+ -save_total_limit=3,
100
+ -num_train_epochs=num_train_epochs,
101
+ -predict_with_generate=True,
102
+ -logging_steps=logging_steps,
103
+ -push_to_hub=False,
104
 
105
 
106
 
107
  ## Evaluation
108
 
 
 
109
  ### Testing Data, Factors & Metrics
110
 
111
  #### Testing Data
 
113
 
114
  #### Factors
115
  The following factors were evaluated:
116
+ -ROUGE-1
117
+ -ROUGE-2
118
+ -ROUGE-L
119
+ -ROUGELSUM
120
 
121
  #### Metrics
122
  The following metrics were used to evaluate the model:
123
+ -ROUGE-1 score: 44.857
124
+ -ROUGE-2 score: 29.015
125
+ -ROUGE-L score: 42.032
126
+ -ROUGELSUM score: 42.038
127
 
128
 
129
  ### Results
 
136
 
137
 
138
  ## Model Card Authors
139
+ -Name: Engr. Hamza Iqbal Malik
140
+ -LinkedIn: [www.linkedin.com/in/hamza-iqbal-malik-42366a239](www.linkedin.com/in/hamza-iqbal-malik-42366a239)
141
+ -GitHub: [https://github.com/hamza4344](https://github.com/hamza4344)
142
 
143
  ## Model Card Contact
144
+ -Name: Engr. Hamza Iqbal Malik
145
+ -LinkedIn: [www.linkedin.com/in/hamza-iqbal-malik-42366a239](www.linkedin.com/in/hamza-iqbal-malik-42366a239)
146
+ -GitHub: [https://github.com/hamza4344](https://github.com/hamza4344)
147
 
148