Add files using upload-large-folder tool
Browse files- README.md +61 -0
- added_tokens.json +24 -0
- all_results.json +8 -0
- chat_template.jinja +54 -0
- checkpoint-1042/config.json +28 -0
- checkpoint-1042/generation_config.json +14 -0
- checkpoint-1042/latest +1 -0
- checkpoint-1042/trainer_state.json +0 -0
- checkpoint-1042/vocab.json +0 -0
- checkpoint-1042/zero_to_fp32.py +760 -0
- checkpoint-2084/added_tokens.json +24 -0
- checkpoint-2084/chat_template.jinja +54 -0
- checkpoint-2084/config.json +28 -0
- checkpoint-2084/generation_config.json +14 -0
- checkpoint-2084/latest +1 -0
- checkpoint-2084/merges.txt +0 -0
- checkpoint-2084/special_tokens_map.json +31 -0
- checkpoint-2084/tokenizer_config.json +208 -0
- checkpoint-2084/trainer_state.json +0 -0
- checkpoint-2084/vocab.json +0 -0
- checkpoint-2084/zero_to_fp32.py +760 -0
- checkpoint-2605/added_tokens.json +24 -0
- checkpoint-2605/chat_template.jinja +54 -0
- checkpoint-2605/generation_config.json +14 -0
- checkpoint-2605/latest +1 -0
- checkpoint-2605/merges.txt +0 -0
- checkpoint-2605/special_tokens_map.json +31 -0
- checkpoint-2605/tokenizer_config.json +208 -0
- checkpoint-2605/trainer_state.json +0 -0
- checkpoint-521/added_tokens.json +24 -0
- checkpoint-521/chat_template.jinja +54 -0
- checkpoint-521/config.json +28 -0
- checkpoint-521/generation_config.json +14 -0
- checkpoint-521/latest +1 -0
- checkpoint-521/merges.txt +0 -0
- checkpoint-521/special_tokens_map.json +31 -0
- checkpoint-521/tokenizer_config.json +208 -0
- checkpoint-521/trainer_state.json +3681 -0
- checkpoint-521/vocab.json +0 -0
- checkpoint-521/zero_to_fp32.py +760 -0
- config.json +28 -0
- generation_config.json +14 -0
- merges.txt +0 -0
- special_tokens_map.json +31 -0
- tokenizer_config.json +208 -0
- train_results.json +8 -0
- trainer_log.jsonl +0 -0
- trainer_state.json +0 -0
- training_loss.png +0 -0
- vocab.json +0 -0
README.md
ADDED
|
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: transformers
|
| 3 |
+
license: apache-2.0
|
| 4 |
+
base_model: Qwen/Qwen2.5-1.5B-Instruct
|
| 5 |
+
tags:
|
| 6 |
+
- llama-factory
|
| 7 |
+
- full
|
| 8 |
+
- generated_from_trainer
|
| 9 |
+
model-index:
|
| 10 |
+
- name: Qwen2.5-1.5B-Instruct-OT3-8K-QwQ
|
| 11 |
+
results: []
|
| 12 |
+
---
|
| 13 |
+
|
| 14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 15 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 16 |
+
|
| 17 |
+
# Qwen2.5-1.5B-Instruct-OT3-8K-QwQ
|
| 18 |
+
|
| 19 |
+
This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct) on the ot3_8k_subset_qwq dataset.
|
| 20 |
+
|
| 21 |
+
## Model description
|
| 22 |
+
|
| 23 |
+
More information needed
|
| 24 |
+
|
| 25 |
+
## Intended uses & limitations
|
| 26 |
+
|
| 27 |
+
More information needed
|
| 28 |
+
|
| 29 |
+
## Training and evaluation data
|
| 30 |
+
|
| 31 |
+
More information needed
|
| 32 |
+
|
| 33 |
+
## Training procedure
|
| 34 |
+
|
| 35 |
+
### Training hyperparameters
|
| 36 |
+
|
| 37 |
+
The following hyperparameters were used during training:
|
| 38 |
+
- learning_rate: 1e-05
|
| 39 |
+
- train_batch_size: 1
|
| 40 |
+
- eval_batch_size: 8
|
| 41 |
+
- seed: 42
|
| 42 |
+
- distributed_type: multi-GPU
|
| 43 |
+
- num_devices: 2
|
| 44 |
+
- gradient_accumulation_steps: 8
|
| 45 |
+
- total_train_batch_size: 16
|
| 46 |
+
- total_eval_batch_size: 16
|
| 47 |
+
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.95) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
| 48 |
+
- lr_scheduler_type: cosine
|
| 49 |
+
- lr_scheduler_warmup_ratio: 0.1
|
| 50 |
+
- num_epochs: 5.0
|
| 51 |
+
|
| 52 |
+
### Training results
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
### Framework versions
|
| 57 |
+
|
| 58 |
+
- Transformers 4.52.4
|
| 59 |
+
- Pytorch 2.7.1+cu126
|
| 60 |
+
- Datasets 3.6.0
|
| 61 |
+
- Tokenizers 0.21.1
|
added_tokens.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"</tool_call>": 151658,
|
| 3 |
+
"<tool_call>": 151657,
|
| 4 |
+
"<|box_end|>": 151649,
|
| 5 |
+
"<|box_start|>": 151648,
|
| 6 |
+
"<|endoftext|>": 151643,
|
| 7 |
+
"<|file_sep|>": 151664,
|
| 8 |
+
"<|fim_middle|>": 151660,
|
| 9 |
+
"<|fim_pad|>": 151662,
|
| 10 |
+
"<|fim_prefix|>": 151659,
|
| 11 |
+
"<|fim_suffix|>": 151661,
|
| 12 |
+
"<|im_end|>": 151645,
|
| 13 |
+
"<|im_start|>": 151644,
|
| 14 |
+
"<|image_pad|>": 151655,
|
| 15 |
+
"<|object_ref_end|>": 151647,
|
| 16 |
+
"<|object_ref_start|>": 151646,
|
| 17 |
+
"<|quad_end|>": 151651,
|
| 18 |
+
"<|quad_start|>": 151650,
|
| 19 |
+
"<|repo_name|>": 151663,
|
| 20 |
+
"<|video_pad|>": 151656,
|
| 21 |
+
"<|vision_end|>": 151653,
|
| 22 |
+
"<|vision_pad|>": 151654,
|
| 23 |
+
"<|vision_start|>": 151652
|
| 24 |
+
}
|
all_results.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"epoch": 5.0,
|
| 3 |
+
"total_flos": 451881746563072.0,
|
| 4 |
+
"train_loss": 1.2663256504714147,
|
| 5 |
+
"train_runtime": 105590.0324,
|
| 6 |
+
"train_samples_per_second": 0.394,
|
| 7 |
+
"train_steps_per_second": 0.025
|
| 8 |
+
}
|
chat_template.jinja
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{%- if tools %}
|
| 2 |
+
{{- '<|im_start|>system\n' }}
|
| 3 |
+
{%- if messages[0]['role'] == 'system' %}
|
| 4 |
+
{{- messages[0]['content'] }}
|
| 5 |
+
{%- else %}
|
| 6 |
+
{{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}
|
| 7 |
+
{%- endif %}
|
| 8 |
+
{{- "\n\n# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
|
| 9 |
+
{%- for tool in tools %}
|
| 10 |
+
{{- "\n" }}
|
| 11 |
+
{{- tool | tojson }}
|
| 12 |
+
{%- endfor %}
|
| 13 |
+
{{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
|
| 14 |
+
{%- else %}
|
| 15 |
+
{%- if messages[0]['role'] == 'system' %}
|
| 16 |
+
{{- '<|im_start|>system\n' + messages[0]['content'] + '<|im_end|>\n' }}
|
| 17 |
+
{%- else %}
|
| 18 |
+
{{- '<|im_start|>system\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\n' }}
|
| 19 |
+
{%- endif %}
|
| 20 |
+
{%- endif %}
|
| 21 |
+
{%- for message in messages %}
|
| 22 |
+
{%- if (message.role == "user") or (message.role == "system" and not loop.first) or (message.role == "assistant" and not message.tool_calls) %}
|
| 23 |
+
{{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}
|
| 24 |
+
{%- elif message.role == "assistant" %}
|
| 25 |
+
{{- '<|im_start|>' + message.role }}
|
| 26 |
+
{%- if message.content %}
|
| 27 |
+
{{- '\n' + message.content }}
|
| 28 |
+
{%- endif %}
|
| 29 |
+
{%- for tool_call in message.tool_calls %}
|
| 30 |
+
{%- if tool_call.function is defined %}
|
| 31 |
+
{%- set tool_call = tool_call.function %}
|
| 32 |
+
{%- endif %}
|
| 33 |
+
{{- '\n<tool_call>\n{"name": "' }}
|
| 34 |
+
{{- tool_call.name }}
|
| 35 |
+
{{- '", "arguments": ' }}
|
| 36 |
+
{{- tool_call.arguments | tojson }}
|
| 37 |
+
{{- '}\n</tool_call>' }}
|
| 38 |
+
{%- endfor %}
|
| 39 |
+
{{- '<|im_end|>\n' }}
|
| 40 |
+
{%- elif message.role == "tool" %}
|
| 41 |
+
{%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != "tool") %}
|
| 42 |
+
{{- '<|im_start|>user' }}
|
| 43 |
+
{%- endif %}
|
| 44 |
+
{{- '\n<tool_response>\n' }}
|
| 45 |
+
{{- message.content }}
|
| 46 |
+
{{- '\n</tool_response>' }}
|
| 47 |
+
{%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
|
| 48 |
+
{{- '<|im_end|>\n' }}
|
| 49 |
+
{%- endif %}
|
| 50 |
+
{%- endif %}
|
| 51 |
+
{%- endfor %}
|
| 52 |
+
{%- if add_generation_prompt %}
|
| 53 |
+
{{- '<|im_start|>assistant\n' }}
|
| 54 |
+
{%- endif %}
|
checkpoint-1042/config.json
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"Qwen2ForCausalLM"
|
| 4 |
+
],
|
| 5 |
+
"attention_dropout": 0.0,
|
| 6 |
+
"bos_token_id": 151643,
|
| 7 |
+
"eos_token_id": 151645,
|
| 8 |
+
"hidden_act": "silu",
|
| 9 |
+
"hidden_size": 1536,
|
| 10 |
+
"initializer_range": 0.02,
|
| 11 |
+
"intermediate_size": 8960,
|
| 12 |
+
"max_position_embeddings": 32768,
|
| 13 |
+
"max_window_layers": 21,
|
| 14 |
+
"model_type": "qwen2",
|
| 15 |
+
"num_attention_heads": 12,
|
| 16 |
+
"num_hidden_layers": 28,
|
| 17 |
+
"num_key_value_heads": 2,
|
| 18 |
+
"rms_norm_eps": 1e-06,
|
| 19 |
+
"rope_scaling": null,
|
| 20 |
+
"rope_theta": 1000000.0,
|
| 21 |
+
"sliding_window": 32768,
|
| 22 |
+
"tie_word_embeddings": true,
|
| 23 |
+
"torch_dtype": "bfloat16",
|
| 24 |
+
"transformers_version": "4.52.4",
|
| 25 |
+
"use_cache": false,
|
| 26 |
+
"use_sliding_window": false,
|
| 27 |
+
"vocab_size": 151936
|
| 28 |
+
}
|
checkpoint-1042/generation_config.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token_id": 151643,
|
| 3 |
+
"do_sample": true,
|
| 4 |
+
"eos_token_id": [
|
| 5 |
+
151645,
|
| 6 |
+
151643
|
| 7 |
+
],
|
| 8 |
+
"pad_token_id": 151643,
|
| 9 |
+
"repetition_penalty": 1.1,
|
| 10 |
+
"temperature": 0.7,
|
| 11 |
+
"top_k": 20,
|
| 12 |
+
"top_p": 0.8,
|
| 13 |
+
"transformers_version": "4.52.4"
|
| 14 |
+
}
|
checkpoint-1042/latest
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
global_step1041
|
checkpoint-1042/trainer_state.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
checkpoint-1042/vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
checkpoint-1042/zero_to_fp32.py
ADDED
|
@@ -0,0 +1,760 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# Copyright (c) Microsoft Corporation.
|
| 4 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
+
|
| 6 |
+
# DeepSpeed Team
|
| 7 |
+
|
| 8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
| 9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 11 |
+
# application.
|
| 12 |
+
#
|
| 13 |
+
# example:
|
| 14 |
+
# python zero_to_fp32.py . output_dir/
|
| 15 |
+
# or
|
| 16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
| 17 |
+
|
| 18 |
+
import argparse
|
| 19 |
+
import torch
|
| 20 |
+
import glob
|
| 21 |
+
import math
|
| 22 |
+
import os
|
| 23 |
+
import re
|
| 24 |
+
import gc
|
| 25 |
+
import json
|
| 26 |
+
import numpy as np
|
| 27 |
+
from tqdm import tqdm
|
| 28 |
+
from collections import OrderedDict
|
| 29 |
+
from dataclasses import dataclass
|
| 30 |
+
|
| 31 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 32 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
| 33 |
+
from deepspeed.utils import logger
|
| 34 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 35 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
| 36 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
@dataclass
|
| 40 |
+
class zero_model_state:
|
| 41 |
+
buffers: dict()
|
| 42 |
+
param_shapes: dict()
|
| 43 |
+
shared_params: list
|
| 44 |
+
ds_version: int
|
| 45 |
+
frozen_param_shapes: dict()
|
| 46 |
+
frozen_param_fragments: dict()
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
debug = 0
|
| 50 |
+
|
| 51 |
+
# load to cpu
|
| 52 |
+
device = torch.device('cpu')
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def atoi(text):
|
| 56 |
+
return int(text) if text.isdigit() else text
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def natural_keys(text):
|
| 60 |
+
'''
|
| 61 |
+
alist.sort(key=natural_keys) sorts in human order
|
| 62 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 63 |
+
(See Toothy's implementation in the comments)
|
| 64 |
+
'''
|
| 65 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 69 |
+
if not os.path.isdir(checkpoint_dir):
|
| 70 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 71 |
+
|
| 72 |
+
# there should be only one file
|
| 73 |
+
if zero_stage <= 2:
|
| 74 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 75 |
+
elif zero_stage == 3:
|
| 76 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 77 |
+
|
| 78 |
+
if not os.path.exists(file):
|
| 79 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 80 |
+
|
| 81 |
+
return file
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
| 85 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 86 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
| 87 |
+
|
| 88 |
+
if len(ckpt_files) == 0:
|
| 89 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
| 90 |
+
|
| 91 |
+
return ckpt_files
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def get_optim_files(checkpoint_dir):
|
| 95 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def get_model_state_files(checkpoint_dir):
|
| 99 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def parse_model_states(files):
|
| 103 |
+
zero_model_states = []
|
| 104 |
+
for file in files:
|
| 105 |
+
state_dict = torch.load(file, map_location=device, weights_only=False)
|
| 106 |
+
|
| 107 |
+
if BUFFER_NAMES not in state_dict:
|
| 108 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
| 109 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
| 110 |
+
if debug:
|
| 111 |
+
print("Found buffers:", buffer_names)
|
| 112 |
+
|
| 113 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 114 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
| 115 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
| 116 |
+
|
| 117 |
+
# collect parameters that are included in param_shapes
|
| 118 |
+
param_names = []
|
| 119 |
+
for s in param_shapes:
|
| 120 |
+
for name in s.keys():
|
| 121 |
+
param_names.append(name)
|
| 122 |
+
|
| 123 |
+
# update with frozen parameters
|
| 124 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
| 125 |
+
if frozen_param_shapes is not None:
|
| 126 |
+
if debug:
|
| 127 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
| 128 |
+
param_names += list(frozen_param_shapes.keys())
|
| 129 |
+
|
| 130 |
+
# handle shared params
|
| 131 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
| 132 |
+
|
| 133 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
| 134 |
+
|
| 135 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
| 136 |
+
|
| 137 |
+
z_model_state = zero_model_state(buffers=buffers,
|
| 138 |
+
param_shapes=param_shapes,
|
| 139 |
+
shared_params=shared_params,
|
| 140 |
+
ds_version=ds_version,
|
| 141 |
+
frozen_param_shapes=frozen_param_shapes,
|
| 142 |
+
frozen_param_fragments=frozen_param_fragments)
|
| 143 |
+
zero_model_states.append(z_model_state)
|
| 144 |
+
|
| 145 |
+
return zero_model_states
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
| 149 |
+
total_files = len(files)
|
| 150 |
+
state_dicts = []
|
| 151 |
+
for f in tqdm(files, desc='Loading checkpoint shards'):
|
| 152 |
+
state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
|
| 153 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
| 154 |
+
# and also handle the case where it was already removed by another helper script
|
| 155 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
| 156 |
+
state_dicts.append(state_dict)
|
| 157 |
+
|
| 158 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 159 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 160 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 161 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 162 |
+
|
| 163 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 164 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 165 |
+
# use the max of the partition_count to get the dp world_size.
|
| 166 |
+
|
| 167 |
+
if type(world_size) is list:
|
| 168 |
+
world_size = max(world_size)
|
| 169 |
+
|
| 170 |
+
if world_size != total_files:
|
| 171 |
+
raise ValueError(
|
| 172 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 173 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
# the groups are named differently in each stage
|
| 177 |
+
if zero_stage <= 2:
|
| 178 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 179 |
+
elif zero_stage == 3:
|
| 180 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
| 181 |
+
else:
|
| 182 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 183 |
+
|
| 184 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
| 185 |
+
return zero_stage, world_size, fp32_flat_groups
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
| 189 |
+
"""
|
| 190 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 191 |
+
|
| 192 |
+
Args:
|
| 193 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 194 |
+
|
| 195 |
+
"""
|
| 196 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 197 |
+
|
| 198 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 199 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 200 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 201 |
+
|
| 202 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
| 203 |
+
|
| 204 |
+
zero_model_states = parse_model_states(model_files)
|
| 205 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
| 206 |
+
|
| 207 |
+
if zero_stage <= 2:
|
| 208 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 209 |
+
exclude_frozen_parameters)
|
| 210 |
+
elif zero_stage == 3:
|
| 211 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 212 |
+
exclude_frozen_parameters)
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
| 216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 217 |
+
return
|
| 218 |
+
|
| 219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
| 221 |
+
|
| 222 |
+
if debug:
|
| 223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
| 224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 225 |
+
|
| 226 |
+
wanted_params = len(frozen_param_shapes)
|
| 227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
| 229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 231 |
+
|
| 232 |
+
total_params = 0
|
| 233 |
+
total_numel = 0
|
| 234 |
+
for name, shape in frozen_param_shapes.items():
|
| 235 |
+
total_params += 1
|
| 236 |
+
unpartitioned_numel = shape.numel()
|
| 237 |
+
total_numel += unpartitioned_numel
|
| 238 |
+
|
| 239 |
+
state_dict[name] = frozen_param_fragments[name]
|
| 240 |
+
|
| 241 |
+
if debug:
|
| 242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 243 |
+
|
| 244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 245 |
+
|
| 246 |
+
|
| 247 |
+
def _has_callable(obj, fn):
|
| 248 |
+
attr = getattr(obj, fn, None)
|
| 249 |
+
return callable(attr)
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 253 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 254 |
+
|
| 255 |
+
# Reconstruction protocol:
|
| 256 |
+
#
|
| 257 |
+
# XXX: document this
|
| 258 |
+
|
| 259 |
+
if debug:
|
| 260 |
+
for i in range(world_size):
|
| 261 |
+
for j in range(len(fp32_flat_groups[0])):
|
| 262 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 263 |
+
|
| 264 |
+
# XXX: memory usage doubles here (zero2)
|
| 265 |
+
num_param_groups = len(fp32_flat_groups[0])
|
| 266 |
+
merged_single_partition_of_fp32_groups = []
|
| 267 |
+
for i in range(num_param_groups):
|
| 268 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 269 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 270 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 271 |
+
avail_numel = sum(
|
| 272 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
| 273 |
+
|
| 274 |
+
if debug:
|
| 275 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 276 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 277 |
+
# not asserting if there is a mismatch due to possible padding
|
| 278 |
+
print(f"Have {avail_numel} numels to process.")
|
| 279 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 280 |
+
|
| 281 |
+
# params
|
| 282 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 283 |
+
# out-of-core computing solution
|
| 284 |
+
total_numel = 0
|
| 285 |
+
total_params = 0
|
| 286 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 287 |
+
offset = 0
|
| 288 |
+
avail_numel = full_single_fp32_vector.numel()
|
| 289 |
+
for name, shape in shapes.items():
|
| 290 |
+
|
| 291 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
| 292 |
+
total_numel += unpartitioned_numel
|
| 293 |
+
total_params += 1
|
| 294 |
+
|
| 295 |
+
if debug:
|
| 296 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 297 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
| 298 |
+
offset += unpartitioned_numel
|
| 299 |
+
|
| 300 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 301 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 302 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 303 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
| 304 |
+
align_to = 2 * world_size
|
| 305 |
+
|
| 306 |
+
def zero2_align(x):
|
| 307 |
+
return align_to * math.ceil(x / align_to)
|
| 308 |
+
|
| 309 |
+
if debug:
|
| 310 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 311 |
+
|
| 312 |
+
offset = zero2_align(offset)
|
| 313 |
+
avail_numel = zero2_align(avail_numel)
|
| 314 |
+
|
| 315 |
+
if debug:
|
| 316 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 317 |
+
|
| 318 |
+
# Sanity check
|
| 319 |
+
if offset != avail_numel:
|
| 320 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 321 |
+
|
| 322 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
| 323 |
+
|
| 324 |
+
|
| 325 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 326 |
+
exclude_frozen_parameters):
|
| 327 |
+
state_dict = OrderedDict()
|
| 328 |
+
|
| 329 |
+
# buffers
|
| 330 |
+
buffers = zero_model_states[0].buffers
|
| 331 |
+
state_dict.update(buffers)
|
| 332 |
+
if debug:
|
| 333 |
+
print(f"added {len(buffers)} buffers")
|
| 334 |
+
|
| 335 |
+
if not exclude_frozen_parameters:
|
| 336 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
| 337 |
+
|
| 338 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 339 |
+
|
| 340 |
+
# recover shared parameters
|
| 341 |
+
for pair in zero_model_states[0].shared_params:
|
| 342 |
+
if pair[1] in state_dict:
|
| 343 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 344 |
+
|
| 345 |
+
return state_dict
|
| 346 |
+
|
| 347 |
+
|
| 348 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 349 |
+
remainder = unpartitioned_numel % world_size
|
| 350 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
| 351 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 352 |
+
return partitioned_numel, padding_numel
|
| 353 |
+
|
| 354 |
+
|
| 355 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
| 356 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 357 |
+
return
|
| 358 |
+
|
| 359 |
+
if debug:
|
| 360 |
+
for i in range(world_size):
|
| 361 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
| 362 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 363 |
+
|
| 364 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 365 |
+
wanted_params = len(frozen_param_shapes)
|
| 366 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 367 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
| 368 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 369 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 370 |
+
|
| 371 |
+
total_params = 0
|
| 372 |
+
total_numel = 0
|
| 373 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
| 374 |
+
total_params += 1
|
| 375 |
+
unpartitioned_numel = shape.numel()
|
| 376 |
+
total_numel += unpartitioned_numel
|
| 377 |
+
|
| 378 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
| 379 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 380 |
+
|
| 381 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 382 |
+
|
| 383 |
+
if debug:
|
| 384 |
+
print(
|
| 385 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 386 |
+
)
|
| 387 |
+
|
| 388 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 389 |
+
|
| 390 |
+
|
| 391 |
+
class GatheredTensor:
|
| 392 |
+
"""
|
| 393 |
+
A pseudo tensor that collects partitioned weights.
|
| 394 |
+
It is more memory efficient when there are multiple groups.
|
| 395 |
+
"""
|
| 396 |
+
|
| 397 |
+
def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
|
| 398 |
+
self.flat_groups = flat_groups
|
| 399 |
+
self.flat_groups_offset = flat_groups_offset
|
| 400 |
+
self.offset = offset
|
| 401 |
+
self.partitioned_numel = partitioned_numel
|
| 402 |
+
self.shape = shape
|
| 403 |
+
self.dtype = self.flat_groups[0][0].dtype
|
| 404 |
+
|
| 405 |
+
def contiguous(self):
|
| 406 |
+
"""
|
| 407 |
+
Merge partitioned weights from flat_groups into a single tensor.
|
| 408 |
+
"""
|
| 409 |
+
end_idx = self.offset + self.partitioned_numel
|
| 410 |
+
world_size = len(self.flat_groups)
|
| 411 |
+
pad_flat_param_chunks = []
|
| 412 |
+
|
| 413 |
+
for rank_i in range(world_size):
|
| 414 |
+
# for each rank, we need to collect weights from related group/groups
|
| 415 |
+
flat_groups_at_rank_i = self.flat_groups[rank_i]
|
| 416 |
+
start_group_id = None
|
| 417 |
+
end_group_id = None
|
| 418 |
+
for group_id in range(len(self.flat_groups_offset)):
|
| 419 |
+
if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
|
| 420 |
+
start_group_id = group_id
|
| 421 |
+
if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
|
| 422 |
+
end_group_id = group_id
|
| 423 |
+
break
|
| 424 |
+
# collect weights from related group/groups
|
| 425 |
+
for group_id in range(start_group_id, end_group_id + 1):
|
| 426 |
+
flat_tensor = flat_groups_at_rank_i[group_id]
|
| 427 |
+
start_offset = self.offset - self.flat_groups_offset[group_id]
|
| 428 |
+
end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
|
| 429 |
+
pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
|
| 430 |
+
|
| 431 |
+
# collect weights from all ranks
|
| 432 |
+
pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
|
| 433 |
+
param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
|
| 434 |
+
return param
|
| 435 |
+
|
| 436 |
+
|
| 437 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 438 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 439 |
+
avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
|
| 440 |
+
|
| 441 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 442 |
+
# param, re-consolidating each param, while dealing with padding if any
|
| 443 |
+
|
| 444 |
+
# merge list of dicts, preserving order
|
| 445 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 446 |
+
|
| 447 |
+
if debug:
|
| 448 |
+
for i in range(world_size):
|
| 449 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 450 |
+
|
| 451 |
+
wanted_params = len(param_shapes)
|
| 452 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 453 |
+
# not asserting if there is a mismatch due to possible padding
|
| 454 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 455 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
| 456 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
| 457 |
+
|
| 458 |
+
# params
|
| 459 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 460 |
+
# out-of-core computing solution
|
| 461 |
+
offset = 0
|
| 462 |
+
total_numel = 0
|
| 463 |
+
total_params = 0
|
| 464 |
+
flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
|
| 465 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
|
| 466 |
+
unpartitioned_numel = shape.numel()
|
| 467 |
+
total_numel += unpartitioned_numel
|
| 468 |
+
total_params += 1
|
| 469 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 470 |
+
|
| 471 |
+
if debug:
|
| 472 |
+
print(
|
| 473 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 474 |
+
)
|
| 475 |
+
|
| 476 |
+
# memory efficient tensor
|
| 477 |
+
tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
|
| 478 |
+
state_dict[name] = tensor
|
| 479 |
+
offset += partitioned_numel
|
| 480 |
+
|
| 481 |
+
offset *= world_size
|
| 482 |
+
|
| 483 |
+
# Sanity check
|
| 484 |
+
if offset != avail_numel:
|
| 485 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 486 |
+
|
| 487 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
| 488 |
+
|
| 489 |
+
|
| 490 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 491 |
+
exclude_frozen_parameters):
|
| 492 |
+
state_dict = OrderedDict()
|
| 493 |
+
|
| 494 |
+
# buffers
|
| 495 |
+
buffers = zero_model_states[0].buffers
|
| 496 |
+
state_dict.update(buffers)
|
| 497 |
+
if debug:
|
| 498 |
+
print(f"added {len(buffers)} buffers")
|
| 499 |
+
|
| 500 |
+
if not exclude_frozen_parameters:
|
| 501 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
| 502 |
+
|
| 503 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 504 |
+
|
| 505 |
+
# recover shared parameters
|
| 506 |
+
for pair in zero_model_states[0].shared_params:
|
| 507 |
+
if pair[1] in state_dict:
|
| 508 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 509 |
+
|
| 510 |
+
return state_dict
|
| 511 |
+
|
| 512 |
+
|
| 513 |
+
def to_torch_tensor(state_dict, return_empty_tensor=False):
|
| 514 |
+
"""
|
| 515 |
+
Convert state_dict of GatheredTensor to torch tensor
|
| 516 |
+
"""
|
| 517 |
+
torch_state_dict = {}
|
| 518 |
+
converted_tensors = {}
|
| 519 |
+
for name, tensor in state_dict.items():
|
| 520 |
+
tensor_id = id(tensor)
|
| 521 |
+
if tensor_id in converted_tensors: # shared tensors
|
| 522 |
+
shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
|
| 523 |
+
torch_state_dict[name] = shared_tensor
|
| 524 |
+
else:
|
| 525 |
+
converted_tensors[tensor_id] = name
|
| 526 |
+
if return_empty_tensor:
|
| 527 |
+
torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
|
| 528 |
+
else:
|
| 529 |
+
torch_state_dict[name] = tensor.contiguous()
|
| 530 |
+
return torch_state_dict
|
| 531 |
+
|
| 532 |
+
|
| 533 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
| 534 |
+
tag=None,
|
| 535 |
+
exclude_frozen_parameters=False,
|
| 536 |
+
lazy_mode=False):
|
| 537 |
+
"""
|
| 538 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 539 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 540 |
+
via a model hub.
|
| 541 |
+
|
| 542 |
+
Args:
|
| 543 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 544 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 545 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 546 |
+
- ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
|
| 547 |
+
Convert the pesduo tensor to torch tensor by ``.contiguous()``
|
| 548 |
+
|
| 549 |
+
Returns:
|
| 550 |
+
- pytorch ``state_dict``
|
| 551 |
+
|
| 552 |
+
A typical usage might be ::
|
| 553 |
+
|
| 554 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 555 |
+
# do the training and checkpoint saving
|
| 556 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 557 |
+
model = model.cpu() # move to cpu
|
| 558 |
+
model.load_state_dict(state_dict)
|
| 559 |
+
# submit to model hub or save the model to share with others
|
| 560 |
+
|
| 561 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 562 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 563 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 564 |
+
|
| 565 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 566 |
+
|
| 567 |
+
Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
|
| 568 |
+
You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 569 |
+
the checkpoint. Or you can load state_dict in lazy mode ::
|
| 570 |
+
|
| 571 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 572 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
|
| 573 |
+
for name, lazy_tensor in state_dict.item():
|
| 574 |
+
tensor = lazy_tensor.contiguous() # to cpu
|
| 575 |
+
print(name, tensor)
|
| 576 |
+
# del tensor to release memory if it no longer in use
|
| 577 |
+
"""
|
| 578 |
+
if tag is None:
|
| 579 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 580 |
+
if os.path.isfile(latest_path):
|
| 581 |
+
with open(latest_path, 'r') as fd:
|
| 582 |
+
tag = fd.read().strip()
|
| 583 |
+
else:
|
| 584 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 585 |
+
|
| 586 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 587 |
+
|
| 588 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
| 589 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 590 |
+
|
| 591 |
+
state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
| 592 |
+
if lazy_mode:
|
| 593 |
+
return state_dict
|
| 594 |
+
else:
|
| 595 |
+
return to_torch_tensor(state_dict)
|
| 596 |
+
|
| 597 |
+
|
| 598 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
| 599 |
+
output_dir,
|
| 600 |
+
max_shard_size="5GB",
|
| 601 |
+
safe_serialization=False,
|
| 602 |
+
tag=None,
|
| 603 |
+
exclude_frozen_parameters=False):
|
| 604 |
+
"""
|
| 605 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 606 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 607 |
+
|
| 608 |
+
Args:
|
| 609 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 610 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
| 611 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
| 612 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
| 613 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 614 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 615 |
+
"""
|
| 616 |
+
|
| 617 |
+
# Dependency pre-check
|
| 618 |
+
if safe_serialization:
|
| 619 |
+
try:
|
| 620 |
+
from safetensors.torch import save_file
|
| 621 |
+
except ImportError:
|
| 622 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
| 623 |
+
raise
|
| 624 |
+
if max_shard_size is not None:
|
| 625 |
+
try:
|
| 626 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
| 627 |
+
except ImportError:
|
| 628 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
| 629 |
+
raise
|
| 630 |
+
|
| 631 |
+
# Convert zero checkpoint to state_dict
|
| 632 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
| 633 |
+
tag,
|
| 634 |
+
exclude_frozen_parameters,
|
| 635 |
+
lazy_mode=True)
|
| 636 |
+
|
| 637 |
+
# Shard the model if it is too big.
|
| 638 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
| 639 |
+
if max_shard_size is not None:
|
| 640 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
| 641 |
+
# an memory-efficient approach for sharding
|
| 642 |
+
empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
|
| 643 |
+
state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
|
| 644 |
+
filename_pattern=filename_pattern,
|
| 645 |
+
max_shard_size=max_shard_size)
|
| 646 |
+
else:
|
| 647 |
+
from collections import namedtuple
|
| 648 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
| 649 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
| 650 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
| 651 |
+
|
| 652 |
+
# Save the model by shard
|
| 653 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 654 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
| 655 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
| 656 |
+
shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
|
| 657 |
+
shard_state_dict = to_torch_tensor(shard_state_dict)
|
| 658 |
+
output_path = os.path.join(output_dir, shard_file)
|
| 659 |
+
if safe_serialization:
|
| 660 |
+
save_file(shard_state_dict, output_path, metadata={"format": "pt"})
|
| 661 |
+
else:
|
| 662 |
+
torch.save(shard_state_dict, output_path)
|
| 663 |
+
# release the memory of current shard
|
| 664 |
+
for tensor_name in list(shard_state_dict.keys()):
|
| 665 |
+
del state_dict[tensor_name]
|
| 666 |
+
del shard_state_dict[tensor_name]
|
| 667 |
+
del shard_state_dict
|
| 668 |
+
gc.collect()
|
| 669 |
+
|
| 670 |
+
# Save index if sharded
|
| 671 |
+
if state_dict_split.is_sharded:
|
| 672 |
+
index = {
|
| 673 |
+
"metadata": state_dict_split.metadata,
|
| 674 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
| 675 |
+
}
|
| 676 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
| 677 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
| 678 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
| 679 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
| 680 |
+
f.write(content)
|
| 681 |
+
|
| 682 |
+
|
| 683 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 684 |
+
"""
|
| 685 |
+
1. Put the provided model to cpu
|
| 686 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 687 |
+
3. Load it into the provided model
|
| 688 |
+
|
| 689 |
+
Args:
|
| 690 |
+
- ``model``: the model object to update
|
| 691 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 692 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 693 |
+
|
| 694 |
+
Returns:
|
| 695 |
+
- ``model`: modified model
|
| 696 |
+
|
| 697 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 698 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 699 |
+
conveniently placed for you in the checkpoint folder.
|
| 700 |
+
|
| 701 |
+
A typical usage might be ::
|
| 702 |
+
|
| 703 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 704 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 705 |
+
# submit to model hub or save the model to share with others
|
| 706 |
+
|
| 707 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 708 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 709 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 710 |
+
|
| 711 |
+
"""
|
| 712 |
+
logger.info(f"Extracting fp32 weights")
|
| 713 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 714 |
+
|
| 715 |
+
logger.info(f"Overwriting model with fp32 weights")
|
| 716 |
+
model = model.cpu()
|
| 717 |
+
model.load_state_dict(state_dict, strict=False)
|
| 718 |
+
|
| 719 |
+
return model
|
| 720 |
+
|
| 721 |
+
|
| 722 |
+
if __name__ == "__main__":
|
| 723 |
+
parser = argparse.ArgumentParser()
|
| 724 |
+
parser.add_argument("checkpoint_dir",
|
| 725 |
+
type=str,
|
| 726 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 727 |
+
parser.add_argument("output_dir",
|
| 728 |
+
type=str,
|
| 729 |
+
help="directory to the pytorch fp32 state_dict output files"
|
| 730 |
+
"(e.g. path/checkpoint-12-output/)")
|
| 731 |
+
parser.add_argument(
|
| 732 |
+
"--max_shard_size",
|
| 733 |
+
type=str,
|
| 734 |
+
default="5GB",
|
| 735 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
| 736 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
| 737 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
| 738 |
+
"without CPU OOM issues.")
|
| 739 |
+
parser.add_argument(
|
| 740 |
+
"--safe_serialization",
|
| 741 |
+
default=False,
|
| 742 |
+
action='store_true',
|
| 743 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
| 744 |
+
parser.add_argument("-t",
|
| 745 |
+
"--tag",
|
| 746 |
+
type=str,
|
| 747 |
+
default=None,
|
| 748 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
| 749 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
| 750 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 751 |
+
args = parser.parse_args()
|
| 752 |
+
|
| 753 |
+
debug = args.debug
|
| 754 |
+
|
| 755 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
| 756 |
+
args.output_dir,
|
| 757 |
+
max_shard_size=args.max_shard_size,
|
| 758 |
+
safe_serialization=args.safe_serialization,
|
| 759 |
+
tag=args.tag,
|
| 760 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
checkpoint-2084/added_tokens.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"</tool_call>": 151658,
|
| 3 |
+
"<tool_call>": 151657,
|
| 4 |
+
"<|box_end|>": 151649,
|
| 5 |
+
"<|box_start|>": 151648,
|
| 6 |
+
"<|endoftext|>": 151643,
|
| 7 |
+
"<|file_sep|>": 151664,
|
| 8 |
+
"<|fim_middle|>": 151660,
|
| 9 |
+
"<|fim_pad|>": 151662,
|
| 10 |
+
"<|fim_prefix|>": 151659,
|
| 11 |
+
"<|fim_suffix|>": 151661,
|
| 12 |
+
"<|im_end|>": 151645,
|
| 13 |
+
"<|im_start|>": 151644,
|
| 14 |
+
"<|image_pad|>": 151655,
|
| 15 |
+
"<|object_ref_end|>": 151647,
|
| 16 |
+
"<|object_ref_start|>": 151646,
|
| 17 |
+
"<|quad_end|>": 151651,
|
| 18 |
+
"<|quad_start|>": 151650,
|
| 19 |
+
"<|repo_name|>": 151663,
|
| 20 |
+
"<|video_pad|>": 151656,
|
| 21 |
+
"<|vision_end|>": 151653,
|
| 22 |
+
"<|vision_pad|>": 151654,
|
| 23 |
+
"<|vision_start|>": 151652
|
| 24 |
+
}
|
checkpoint-2084/chat_template.jinja
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{%- if tools %}
|
| 2 |
+
{{- '<|im_start|>system\n' }}
|
| 3 |
+
{%- if messages[0]['role'] == 'system' %}
|
| 4 |
+
{{- messages[0]['content'] }}
|
| 5 |
+
{%- else %}
|
| 6 |
+
{{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}
|
| 7 |
+
{%- endif %}
|
| 8 |
+
{{- "\n\n# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
|
| 9 |
+
{%- for tool in tools %}
|
| 10 |
+
{{- "\n" }}
|
| 11 |
+
{{- tool | tojson }}
|
| 12 |
+
{%- endfor %}
|
| 13 |
+
{{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
|
| 14 |
+
{%- else %}
|
| 15 |
+
{%- if messages[0]['role'] == 'system' %}
|
| 16 |
+
{{- '<|im_start|>system\n' + messages[0]['content'] + '<|im_end|>\n' }}
|
| 17 |
+
{%- else %}
|
| 18 |
+
{{- '<|im_start|>system\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\n' }}
|
| 19 |
+
{%- endif %}
|
| 20 |
+
{%- endif %}
|
| 21 |
+
{%- for message in messages %}
|
| 22 |
+
{%- if (message.role == "user") or (message.role == "system" and not loop.first) or (message.role == "assistant" and not message.tool_calls) %}
|
| 23 |
+
{{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}
|
| 24 |
+
{%- elif message.role == "assistant" %}
|
| 25 |
+
{{- '<|im_start|>' + message.role }}
|
| 26 |
+
{%- if message.content %}
|
| 27 |
+
{{- '\n' + message.content }}
|
| 28 |
+
{%- endif %}
|
| 29 |
+
{%- for tool_call in message.tool_calls %}
|
| 30 |
+
{%- if tool_call.function is defined %}
|
| 31 |
+
{%- set tool_call = tool_call.function %}
|
| 32 |
+
{%- endif %}
|
| 33 |
+
{{- '\n<tool_call>\n{"name": "' }}
|
| 34 |
+
{{- tool_call.name }}
|
| 35 |
+
{{- '", "arguments": ' }}
|
| 36 |
+
{{- tool_call.arguments | tojson }}
|
| 37 |
+
{{- '}\n</tool_call>' }}
|
| 38 |
+
{%- endfor %}
|
| 39 |
+
{{- '<|im_end|>\n' }}
|
| 40 |
+
{%- elif message.role == "tool" %}
|
| 41 |
+
{%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != "tool") %}
|
| 42 |
+
{{- '<|im_start|>user' }}
|
| 43 |
+
{%- endif %}
|
| 44 |
+
{{- '\n<tool_response>\n' }}
|
| 45 |
+
{{- message.content }}
|
| 46 |
+
{{- '\n</tool_response>' }}
|
| 47 |
+
{%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
|
| 48 |
+
{{- '<|im_end|>\n' }}
|
| 49 |
+
{%- endif %}
|
| 50 |
+
{%- endif %}
|
| 51 |
+
{%- endfor %}
|
| 52 |
+
{%- if add_generation_prompt %}
|
| 53 |
+
{{- '<|im_start|>assistant\n' }}
|
| 54 |
+
{%- endif %}
|
checkpoint-2084/config.json
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"Qwen2ForCausalLM"
|
| 4 |
+
],
|
| 5 |
+
"attention_dropout": 0.0,
|
| 6 |
+
"bos_token_id": 151643,
|
| 7 |
+
"eos_token_id": 151645,
|
| 8 |
+
"hidden_act": "silu",
|
| 9 |
+
"hidden_size": 1536,
|
| 10 |
+
"initializer_range": 0.02,
|
| 11 |
+
"intermediate_size": 8960,
|
| 12 |
+
"max_position_embeddings": 32768,
|
| 13 |
+
"max_window_layers": 21,
|
| 14 |
+
"model_type": "qwen2",
|
| 15 |
+
"num_attention_heads": 12,
|
| 16 |
+
"num_hidden_layers": 28,
|
| 17 |
+
"num_key_value_heads": 2,
|
| 18 |
+
"rms_norm_eps": 1e-06,
|
| 19 |
+
"rope_scaling": null,
|
| 20 |
+
"rope_theta": 1000000.0,
|
| 21 |
+
"sliding_window": 32768,
|
| 22 |
+
"tie_word_embeddings": true,
|
| 23 |
+
"torch_dtype": "bfloat16",
|
| 24 |
+
"transformers_version": "4.52.4",
|
| 25 |
+
"use_cache": false,
|
| 26 |
+
"use_sliding_window": false,
|
| 27 |
+
"vocab_size": 151936
|
| 28 |
+
}
|
checkpoint-2084/generation_config.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token_id": 151643,
|
| 3 |
+
"do_sample": true,
|
| 4 |
+
"eos_token_id": [
|
| 5 |
+
151645,
|
| 6 |
+
151643
|
| 7 |
+
],
|
| 8 |
+
"pad_token_id": 151643,
|
| 9 |
+
"repetition_penalty": 1.1,
|
| 10 |
+
"temperature": 0.7,
|
| 11 |
+
"top_k": 20,
|
| 12 |
+
"top_p": 0.8,
|
| 13 |
+
"transformers_version": "4.52.4"
|
| 14 |
+
}
|
checkpoint-2084/latest
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
global_step2083
|
checkpoint-2084/merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
checkpoint-2084/special_tokens_map.json
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|im_start|>",
|
| 4 |
+
"<|im_end|>",
|
| 5 |
+
"<|object_ref_start|>",
|
| 6 |
+
"<|object_ref_end|>",
|
| 7 |
+
"<|box_start|>",
|
| 8 |
+
"<|box_end|>",
|
| 9 |
+
"<|quad_start|>",
|
| 10 |
+
"<|quad_end|>",
|
| 11 |
+
"<|vision_start|>",
|
| 12 |
+
"<|vision_end|>",
|
| 13 |
+
"<|vision_pad|>",
|
| 14 |
+
"<|image_pad|>",
|
| 15 |
+
"<|video_pad|>"
|
| 16 |
+
],
|
| 17 |
+
"eos_token": {
|
| 18 |
+
"content": "<|im_end|>",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": false,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
},
|
| 24 |
+
"pad_token": {
|
| 25 |
+
"content": "<|endoftext|>",
|
| 26 |
+
"lstrip": false,
|
| 27 |
+
"normalized": false,
|
| 28 |
+
"rstrip": false,
|
| 29 |
+
"single_word": false
|
| 30 |
+
}
|
| 31 |
+
}
|
checkpoint-2084/tokenizer_config.json
ADDED
|
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_prefix_space": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"151643": {
|
| 6 |
+
"content": "<|endoftext|>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"151644": {
|
| 14 |
+
"content": "<|im_start|>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"151645": {
|
| 22 |
+
"content": "<|im_end|>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
},
|
| 29 |
+
"151646": {
|
| 30 |
+
"content": "<|object_ref_start|>",
|
| 31 |
+
"lstrip": false,
|
| 32 |
+
"normalized": false,
|
| 33 |
+
"rstrip": false,
|
| 34 |
+
"single_word": false,
|
| 35 |
+
"special": true
|
| 36 |
+
},
|
| 37 |
+
"151647": {
|
| 38 |
+
"content": "<|object_ref_end|>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false,
|
| 43 |
+
"special": true
|
| 44 |
+
},
|
| 45 |
+
"151648": {
|
| 46 |
+
"content": "<|box_start|>",
|
| 47 |
+
"lstrip": false,
|
| 48 |
+
"normalized": false,
|
| 49 |
+
"rstrip": false,
|
| 50 |
+
"single_word": false,
|
| 51 |
+
"special": true
|
| 52 |
+
},
|
| 53 |
+
"151649": {
|
| 54 |
+
"content": "<|box_end|>",
|
| 55 |
+
"lstrip": false,
|
| 56 |
+
"normalized": false,
|
| 57 |
+
"rstrip": false,
|
| 58 |
+
"single_word": false,
|
| 59 |
+
"special": true
|
| 60 |
+
},
|
| 61 |
+
"151650": {
|
| 62 |
+
"content": "<|quad_start|>",
|
| 63 |
+
"lstrip": false,
|
| 64 |
+
"normalized": false,
|
| 65 |
+
"rstrip": false,
|
| 66 |
+
"single_word": false,
|
| 67 |
+
"special": true
|
| 68 |
+
},
|
| 69 |
+
"151651": {
|
| 70 |
+
"content": "<|quad_end|>",
|
| 71 |
+
"lstrip": false,
|
| 72 |
+
"normalized": false,
|
| 73 |
+
"rstrip": false,
|
| 74 |
+
"single_word": false,
|
| 75 |
+
"special": true
|
| 76 |
+
},
|
| 77 |
+
"151652": {
|
| 78 |
+
"content": "<|vision_start|>",
|
| 79 |
+
"lstrip": false,
|
| 80 |
+
"normalized": false,
|
| 81 |
+
"rstrip": false,
|
| 82 |
+
"single_word": false,
|
| 83 |
+
"special": true
|
| 84 |
+
},
|
| 85 |
+
"151653": {
|
| 86 |
+
"content": "<|vision_end|>",
|
| 87 |
+
"lstrip": false,
|
| 88 |
+
"normalized": false,
|
| 89 |
+
"rstrip": false,
|
| 90 |
+
"single_word": false,
|
| 91 |
+
"special": true
|
| 92 |
+
},
|
| 93 |
+
"151654": {
|
| 94 |
+
"content": "<|vision_pad|>",
|
| 95 |
+
"lstrip": false,
|
| 96 |
+
"normalized": false,
|
| 97 |
+
"rstrip": false,
|
| 98 |
+
"single_word": false,
|
| 99 |
+
"special": true
|
| 100 |
+
},
|
| 101 |
+
"151655": {
|
| 102 |
+
"content": "<|image_pad|>",
|
| 103 |
+
"lstrip": false,
|
| 104 |
+
"normalized": false,
|
| 105 |
+
"rstrip": false,
|
| 106 |
+
"single_word": false,
|
| 107 |
+
"special": true
|
| 108 |
+
},
|
| 109 |
+
"151656": {
|
| 110 |
+
"content": "<|video_pad|>",
|
| 111 |
+
"lstrip": false,
|
| 112 |
+
"normalized": false,
|
| 113 |
+
"rstrip": false,
|
| 114 |
+
"single_word": false,
|
| 115 |
+
"special": true
|
| 116 |
+
},
|
| 117 |
+
"151657": {
|
| 118 |
+
"content": "<tool_call>",
|
| 119 |
+
"lstrip": false,
|
| 120 |
+
"normalized": false,
|
| 121 |
+
"rstrip": false,
|
| 122 |
+
"single_word": false,
|
| 123 |
+
"special": false
|
| 124 |
+
},
|
| 125 |
+
"151658": {
|
| 126 |
+
"content": "</tool_call>",
|
| 127 |
+
"lstrip": false,
|
| 128 |
+
"normalized": false,
|
| 129 |
+
"rstrip": false,
|
| 130 |
+
"single_word": false,
|
| 131 |
+
"special": false
|
| 132 |
+
},
|
| 133 |
+
"151659": {
|
| 134 |
+
"content": "<|fim_prefix|>",
|
| 135 |
+
"lstrip": false,
|
| 136 |
+
"normalized": false,
|
| 137 |
+
"rstrip": false,
|
| 138 |
+
"single_word": false,
|
| 139 |
+
"special": false
|
| 140 |
+
},
|
| 141 |
+
"151660": {
|
| 142 |
+
"content": "<|fim_middle|>",
|
| 143 |
+
"lstrip": false,
|
| 144 |
+
"normalized": false,
|
| 145 |
+
"rstrip": false,
|
| 146 |
+
"single_word": false,
|
| 147 |
+
"special": false
|
| 148 |
+
},
|
| 149 |
+
"151661": {
|
| 150 |
+
"content": "<|fim_suffix|>",
|
| 151 |
+
"lstrip": false,
|
| 152 |
+
"normalized": false,
|
| 153 |
+
"rstrip": false,
|
| 154 |
+
"single_word": false,
|
| 155 |
+
"special": false
|
| 156 |
+
},
|
| 157 |
+
"151662": {
|
| 158 |
+
"content": "<|fim_pad|>",
|
| 159 |
+
"lstrip": false,
|
| 160 |
+
"normalized": false,
|
| 161 |
+
"rstrip": false,
|
| 162 |
+
"single_word": false,
|
| 163 |
+
"special": false
|
| 164 |
+
},
|
| 165 |
+
"151663": {
|
| 166 |
+
"content": "<|repo_name|>",
|
| 167 |
+
"lstrip": false,
|
| 168 |
+
"normalized": false,
|
| 169 |
+
"rstrip": false,
|
| 170 |
+
"single_word": false,
|
| 171 |
+
"special": false
|
| 172 |
+
},
|
| 173 |
+
"151664": {
|
| 174 |
+
"content": "<|file_sep|>",
|
| 175 |
+
"lstrip": false,
|
| 176 |
+
"normalized": false,
|
| 177 |
+
"rstrip": false,
|
| 178 |
+
"single_word": false,
|
| 179 |
+
"special": false
|
| 180 |
+
}
|
| 181 |
+
},
|
| 182 |
+
"additional_special_tokens": [
|
| 183 |
+
"<|im_start|>",
|
| 184 |
+
"<|im_end|>",
|
| 185 |
+
"<|object_ref_start|>",
|
| 186 |
+
"<|object_ref_end|>",
|
| 187 |
+
"<|box_start|>",
|
| 188 |
+
"<|box_end|>",
|
| 189 |
+
"<|quad_start|>",
|
| 190 |
+
"<|quad_end|>",
|
| 191 |
+
"<|vision_start|>",
|
| 192 |
+
"<|vision_end|>",
|
| 193 |
+
"<|vision_pad|>",
|
| 194 |
+
"<|image_pad|>",
|
| 195 |
+
"<|video_pad|>"
|
| 196 |
+
],
|
| 197 |
+
"bos_token": null,
|
| 198 |
+
"clean_up_tokenization_spaces": false,
|
| 199 |
+
"eos_token": "<|im_end|>",
|
| 200 |
+
"errors": "replace",
|
| 201 |
+
"extra_special_tokens": {},
|
| 202 |
+
"model_max_length": 131072,
|
| 203 |
+
"pad_token": "<|endoftext|>",
|
| 204 |
+
"padding_side": "right",
|
| 205 |
+
"split_special_tokens": false,
|
| 206 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
| 207 |
+
"unk_token": null
|
| 208 |
+
}
|
checkpoint-2084/trainer_state.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
checkpoint-2084/vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
checkpoint-2084/zero_to_fp32.py
ADDED
|
@@ -0,0 +1,760 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# Copyright (c) Microsoft Corporation.
|
| 4 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
+
|
| 6 |
+
# DeepSpeed Team
|
| 7 |
+
|
| 8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
| 9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 11 |
+
# application.
|
| 12 |
+
#
|
| 13 |
+
# example:
|
| 14 |
+
# python zero_to_fp32.py . output_dir/
|
| 15 |
+
# or
|
| 16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
| 17 |
+
|
| 18 |
+
import argparse
|
| 19 |
+
import torch
|
| 20 |
+
import glob
|
| 21 |
+
import math
|
| 22 |
+
import os
|
| 23 |
+
import re
|
| 24 |
+
import gc
|
| 25 |
+
import json
|
| 26 |
+
import numpy as np
|
| 27 |
+
from tqdm import tqdm
|
| 28 |
+
from collections import OrderedDict
|
| 29 |
+
from dataclasses import dataclass
|
| 30 |
+
|
| 31 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 32 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
| 33 |
+
from deepspeed.utils import logger
|
| 34 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 35 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
| 36 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
@dataclass
|
| 40 |
+
class zero_model_state:
|
| 41 |
+
buffers: dict()
|
| 42 |
+
param_shapes: dict()
|
| 43 |
+
shared_params: list
|
| 44 |
+
ds_version: int
|
| 45 |
+
frozen_param_shapes: dict()
|
| 46 |
+
frozen_param_fragments: dict()
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
debug = 0
|
| 50 |
+
|
| 51 |
+
# load to cpu
|
| 52 |
+
device = torch.device('cpu')
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def atoi(text):
|
| 56 |
+
return int(text) if text.isdigit() else text
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def natural_keys(text):
|
| 60 |
+
'''
|
| 61 |
+
alist.sort(key=natural_keys) sorts in human order
|
| 62 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 63 |
+
(See Toothy's implementation in the comments)
|
| 64 |
+
'''
|
| 65 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 69 |
+
if not os.path.isdir(checkpoint_dir):
|
| 70 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 71 |
+
|
| 72 |
+
# there should be only one file
|
| 73 |
+
if zero_stage <= 2:
|
| 74 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 75 |
+
elif zero_stage == 3:
|
| 76 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 77 |
+
|
| 78 |
+
if not os.path.exists(file):
|
| 79 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 80 |
+
|
| 81 |
+
return file
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
| 85 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 86 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
| 87 |
+
|
| 88 |
+
if len(ckpt_files) == 0:
|
| 89 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
| 90 |
+
|
| 91 |
+
return ckpt_files
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def get_optim_files(checkpoint_dir):
|
| 95 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def get_model_state_files(checkpoint_dir):
|
| 99 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def parse_model_states(files):
|
| 103 |
+
zero_model_states = []
|
| 104 |
+
for file in files:
|
| 105 |
+
state_dict = torch.load(file, map_location=device, weights_only=False)
|
| 106 |
+
|
| 107 |
+
if BUFFER_NAMES not in state_dict:
|
| 108 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
| 109 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
| 110 |
+
if debug:
|
| 111 |
+
print("Found buffers:", buffer_names)
|
| 112 |
+
|
| 113 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 114 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
| 115 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
| 116 |
+
|
| 117 |
+
# collect parameters that are included in param_shapes
|
| 118 |
+
param_names = []
|
| 119 |
+
for s in param_shapes:
|
| 120 |
+
for name in s.keys():
|
| 121 |
+
param_names.append(name)
|
| 122 |
+
|
| 123 |
+
# update with frozen parameters
|
| 124 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
| 125 |
+
if frozen_param_shapes is not None:
|
| 126 |
+
if debug:
|
| 127 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
| 128 |
+
param_names += list(frozen_param_shapes.keys())
|
| 129 |
+
|
| 130 |
+
# handle shared params
|
| 131 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
| 132 |
+
|
| 133 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
| 134 |
+
|
| 135 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
| 136 |
+
|
| 137 |
+
z_model_state = zero_model_state(buffers=buffers,
|
| 138 |
+
param_shapes=param_shapes,
|
| 139 |
+
shared_params=shared_params,
|
| 140 |
+
ds_version=ds_version,
|
| 141 |
+
frozen_param_shapes=frozen_param_shapes,
|
| 142 |
+
frozen_param_fragments=frozen_param_fragments)
|
| 143 |
+
zero_model_states.append(z_model_state)
|
| 144 |
+
|
| 145 |
+
return zero_model_states
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
| 149 |
+
total_files = len(files)
|
| 150 |
+
state_dicts = []
|
| 151 |
+
for f in tqdm(files, desc='Loading checkpoint shards'):
|
| 152 |
+
state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
|
| 153 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
| 154 |
+
# and also handle the case where it was already removed by another helper script
|
| 155 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
| 156 |
+
state_dicts.append(state_dict)
|
| 157 |
+
|
| 158 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 159 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 160 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 161 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 162 |
+
|
| 163 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 164 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 165 |
+
# use the max of the partition_count to get the dp world_size.
|
| 166 |
+
|
| 167 |
+
if type(world_size) is list:
|
| 168 |
+
world_size = max(world_size)
|
| 169 |
+
|
| 170 |
+
if world_size != total_files:
|
| 171 |
+
raise ValueError(
|
| 172 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 173 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
# the groups are named differently in each stage
|
| 177 |
+
if zero_stage <= 2:
|
| 178 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 179 |
+
elif zero_stage == 3:
|
| 180 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
| 181 |
+
else:
|
| 182 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 183 |
+
|
| 184 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
| 185 |
+
return zero_stage, world_size, fp32_flat_groups
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
| 189 |
+
"""
|
| 190 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 191 |
+
|
| 192 |
+
Args:
|
| 193 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 194 |
+
|
| 195 |
+
"""
|
| 196 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 197 |
+
|
| 198 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 199 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 200 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 201 |
+
|
| 202 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
| 203 |
+
|
| 204 |
+
zero_model_states = parse_model_states(model_files)
|
| 205 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
| 206 |
+
|
| 207 |
+
if zero_stage <= 2:
|
| 208 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 209 |
+
exclude_frozen_parameters)
|
| 210 |
+
elif zero_stage == 3:
|
| 211 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 212 |
+
exclude_frozen_parameters)
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
| 216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 217 |
+
return
|
| 218 |
+
|
| 219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
| 221 |
+
|
| 222 |
+
if debug:
|
| 223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
| 224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 225 |
+
|
| 226 |
+
wanted_params = len(frozen_param_shapes)
|
| 227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
| 229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 231 |
+
|
| 232 |
+
total_params = 0
|
| 233 |
+
total_numel = 0
|
| 234 |
+
for name, shape in frozen_param_shapes.items():
|
| 235 |
+
total_params += 1
|
| 236 |
+
unpartitioned_numel = shape.numel()
|
| 237 |
+
total_numel += unpartitioned_numel
|
| 238 |
+
|
| 239 |
+
state_dict[name] = frozen_param_fragments[name]
|
| 240 |
+
|
| 241 |
+
if debug:
|
| 242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 243 |
+
|
| 244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 245 |
+
|
| 246 |
+
|
| 247 |
+
def _has_callable(obj, fn):
|
| 248 |
+
attr = getattr(obj, fn, None)
|
| 249 |
+
return callable(attr)
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 253 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 254 |
+
|
| 255 |
+
# Reconstruction protocol:
|
| 256 |
+
#
|
| 257 |
+
# XXX: document this
|
| 258 |
+
|
| 259 |
+
if debug:
|
| 260 |
+
for i in range(world_size):
|
| 261 |
+
for j in range(len(fp32_flat_groups[0])):
|
| 262 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 263 |
+
|
| 264 |
+
# XXX: memory usage doubles here (zero2)
|
| 265 |
+
num_param_groups = len(fp32_flat_groups[0])
|
| 266 |
+
merged_single_partition_of_fp32_groups = []
|
| 267 |
+
for i in range(num_param_groups):
|
| 268 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 269 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 270 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 271 |
+
avail_numel = sum(
|
| 272 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
| 273 |
+
|
| 274 |
+
if debug:
|
| 275 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 276 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 277 |
+
# not asserting if there is a mismatch due to possible padding
|
| 278 |
+
print(f"Have {avail_numel} numels to process.")
|
| 279 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 280 |
+
|
| 281 |
+
# params
|
| 282 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 283 |
+
# out-of-core computing solution
|
| 284 |
+
total_numel = 0
|
| 285 |
+
total_params = 0
|
| 286 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 287 |
+
offset = 0
|
| 288 |
+
avail_numel = full_single_fp32_vector.numel()
|
| 289 |
+
for name, shape in shapes.items():
|
| 290 |
+
|
| 291 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
| 292 |
+
total_numel += unpartitioned_numel
|
| 293 |
+
total_params += 1
|
| 294 |
+
|
| 295 |
+
if debug:
|
| 296 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 297 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
| 298 |
+
offset += unpartitioned_numel
|
| 299 |
+
|
| 300 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 301 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 302 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 303 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
| 304 |
+
align_to = 2 * world_size
|
| 305 |
+
|
| 306 |
+
def zero2_align(x):
|
| 307 |
+
return align_to * math.ceil(x / align_to)
|
| 308 |
+
|
| 309 |
+
if debug:
|
| 310 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 311 |
+
|
| 312 |
+
offset = zero2_align(offset)
|
| 313 |
+
avail_numel = zero2_align(avail_numel)
|
| 314 |
+
|
| 315 |
+
if debug:
|
| 316 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 317 |
+
|
| 318 |
+
# Sanity check
|
| 319 |
+
if offset != avail_numel:
|
| 320 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 321 |
+
|
| 322 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
| 323 |
+
|
| 324 |
+
|
| 325 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 326 |
+
exclude_frozen_parameters):
|
| 327 |
+
state_dict = OrderedDict()
|
| 328 |
+
|
| 329 |
+
# buffers
|
| 330 |
+
buffers = zero_model_states[0].buffers
|
| 331 |
+
state_dict.update(buffers)
|
| 332 |
+
if debug:
|
| 333 |
+
print(f"added {len(buffers)} buffers")
|
| 334 |
+
|
| 335 |
+
if not exclude_frozen_parameters:
|
| 336 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
| 337 |
+
|
| 338 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 339 |
+
|
| 340 |
+
# recover shared parameters
|
| 341 |
+
for pair in zero_model_states[0].shared_params:
|
| 342 |
+
if pair[1] in state_dict:
|
| 343 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 344 |
+
|
| 345 |
+
return state_dict
|
| 346 |
+
|
| 347 |
+
|
| 348 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 349 |
+
remainder = unpartitioned_numel % world_size
|
| 350 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
| 351 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 352 |
+
return partitioned_numel, padding_numel
|
| 353 |
+
|
| 354 |
+
|
| 355 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
| 356 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 357 |
+
return
|
| 358 |
+
|
| 359 |
+
if debug:
|
| 360 |
+
for i in range(world_size):
|
| 361 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
| 362 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 363 |
+
|
| 364 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 365 |
+
wanted_params = len(frozen_param_shapes)
|
| 366 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 367 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
| 368 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 369 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 370 |
+
|
| 371 |
+
total_params = 0
|
| 372 |
+
total_numel = 0
|
| 373 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
| 374 |
+
total_params += 1
|
| 375 |
+
unpartitioned_numel = shape.numel()
|
| 376 |
+
total_numel += unpartitioned_numel
|
| 377 |
+
|
| 378 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
| 379 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 380 |
+
|
| 381 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 382 |
+
|
| 383 |
+
if debug:
|
| 384 |
+
print(
|
| 385 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 386 |
+
)
|
| 387 |
+
|
| 388 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 389 |
+
|
| 390 |
+
|
| 391 |
+
class GatheredTensor:
|
| 392 |
+
"""
|
| 393 |
+
A pseudo tensor that collects partitioned weights.
|
| 394 |
+
It is more memory efficient when there are multiple groups.
|
| 395 |
+
"""
|
| 396 |
+
|
| 397 |
+
def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
|
| 398 |
+
self.flat_groups = flat_groups
|
| 399 |
+
self.flat_groups_offset = flat_groups_offset
|
| 400 |
+
self.offset = offset
|
| 401 |
+
self.partitioned_numel = partitioned_numel
|
| 402 |
+
self.shape = shape
|
| 403 |
+
self.dtype = self.flat_groups[0][0].dtype
|
| 404 |
+
|
| 405 |
+
def contiguous(self):
|
| 406 |
+
"""
|
| 407 |
+
Merge partitioned weights from flat_groups into a single tensor.
|
| 408 |
+
"""
|
| 409 |
+
end_idx = self.offset + self.partitioned_numel
|
| 410 |
+
world_size = len(self.flat_groups)
|
| 411 |
+
pad_flat_param_chunks = []
|
| 412 |
+
|
| 413 |
+
for rank_i in range(world_size):
|
| 414 |
+
# for each rank, we need to collect weights from related group/groups
|
| 415 |
+
flat_groups_at_rank_i = self.flat_groups[rank_i]
|
| 416 |
+
start_group_id = None
|
| 417 |
+
end_group_id = None
|
| 418 |
+
for group_id in range(len(self.flat_groups_offset)):
|
| 419 |
+
if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
|
| 420 |
+
start_group_id = group_id
|
| 421 |
+
if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
|
| 422 |
+
end_group_id = group_id
|
| 423 |
+
break
|
| 424 |
+
# collect weights from related group/groups
|
| 425 |
+
for group_id in range(start_group_id, end_group_id + 1):
|
| 426 |
+
flat_tensor = flat_groups_at_rank_i[group_id]
|
| 427 |
+
start_offset = self.offset - self.flat_groups_offset[group_id]
|
| 428 |
+
end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
|
| 429 |
+
pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
|
| 430 |
+
|
| 431 |
+
# collect weights from all ranks
|
| 432 |
+
pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
|
| 433 |
+
param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
|
| 434 |
+
return param
|
| 435 |
+
|
| 436 |
+
|
| 437 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 438 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 439 |
+
avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
|
| 440 |
+
|
| 441 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 442 |
+
# param, re-consolidating each param, while dealing with padding if any
|
| 443 |
+
|
| 444 |
+
# merge list of dicts, preserving order
|
| 445 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 446 |
+
|
| 447 |
+
if debug:
|
| 448 |
+
for i in range(world_size):
|
| 449 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 450 |
+
|
| 451 |
+
wanted_params = len(param_shapes)
|
| 452 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 453 |
+
# not asserting if there is a mismatch due to possible padding
|
| 454 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 455 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
| 456 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
| 457 |
+
|
| 458 |
+
# params
|
| 459 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 460 |
+
# out-of-core computing solution
|
| 461 |
+
offset = 0
|
| 462 |
+
total_numel = 0
|
| 463 |
+
total_params = 0
|
| 464 |
+
flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
|
| 465 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
|
| 466 |
+
unpartitioned_numel = shape.numel()
|
| 467 |
+
total_numel += unpartitioned_numel
|
| 468 |
+
total_params += 1
|
| 469 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 470 |
+
|
| 471 |
+
if debug:
|
| 472 |
+
print(
|
| 473 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 474 |
+
)
|
| 475 |
+
|
| 476 |
+
# memory efficient tensor
|
| 477 |
+
tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
|
| 478 |
+
state_dict[name] = tensor
|
| 479 |
+
offset += partitioned_numel
|
| 480 |
+
|
| 481 |
+
offset *= world_size
|
| 482 |
+
|
| 483 |
+
# Sanity check
|
| 484 |
+
if offset != avail_numel:
|
| 485 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 486 |
+
|
| 487 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
| 488 |
+
|
| 489 |
+
|
| 490 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 491 |
+
exclude_frozen_parameters):
|
| 492 |
+
state_dict = OrderedDict()
|
| 493 |
+
|
| 494 |
+
# buffers
|
| 495 |
+
buffers = zero_model_states[0].buffers
|
| 496 |
+
state_dict.update(buffers)
|
| 497 |
+
if debug:
|
| 498 |
+
print(f"added {len(buffers)} buffers")
|
| 499 |
+
|
| 500 |
+
if not exclude_frozen_parameters:
|
| 501 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
| 502 |
+
|
| 503 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 504 |
+
|
| 505 |
+
# recover shared parameters
|
| 506 |
+
for pair in zero_model_states[0].shared_params:
|
| 507 |
+
if pair[1] in state_dict:
|
| 508 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 509 |
+
|
| 510 |
+
return state_dict
|
| 511 |
+
|
| 512 |
+
|
| 513 |
+
def to_torch_tensor(state_dict, return_empty_tensor=False):
|
| 514 |
+
"""
|
| 515 |
+
Convert state_dict of GatheredTensor to torch tensor
|
| 516 |
+
"""
|
| 517 |
+
torch_state_dict = {}
|
| 518 |
+
converted_tensors = {}
|
| 519 |
+
for name, tensor in state_dict.items():
|
| 520 |
+
tensor_id = id(tensor)
|
| 521 |
+
if tensor_id in converted_tensors: # shared tensors
|
| 522 |
+
shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
|
| 523 |
+
torch_state_dict[name] = shared_tensor
|
| 524 |
+
else:
|
| 525 |
+
converted_tensors[tensor_id] = name
|
| 526 |
+
if return_empty_tensor:
|
| 527 |
+
torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
|
| 528 |
+
else:
|
| 529 |
+
torch_state_dict[name] = tensor.contiguous()
|
| 530 |
+
return torch_state_dict
|
| 531 |
+
|
| 532 |
+
|
| 533 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
| 534 |
+
tag=None,
|
| 535 |
+
exclude_frozen_parameters=False,
|
| 536 |
+
lazy_mode=False):
|
| 537 |
+
"""
|
| 538 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 539 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 540 |
+
via a model hub.
|
| 541 |
+
|
| 542 |
+
Args:
|
| 543 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 544 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 545 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 546 |
+
- ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
|
| 547 |
+
Convert the pesduo tensor to torch tensor by ``.contiguous()``
|
| 548 |
+
|
| 549 |
+
Returns:
|
| 550 |
+
- pytorch ``state_dict``
|
| 551 |
+
|
| 552 |
+
A typical usage might be ::
|
| 553 |
+
|
| 554 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 555 |
+
# do the training and checkpoint saving
|
| 556 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 557 |
+
model = model.cpu() # move to cpu
|
| 558 |
+
model.load_state_dict(state_dict)
|
| 559 |
+
# submit to model hub or save the model to share with others
|
| 560 |
+
|
| 561 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 562 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 563 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 564 |
+
|
| 565 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 566 |
+
|
| 567 |
+
Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
|
| 568 |
+
You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 569 |
+
the checkpoint. Or you can load state_dict in lazy mode ::
|
| 570 |
+
|
| 571 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 572 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
|
| 573 |
+
for name, lazy_tensor in state_dict.item():
|
| 574 |
+
tensor = lazy_tensor.contiguous() # to cpu
|
| 575 |
+
print(name, tensor)
|
| 576 |
+
# del tensor to release memory if it no longer in use
|
| 577 |
+
"""
|
| 578 |
+
if tag is None:
|
| 579 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 580 |
+
if os.path.isfile(latest_path):
|
| 581 |
+
with open(latest_path, 'r') as fd:
|
| 582 |
+
tag = fd.read().strip()
|
| 583 |
+
else:
|
| 584 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 585 |
+
|
| 586 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 587 |
+
|
| 588 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
| 589 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 590 |
+
|
| 591 |
+
state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
| 592 |
+
if lazy_mode:
|
| 593 |
+
return state_dict
|
| 594 |
+
else:
|
| 595 |
+
return to_torch_tensor(state_dict)
|
| 596 |
+
|
| 597 |
+
|
| 598 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
| 599 |
+
output_dir,
|
| 600 |
+
max_shard_size="5GB",
|
| 601 |
+
safe_serialization=False,
|
| 602 |
+
tag=None,
|
| 603 |
+
exclude_frozen_parameters=False):
|
| 604 |
+
"""
|
| 605 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 606 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 607 |
+
|
| 608 |
+
Args:
|
| 609 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 610 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
| 611 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
| 612 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
| 613 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 614 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 615 |
+
"""
|
| 616 |
+
|
| 617 |
+
# Dependency pre-check
|
| 618 |
+
if safe_serialization:
|
| 619 |
+
try:
|
| 620 |
+
from safetensors.torch import save_file
|
| 621 |
+
except ImportError:
|
| 622 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
| 623 |
+
raise
|
| 624 |
+
if max_shard_size is not None:
|
| 625 |
+
try:
|
| 626 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
| 627 |
+
except ImportError:
|
| 628 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
| 629 |
+
raise
|
| 630 |
+
|
| 631 |
+
# Convert zero checkpoint to state_dict
|
| 632 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
| 633 |
+
tag,
|
| 634 |
+
exclude_frozen_parameters,
|
| 635 |
+
lazy_mode=True)
|
| 636 |
+
|
| 637 |
+
# Shard the model if it is too big.
|
| 638 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
| 639 |
+
if max_shard_size is not None:
|
| 640 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
| 641 |
+
# an memory-efficient approach for sharding
|
| 642 |
+
empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
|
| 643 |
+
state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
|
| 644 |
+
filename_pattern=filename_pattern,
|
| 645 |
+
max_shard_size=max_shard_size)
|
| 646 |
+
else:
|
| 647 |
+
from collections import namedtuple
|
| 648 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
| 649 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
| 650 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
| 651 |
+
|
| 652 |
+
# Save the model by shard
|
| 653 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 654 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
| 655 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
| 656 |
+
shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
|
| 657 |
+
shard_state_dict = to_torch_tensor(shard_state_dict)
|
| 658 |
+
output_path = os.path.join(output_dir, shard_file)
|
| 659 |
+
if safe_serialization:
|
| 660 |
+
save_file(shard_state_dict, output_path, metadata={"format": "pt"})
|
| 661 |
+
else:
|
| 662 |
+
torch.save(shard_state_dict, output_path)
|
| 663 |
+
# release the memory of current shard
|
| 664 |
+
for tensor_name in list(shard_state_dict.keys()):
|
| 665 |
+
del state_dict[tensor_name]
|
| 666 |
+
del shard_state_dict[tensor_name]
|
| 667 |
+
del shard_state_dict
|
| 668 |
+
gc.collect()
|
| 669 |
+
|
| 670 |
+
# Save index if sharded
|
| 671 |
+
if state_dict_split.is_sharded:
|
| 672 |
+
index = {
|
| 673 |
+
"metadata": state_dict_split.metadata,
|
| 674 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
| 675 |
+
}
|
| 676 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
| 677 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
| 678 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
| 679 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
| 680 |
+
f.write(content)
|
| 681 |
+
|
| 682 |
+
|
| 683 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 684 |
+
"""
|
| 685 |
+
1. Put the provided model to cpu
|
| 686 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 687 |
+
3. Load it into the provided model
|
| 688 |
+
|
| 689 |
+
Args:
|
| 690 |
+
- ``model``: the model object to update
|
| 691 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 692 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 693 |
+
|
| 694 |
+
Returns:
|
| 695 |
+
- ``model`: modified model
|
| 696 |
+
|
| 697 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 698 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 699 |
+
conveniently placed for you in the checkpoint folder.
|
| 700 |
+
|
| 701 |
+
A typical usage might be ::
|
| 702 |
+
|
| 703 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 704 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 705 |
+
# submit to model hub or save the model to share with others
|
| 706 |
+
|
| 707 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 708 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 709 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 710 |
+
|
| 711 |
+
"""
|
| 712 |
+
logger.info(f"Extracting fp32 weights")
|
| 713 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 714 |
+
|
| 715 |
+
logger.info(f"Overwriting model with fp32 weights")
|
| 716 |
+
model = model.cpu()
|
| 717 |
+
model.load_state_dict(state_dict, strict=False)
|
| 718 |
+
|
| 719 |
+
return model
|
| 720 |
+
|
| 721 |
+
|
| 722 |
+
if __name__ == "__main__":
|
| 723 |
+
parser = argparse.ArgumentParser()
|
| 724 |
+
parser.add_argument("checkpoint_dir",
|
| 725 |
+
type=str,
|
| 726 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 727 |
+
parser.add_argument("output_dir",
|
| 728 |
+
type=str,
|
| 729 |
+
help="directory to the pytorch fp32 state_dict output files"
|
| 730 |
+
"(e.g. path/checkpoint-12-output/)")
|
| 731 |
+
parser.add_argument(
|
| 732 |
+
"--max_shard_size",
|
| 733 |
+
type=str,
|
| 734 |
+
default="5GB",
|
| 735 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
| 736 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
| 737 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
| 738 |
+
"without CPU OOM issues.")
|
| 739 |
+
parser.add_argument(
|
| 740 |
+
"--safe_serialization",
|
| 741 |
+
default=False,
|
| 742 |
+
action='store_true',
|
| 743 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
| 744 |
+
parser.add_argument("-t",
|
| 745 |
+
"--tag",
|
| 746 |
+
type=str,
|
| 747 |
+
default=None,
|
| 748 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
| 749 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
| 750 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 751 |
+
args = parser.parse_args()
|
| 752 |
+
|
| 753 |
+
debug = args.debug
|
| 754 |
+
|
| 755 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
| 756 |
+
args.output_dir,
|
| 757 |
+
max_shard_size=args.max_shard_size,
|
| 758 |
+
safe_serialization=args.safe_serialization,
|
| 759 |
+
tag=args.tag,
|
| 760 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
checkpoint-2605/added_tokens.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"</tool_call>": 151658,
|
| 3 |
+
"<tool_call>": 151657,
|
| 4 |
+
"<|box_end|>": 151649,
|
| 5 |
+
"<|box_start|>": 151648,
|
| 6 |
+
"<|endoftext|>": 151643,
|
| 7 |
+
"<|file_sep|>": 151664,
|
| 8 |
+
"<|fim_middle|>": 151660,
|
| 9 |
+
"<|fim_pad|>": 151662,
|
| 10 |
+
"<|fim_prefix|>": 151659,
|
| 11 |
+
"<|fim_suffix|>": 151661,
|
| 12 |
+
"<|im_end|>": 151645,
|
| 13 |
+
"<|im_start|>": 151644,
|
| 14 |
+
"<|image_pad|>": 151655,
|
| 15 |
+
"<|object_ref_end|>": 151647,
|
| 16 |
+
"<|object_ref_start|>": 151646,
|
| 17 |
+
"<|quad_end|>": 151651,
|
| 18 |
+
"<|quad_start|>": 151650,
|
| 19 |
+
"<|repo_name|>": 151663,
|
| 20 |
+
"<|video_pad|>": 151656,
|
| 21 |
+
"<|vision_end|>": 151653,
|
| 22 |
+
"<|vision_pad|>": 151654,
|
| 23 |
+
"<|vision_start|>": 151652
|
| 24 |
+
}
|
checkpoint-2605/chat_template.jinja
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{%- if tools %}
|
| 2 |
+
{{- '<|im_start|>system\n' }}
|
| 3 |
+
{%- if messages[0]['role'] == 'system' %}
|
| 4 |
+
{{- messages[0]['content'] }}
|
| 5 |
+
{%- else %}
|
| 6 |
+
{{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}
|
| 7 |
+
{%- endif %}
|
| 8 |
+
{{- "\n\n# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
|
| 9 |
+
{%- for tool in tools %}
|
| 10 |
+
{{- "\n" }}
|
| 11 |
+
{{- tool | tojson }}
|
| 12 |
+
{%- endfor %}
|
| 13 |
+
{{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
|
| 14 |
+
{%- else %}
|
| 15 |
+
{%- if messages[0]['role'] == 'system' %}
|
| 16 |
+
{{- '<|im_start|>system\n' + messages[0]['content'] + '<|im_end|>\n' }}
|
| 17 |
+
{%- else %}
|
| 18 |
+
{{- '<|im_start|>system\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\n' }}
|
| 19 |
+
{%- endif %}
|
| 20 |
+
{%- endif %}
|
| 21 |
+
{%- for message in messages %}
|
| 22 |
+
{%- if (message.role == "user") or (message.role == "system" and not loop.first) or (message.role == "assistant" and not message.tool_calls) %}
|
| 23 |
+
{{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}
|
| 24 |
+
{%- elif message.role == "assistant" %}
|
| 25 |
+
{{- '<|im_start|>' + message.role }}
|
| 26 |
+
{%- if message.content %}
|
| 27 |
+
{{- '\n' + message.content }}
|
| 28 |
+
{%- endif %}
|
| 29 |
+
{%- for tool_call in message.tool_calls %}
|
| 30 |
+
{%- if tool_call.function is defined %}
|
| 31 |
+
{%- set tool_call = tool_call.function %}
|
| 32 |
+
{%- endif %}
|
| 33 |
+
{{- '\n<tool_call>\n{"name": "' }}
|
| 34 |
+
{{- tool_call.name }}
|
| 35 |
+
{{- '", "arguments": ' }}
|
| 36 |
+
{{- tool_call.arguments | tojson }}
|
| 37 |
+
{{- '}\n</tool_call>' }}
|
| 38 |
+
{%- endfor %}
|
| 39 |
+
{{- '<|im_end|>\n' }}
|
| 40 |
+
{%- elif message.role == "tool" %}
|
| 41 |
+
{%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != "tool") %}
|
| 42 |
+
{{- '<|im_start|>user' }}
|
| 43 |
+
{%- endif %}
|
| 44 |
+
{{- '\n<tool_response>\n' }}
|
| 45 |
+
{{- message.content }}
|
| 46 |
+
{{- '\n</tool_response>' }}
|
| 47 |
+
{%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
|
| 48 |
+
{{- '<|im_end|>\n' }}
|
| 49 |
+
{%- endif %}
|
| 50 |
+
{%- endif %}
|
| 51 |
+
{%- endfor %}
|
| 52 |
+
{%- if add_generation_prompt %}
|
| 53 |
+
{{- '<|im_start|>assistant\n' }}
|
| 54 |
+
{%- endif %}
|
checkpoint-2605/generation_config.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token_id": 151643,
|
| 3 |
+
"do_sample": true,
|
| 4 |
+
"eos_token_id": [
|
| 5 |
+
151645,
|
| 6 |
+
151643
|
| 7 |
+
],
|
| 8 |
+
"pad_token_id": 151643,
|
| 9 |
+
"repetition_penalty": 1.1,
|
| 10 |
+
"temperature": 0.7,
|
| 11 |
+
"top_k": 20,
|
| 12 |
+
"top_p": 0.8,
|
| 13 |
+
"transformers_version": "4.52.4"
|
| 14 |
+
}
|
checkpoint-2605/latest
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
global_step2603
|
checkpoint-2605/merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
checkpoint-2605/special_tokens_map.json
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|im_start|>",
|
| 4 |
+
"<|im_end|>",
|
| 5 |
+
"<|object_ref_start|>",
|
| 6 |
+
"<|object_ref_end|>",
|
| 7 |
+
"<|box_start|>",
|
| 8 |
+
"<|box_end|>",
|
| 9 |
+
"<|quad_start|>",
|
| 10 |
+
"<|quad_end|>",
|
| 11 |
+
"<|vision_start|>",
|
| 12 |
+
"<|vision_end|>",
|
| 13 |
+
"<|vision_pad|>",
|
| 14 |
+
"<|image_pad|>",
|
| 15 |
+
"<|video_pad|>"
|
| 16 |
+
],
|
| 17 |
+
"eos_token": {
|
| 18 |
+
"content": "<|im_end|>",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": false,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
},
|
| 24 |
+
"pad_token": {
|
| 25 |
+
"content": "<|endoftext|>",
|
| 26 |
+
"lstrip": false,
|
| 27 |
+
"normalized": false,
|
| 28 |
+
"rstrip": false,
|
| 29 |
+
"single_word": false
|
| 30 |
+
}
|
| 31 |
+
}
|
checkpoint-2605/tokenizer_config.json
ADDED
|
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_prefix_space": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"151643": {
|
| 6 |
+
"content": "<|endoftext|>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"151644": {
|
| 14 |
+
"content": "<|im_start|>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"151645": {
|
| 22 |
+
"content": "<|im_end|>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
},
|
| 29 |
+
"151646": {
|
| 30 |
+
"content": "<|object_ref_start|>",
|
| 31 |
+
"lstrip": false,
|
| 32 |
+
"normalized": false,
|
| 33 |
+
"rstrip": false,
|
| 34 |
+
"single_word": false,
|
| 35 |
+
"special": true
|
| 36 |
+
},
|
| 37 |
+
"151647": {
|
| 38 |
+
"content": "<|object_ref_end|>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false,
|
| 43 |
+
"special": true
|
| 44 |
+
},
|
| 45 |
+
"151648": {
|
| 46 |
+
"content": "<|box_start|>",
|
| 47 |
+
"lstrip": false,
|
| 48 |
+
"normalized": false,
|
| 49 |
+
"rstrip": false,
|
| 50 |
+
"single_word": false,
|
| 51 |
+
"special": true
|
| 52 |
+
},
|
| 53 |
+
"151649": {
|
| 54 |
+
"content": "<|box_end|>",
|
| 55 |
+
"lstrip": false,
|
| 56 |
+
"normalized": false,
|
| 57 |
+
"rstrip": false,
|
| 58 |
+
"single_word": false,
|
| 59 |
+
"special": true
|
| 60 |
+
},
|
| 61 |
+
"151650": {
|
| 62 |
+
"content": "<|quad_start|>",
|
| 63 |
+
"lstrip": false,
|
| 64 |
+
"normalized": false,
|
| 65 |
+
"rstrip": false,
|
| 66 |
+
"single_word": false,
|
| 67 |
+
"special": true
|
| 68 |
+
},
|
| 69 |
+
"151651": {
|
| 70 |
+
"content": "<|quad_end|>",
|
| 71 |
+
"lstrip": false,
|
| 72 |
+
"normalized": false,
|
| 73 |
+
"rstrip": false,
|
| 74 |
+
"single_word": false,
|
| 75 |
+
"special": true
|
| 76 |
+
},
|
| 77 |
+
"151652": {
|
| 78 |
+
"content": "<|vision_start|>",
|
| 79 |
+
"lstrip": false,
|
| 80 |
+
"normalized": false,
|
| 81 |
+
"rstrip": false,
|
| 82 |
+
"single_word": false,
|
| 83 |
+
"special": true
|
| 84 |
+
},
|
| 85 |
+
"151653": {
|
| 86 |
+
"content": "<|vision_end|>",
|
| 87 |
+
"lstrip": false,
|
| 88 |
+
"normalized": false,
|
| 89 |
+
"rstrip": false,
|
| 90 |
+
"single_word": false,
|
| 91 |
+
"special": true
|
| 92 |
+
},
|
| 93 |
+
"151654": {
|
| 94 |
+
"content": "<|vision_pad|>",
|
| 95 |
+
"lstrip": false,
|
| 96 |
+
"normalized": false,
|
| 97 |
+
"rstrip": false,
|
| 98 |
+
"single_word": false,
|
| 99 |
+
"special": true
|
| 100 |
+
},
|
| 101 |
+
"151655": {
|
| 102 |
+
"content": "<|image_pad|>",
|
| 103 |
+
"lstrip": false,
|
| 104 |
+
"normalized": false,
|
| 105 |
+
"rstrip": false,
|
| 106 |
+
"single_word": false,
|
| 107 |
+
"special": true
|
| 108 |
+
},
|
| 109 |
+
"151656": {
|
| 110 |
+
"content": "<|video_pad|>",
|
| 111 |
+
"lstrip": false,
|
| 112 |
+
"normalized": false,
|
| 113 |
+
"rstrip": false,
|
| 114 |
+
"single_word": false,
|
| 115 |
+
"special": true
|
| 116 |
+
},
|
| 117 |
+
"151657": {
|
| 118 |
+
"content": "<tool_call>",
|
| 119 |
+
"lstrip": false,
|
| 120 |
+
"normalized": false,
|
| 121 |
+
"rstrip": false,
|
| 122 |
+
"single_word": false,
|
| 123 |
+
"special": false
|
| 124 |
+
},
|
| 125 |
+
"151658": {
|
| 126 |
+
"content": "</tool_call>",
|
| 127 |
+
"lstrip": false,
|
| 128 |
+
"normalized": false,
|
| 129 |
+
"rstrip": false,
|
| 130 |
+
"single_word": false,
|
| 131 |
+
"special": false
|
| 132 |
+
},
|
| 133 |
+
"151659": {
|
| 134 |
+
"content": "<|fim_prefix|>",
|
| 135 |
+
"lstrip": false,
|
| 136 |
+
"normalized": false,
|
| 137 |
+
"rstrip": false,
|
| 138 |
+
"single_word": false,
|
| 139 |
+
"special": false
|
| 140 |
+
},
|
| 141 |
+
"151660": {
|
| 142 |
+
"content": "<|fim_middle|>",
|
| 143 |
+
"lstrip": false,
|
| 144 |
+
"normalized": false,
|
| 145 |
+
"rstrip": false,
|
| 146 |
+
"single_word": false,
|
| 147 |
+
"special": false
|
| 148 |
+
},
|
| 149 |
+
"151661": {
|
| 150 |
+
"content": "<|fim_suffix|>",
|
| 151 |
+
"lstrip": false,
|
| 152 |
+
"normalized": false,
|
| 153 |
+
"rstrip": false,
|
| 154 |
+
"single_word": false,
|
| 155 |
+
"special": false
|
| 156 |
+
},
|
| 157 |
+
"151662": {
|
| 158 |
+
"content": "<|fim_pad|>",
|
| 159 |
+
"lstrip": false,
|
| 160 |
+
"normalized": false,
|
| 161 |
+
"rstrip": false,
|
| 162 |
+
"single_word": false,
|
| 163 |
+
"special": false
|
| 164 |
+
},
|
| 165 |
+
"151663": {
|
| 166 |
+
"content": "<|repo_name|>",
|
| 167 |
+
"lstrip": false,
|
| 168 |
+
"normalized": false,
|
| 169 |
+
"rstrip": false,
|
| 170 |
+
"single_word": false,
|
| 171 |
+
"special": false
|
| 172 |
+
},
|
| 173 |
+
"151664": {
|
| 174 |
+
"content": "<|file_sep|>",
|
| 175 |
+
"lstrip": false,
|
| 176 |
+
"normalized": false,
|
| 177 |
+
"rstrip": false,
|
| 178 |
+
"single_word": false,
|
| 179 |
+
"special": false
|
| 180 |
+
}
|
| 181 |
+
},
|
| 182 |
+
"additional_special_tokens": [
|
| 183 |
+
"<|im_start|>",
|
| 184 |
+
"<|im_end|>",
|
| 185 |
+
"<|object_ref_start|>",
|
| 186 |
+
"<|object_ref_end|>",
|
| 187 |
+
"<|box_start|>",
|
| 188 |
+
"<|box_end|>",
|
| 189 |
+
"<|quad_start|>",
|
| 190 |
+
"<|quad_end|>",
|
| 191 |
+
"<|vision_start|>",
|
| 192 |
+
"<|vision_end|>",
|
| 193 |
+
"<|vision_pad|>",
|
| 194 |
+
"<|image_pad|>",
|
| 195 |
+
"<|video_pad|>"
|
| 196 |
+
],
|
| 197 |
+
"bos_token": null,
|
| 198 |
+
"clean_up_tokenization_spaces": false,
|
| 199 |
+
"eos_token": "<|im_end|>",
|
| 200 |
+
"errors": "replace",
|
| 201 |
+
"extra_special_tokens": {},
|
| 202 |
+
"model_max_length": 131072,
|
| 203 |
+
"pad_token": "<|endoftext|>",
|
| 204 |
+
"padding_side": "right",
|
| 205 |
+
"split_special_tokens": false,
|
| 206 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
| 207 |
+
"unk_token": null
|
| 208 |
+
}
|
checkpoint-2605/trainer_state.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
checkpoint-521/added_tokens.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"</tool_call>": 151658,
|
| 3 |
+
"<tool_call>": 151657,
|
| 4 |
+
"<|box_end|>": 151649,
|
| 5 |
+
"<|box_start|>": 151648,
|
| 6 |
+
"<|endoftext|>": 151643,
|
| 7 |
+
"<|file_sep|>": 151664,
|
| 8 |
+
"<|fim_middle|>": 151660,
|
| 9 |
+
"<|fim_pad|>": 151662,
|
| 10 |
+
"<|fim_prefix|>": 151659,
|
| 11 |
+
"<|fim_suffix|>": 151661,
|
| 12 |
+
"<|im_end|>": 151645,
|
| 13 |
+
"<|im_start|>": 151644,
|
| 14 |
+
"<|image_pad|>": 151655,
|
| 15 |
+
"<|object_ref_end|>": 151647,
|
| 16 |
+
"<|object_ref_start|>": 151646,
|
| 17 |
+
"<|quad_end|>": 151651,
|
| 18 |
+
"<|quad_start|>": 151650,
|
| 19 |
+
"<|repo_name|>": 151663,
|
| 20 |
+
"<|video_pad|>": 151656,
|
| 21 |
+
"<|vision_end|>": 151653,
|
| 22 |
+
"<|vision_pad|>": 151654,
|
| 23 |
+
"<|vision_start|>": 151652
|
| 24 |
+
}
|
checkpoint-521/chat_template.jinja
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{%- if tools %}
|
| 2 |
+
{{- '<|im_start|>system\n' }}
|
| 3 |
+
{%- if messages[0]['role'] == 'system' %}
|
| 4 |
+
{{- messages[0]['content'] }}
|
| 5 |
+
{%- else %}
|
| 6 |
+
{{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}
|
| 7 |
+
{%- endif %}
|
| 8 |
+
{{- "\n\n# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
|
| 9 |
+
{%- for tool in tools %}
|
| 10 |
+
{{- "\n" }}
|
| 11 |
+
{{- tool | tojson }}
|
| 12 |
+
{%- endfor %}
|
| 13 |
+
{{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
|
| 14 |
+
{%- else %}
|
| 15 |
+
{%- if messages[0]['role'] == 'system' %}
|
| 16 |
+
{{- '<|im_start|>system\n' + messages[0]['content'] + '<|im_end|>\n' }}
|
| 17 |
+
{%- else %}
|
| 18 |
+
{{- '<|im_start|>system\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\n' }}
|
| 19 |
+
{%- endif %}
|
| 20 |
+
{%- endif %}
|
| 21 |
+
{%- for message in messages %}
|
| 22 |
+
{%- if (message.role == "user") or (message.role == "system" and not loop.first) or (message.role == "assistant" and not message.tool_calls) %}
|
| 23 |
+
{{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}
|
| 24 |
+
{%- elif message.role == "assistant" %}
|
| 25 |
+
{{- '<|im_start|>' + message.role }}
|
| 26 |
+
{%- if message.content %}
|
| 27 |
+
{{- '\n' + message.content }}
|
| 28 |
+
{%- endif %}
|
| 29 |
+
{%- for tool_call in message.tool_calls %}
|
| 30 |
+
{%- if tool_call.function is defined %}
|
| 31 |
+
{%- set tool_call = tool_call.function %}
|
| 32 |
+
{%- endif %}
|
| 33 |
+
{{- '\n<tool_call>\n{"name": "' }}
|
| 34 |
+
{{- tool_call.name }}
|
| 35 |
+
{{- '", "arguments": ' }}
|
| 36 |
+
{{- tool_call.arguments | tojson }}
|
| 37 |
+
{{- '}\n</tool_call>' }}
|
| 38 |
+
{%- endfor %}
|
| 39 |
+
{{- '<|im_end|>\n' }}
|
| 40 |
+
{%- elif message.role == "tool" %}
|
| 41 |
+
{%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != "tool") %}
|
| 42 |
+
{{- '<|im_start|>user' }}
|
| 43 |
+
{%- endif %}
|
| 44 |
+
{{- '\n<tool_response>\n' }}
|
| 45 |
+
{{- message.content }}
|
| 46 |
+
{{- '\n</tool_response>' }}
|
| 47 |
+
{%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
|
| 48 |
+
{{- '<|im_end|>\n' }}
|
| 49 |
+
{%- endif %}
|
| 50 |
+
{%- endif %}
|
| 51 |
+
{%- endfor %}
|
| 52 |
+
{%- if add_generation_prompt %}
|
| 53 |
+
{{- '<|im_start|>assistant\n' }}
|
| 54 |
+
{%- endif %}
|
checkpoint-521/config.json
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"Qwen2ForCausalLM"
|
| 4 |
+
],
|
| 5 |
+
"attention_dropout": 0.0,
|
| 6 |
+
"bos_token_id": 151643,
|
| 7 |
+
"eos_token_id": 151645,
|
| 8 |
+
"hidden_act": "silu",
|
| 9 |
+
"hidden_size": 1536,
|
| 10 |
+
"initializer_range": 0.02,
|
| 11 |
+
"intermediate_size": 8960,
|
| 12 |
+
"max_position_embeddings": 32768,
|
| 13 |
+
"max_window_layers": 21,
|
| 14 |
+
"model_type": "qwen2",
|
| 15 |
+
"num_attention_heads": 12,
|
| 16 |
+
"num_hidden_layers": 28,
|
| 17 |
+
"num_key_value_heads": 2,
|
| 18 |
+
"rms_norm_eps": 1e-06,
|
| 19 |
+
"rope_scaling": null,
|
| 20 |
+
"rope_theta": 1000000.0,
|
| 21 |
+
"sliding_window": 32768,
|
| 22 |
+
"tie_word_embeddings": true,
|
| 23 |
+
"torch_dtype": "bfloat16",
|
| 24 |
+
"transformers_version": "4.52.4",
|
| 25 |
+
"use_cache": false,
|
| 26 |
+
"use_sliding_window": false,
|
| 27 |
+
"vocab_size": 151936
|
| 28 |
+
}
|
checkpoint-521/generation_config.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token_id": 151643,
|
| 3 |
+
"do_sample": true,
|
| 4 |
+
"eos_token_id": [
|
| 5 |
+
151645,
|
| 6 |
+
151643
|
| 7 |
+
],
|
| 8 |
+
"pad_token_id": 151643,
|
| 9 |
+
"repetition_penalty": 1.1,
|
| 10 |
+
"temperature": 0.7,
|
| 11 |
+
"top_k": 20,
|
| 12 |
+
"top_p": 0.8,
|
| 13 |
+
"transformers_version": "4.52.4"
|
| 14 |
+
}
|
checkpoint-521/latest
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
global_step520
|
checkpoint-521/merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
checkpoint-521/special_tokens_map.json
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|im_start|>",
|
| 4 |
+
"<|im_end|>",
|
| 5 |
+
"<|object_ref_start|>",
|
| 6 |
+
"<|object_ref_end|>",
|
| 7 |
+
"<|box_start|>",
|
| 8 |
+
"<|box_end|>",
|
| 9 |
+
"<|quad_start|>",
|
| 10 |
+
"<|quad_end|>",
|
| 11 |
+
"<|vision_start|>",
|
| 12 |
+
"<|vision_end|>",
|
| 13 |
+
"<|vision_pad|>",
|
| 14 |
+
"<|image_pad|>",
|
| 15 |
+
"<|video_pad|>"
|
| 16 |
+
],
|
| 17 |
+
"eos_token": {
|
| 18 |
+
"content": "<|im_end|>",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": false,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
},
|
| 24 |
+
"pad_token": {
|
| 25 |
+
"content": "<|endoftext|>",
|
| 26 |
+
"lstrip": false,
|
| 27 |
+
"normalized": false,
|
| 28 |
+
"rstrip": false,
|
| 29 |
+
"single_word": false
|
| 30 |
+
}
|
| 31 |
+
}
|
checkpoint-521/tokenizer_config.json
ADDED
|
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_prefix_space": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"151643": {
|
| 6 |
+
"content": "<|endoftext|>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"151644": {
|
| 14 |
+
"content": "<|im_start|>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"151645": {
|
| 22 |
+
"content": "<|im_end|>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
},
|
| 29 |
+
"151646": {
|
| 30 |
+
"content": "<|object_ref_start|>",
|
| 31 |
+
"lstrip": false,
|
| 32 |
+
"normalized": false,
|
| 33 |
+
"rstrip": false,
|
| 34 |
+
"single_word": false,
|
| 35 |
+
"special": true
|
| 36 |
+
},
|
| 37 |
+
"151647": {
|
| 38 |
+
"content": "<|object_ref_end|>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false,
|
| 43 |
+
"special": true
|
| 44 |
+
},
|
| 45 |
+
"151648": {
|
| 46 |
+
"content": "<|box_start|>",
|
| 47 |
+
"lstrip": false,
|
| 48 |
+
"normalized": false,
|
| 49 |
+
"rstrip": false,
|
| 50 |
+
"single_word": false,
|
| 51 |
+
"special": true
|
| 52 |
+
},
|
| 53 |
+
"151649": {
|
| 54 |
+
"content": "<|box_end|>",
|
| 55 |
+
"lstrip": false,
|
| 56 |
+
"normalized": false,
|
| 57 |
+
"rstrip": false,
|
| 58 |
+
"single_word": false,
|
| 59 |
+
"special": true
|
| 60 |
+
},
|
| 61 |
+
"151650": {
|
| 62 |
+
"content": "<|quad_start|>",
|
| 63 |
+
"lstrip": false,
|
| 64 |
+
"normalized": false,
|
| 65 |
+
"rstrip": false,
|
| 66 |
+
"single_word": false,
|
| 67 |
+
"special": true
|
| 68 |
+
},
|
| 69 |
+
"151651": {
|
| 70 |
+
"content": "<|quad_end|>",
|
| 71 |
+
"lstrip": false,
|
| 72 |
+
"normalized": false,
|
| 73 |
+
"rstrip": false,
|
| 74 |
+
"single_word": false,
|
| 75 |
+
"special": true
|
| 76 |
+
},
|
| 77 |
+
"151652": {
|
| 78 |
+
"content": "<|vision_start|>",
|
| 79 |
+
"lstrip": false,
|
| 80 |
+
"normalized": false,
|
| 81 |
+
"rstrip": false,
|
| 82 |
+
"single_word": false,
|
| 83 |
+
"special": true
|
| 84 |
+
},
|
| 85 |
+
"151653": {
|
| 86 |
+
"content": "<|vision_end|>",
|
| 87 |
+
"lstrip": false,
|
| 88 |
+
"normalized": false,
|
| 89 |
+
"rstrip": false,
|
| 90 |
+
"single_word": false,
|
| 91 |
+
"special": true
|
| 92 |
+
},
|
| 93 |
+
"151654": {
|
| 94 |
+
"content": "<|vision_pad|>",
|
| 95 |
+
"lstrip": false,
|
| 96 |
+
"normalized": false,
|
| 97 |
+
"rstrip": false,
|
| 98 |
+
"single_word": false,
|
| 99 |
+
"special": true
|
| 100 |
+
},
|
| 101 |
+
"151655": {
|
| 102 |
+
"content": "<|image_pad|>",
|
| 103 |
+
"lstrip": false,
|
| 104 |
+
"normalized": false,
|
| 105 |
+
"rstrip": false,
|
| 106 |
+
"single_word": false,
|
| 107 |
+
"special": true
|
| 108 |
+
},
|
| 109 |
+
"151656": {
|
| 110 |
+
"content": "<|video_pad|>",
|
| 111 |
+
"lstrip": false,
|
| 112 |
+
"normalized": false,
|
| 113 |
+
"rstrip": false,
|
| 114 |
+
"single_word": false,
|
| 115 |
+
"special": true
|
| 116 |
+
},
|
| 117 |
+
"151657": {
|
| 118 |
+
"content": "<tool_call>",
|
| 119 |
+
"lstrip": false,
|
| 120 |
+
"normalized": false,
|
| 121 |
+
"rstrip": false,
|
| 122 |
+
"single_word": false,
|
| 123 |
+
"special": false
|
| 124 |
+
},
|
| 125 |
+
"151658": {
|
| 126 |
+
"content": "</tool_call>",
|
| 127 |
+
"lstrip": false,
|
| 128 |
+
"normalized": false,
|
| 129 |
+
"rstrip": false,
|
| 130 |
+
"single_word": false,
|
| 131 |
+
"special": false
|
| 132 |
+
},
|
| 133 |
+
"151659": {
|
| 134 |
+
"content": "<|fim_prefix|>",
|
| 135 |
+
"lstrip": false,
|
| 136 |
+
"normalized": false,
|
| 137 |
+
"rstrip": false,
|
| 138 |
+
"single_word": false,
|
| 139 |
+
"special": false
|
| 140 |
+
},
|
| 141 |
+
"151660": {
|
| 142 |
+
"content": "<|fim_middle|>",
|
| 143 |
+
"lstrip": false,
|
| 144 |
+
"normalized": false,
|
| 145 |
+
"rstrip": false,
|
| 146 |
+
"single_word": false,
|
| 147 |
+
"special": false
|
| 148 |
+
},
|
| 149 |
+
"151661": {
|
| 150 |
+
"content": "<|fim_suffix|>",
|
| 151 |
+
"lstrip": false,
|
| 152 |
+
"normalized": false,
|
| 153 |
+
"rstrip": false,
|
| 154 |
+
"single_word": false,
|
| 155 |
+
"special": false
|
| 156 |
+
},
|
| 157 |
+
"151662": {
|
| 158 |
+
"content": "<|fim_pad|>",
|
| 159 |
+
"lstrip": false,
|
| 160 |
+
"normalized": false,
|
| 161 |
+
"rstrip": false,
|
| 162 |
+
"single_word": false,
|
| 163 |
+
"special": false
|
| 164 |
+
},
|
| 165 |
+
"151663": {
|
| 166 |
+
"content": "<|repo_name|>",
|
| 167 |
+
"lstrip": false,
|
| 168 |
+
"normalized": false,
|
| 169 |
+
"rstrip": false,
|
| 170 |
+
"single_word": false,
|
| 171 |
+
"special": false
|
| 172 |
+
},
|
| 173 |
+
"151664": {
|
| 174 |
+
"content": "<|file_sep|>",
|
| 175 |
+
"lstrip": false,
|
| 176 |
+
"normalized": false,
|
| 177 |
+
"rstrip": false,
|
| 178 |
+
"single_word": false,
|
| 179 |
+
"special": false
|
| 180 |
+
}
|
| 181 |
+
},
|
| 182 |
+
"additional_special_tokens": [
|
| 183 |
+
"<|im_start|>",
|
| 184 |
+
"<|im_end|>",
|
| 185 |
+
"<|object_ref_start|>",
|
| 186 |
+
"<|object_ref_end|>",
|
| 187 |
+
"<|box_start|>",
|
| 188 |
+
"<|box_end|>",
|
| 189 |
+
"<|quad_start|>",
|
| 190 |
+
"<|quad_end|>",
|
| 191 |
+
"<|vision_start|>",
|
| 192 |
+
"<|vision_end|>",
|
| 193 |
+
"<|vision_pad|>",
|
| 194 |
+
"<|image_pad|>",
|
| 195 |
+
"<|video_pad|>"
|
| 196 |
+
],
|
| 197 |
+
"bos_token": null,
|
| 198 |
+
"clean_up_tokenization_spaces": false,
|
| 199 |
+
"eos_token": "<|im_end|>",
|
| 200 |
+
"errors": "replace",
|
| 201 |
+
"extra_special_tokens": {},
|
| 202 |
+
"model_max_length": 131072,
|
| 203 |
+
"pad_token": "<|endoftext|>",
|
| 204 |
+
"padding_side": "right",
|
| 205 |
+
"split_special_tokens": false,
|
| 206 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
| 207 |
+
"unk_token": null
|
| 208 |
+
}
|
checkpoint-521/trainer_state.json
ADDED
|
@@ -0,0 +1,3681 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_global_step": null,
|
| 3 |
+
"best_metric": null,
|
| 4 |
+
"best_model_checkpoint": null,
|
| 5 |
+
"epoch": 1.0,
|
| 6 |
+
"eval_steps": 500,
|
| 7 |
+
"global_step": 521,
|
| 8 |
+
"is_hyper_param_search": false,
|
| 9 |
+
"is_local_process_zero": true,
|
| 10 |
+
"is_world_process_zero": true,
|
| 11 |
+
"log_history": [
|
| 12 |
+
{
|
| 13 |
+
"epoch": 0.0019203072491598655,
|
| 14 |
+
"grad_norm": 3.050241640622783,
|
| 15 |
+
"learning_rate": 0.0,
|
| 16 |
+
"loss": 1.5054,
|
| 17 |
+
"step": 1
|
| 18 |
+
},
|
| 19 |
+
{
|
| 20 |
+
"epoch": 0.003840614498319731,
|
| 21 |
+
"grad_norm": 2.974162230197891,
|
| 22 |
+
"learning_rate": 3.831417624521073e-08,
|
| 23 |
+
"loss": 1.7399,
|
| 24 |
+
"step": 2
|
| 25 |
+
},
|
| 26 |
+
{
|
| 27 |
+
"epoch": 0.005760921747479597,
|
| 28 |
+
"grad_norm": 3.006494012208738,
|
| 29 |
+
"learning_rate": 7.662835249042146e-08,
|
| 30 |
+
"loss": 1.8793,
|
| 31 |
+
"step": 3
|
| 32 |
+
},
|
| 33 |
+
{
|
| 34 |
+
"epoch": 0.007681228996639462,
|
| 35 |
+
"grad_norm": 2.910641370990376,
|
| 36 |
+
"learning_rate": 1.1494252873563219e-07,
|
| 37 |
+
"loss": 1.7187,
|
| 38 |
+
"step": 4
|
| 39 |
+
},
|
| 40 |
+
{
|
| 41 |
+
"epoch": 0.009601536245799328,
|
| 42 |
+
"grad_norm": 2.6996013829444134,
|
| 43 |
+
"learning_rate": 1.5325670498084292e-07,
|
| 44 |
+
"loss": 1.6475,
|
| 45 |
+
"step": 5
|
| 46 |
+
},
|
| 47 |
+
{
|
| 48 |
+
"epoch": 0.011521843494959194,
|
| 49 |
+
"grad_norm": 3.0173297525530525,
|
| 50 |
+
"learning_rate": 1.9157088122605365e-07,
|
| 51 |
+
"loss": 1.6964,
|
| 52 |
+
"step": 6
|
| 53 |
+
},
|
| 54 |
+
{
|
| 55 |
+
"epoch": 0.01344215074411906,
|
| 56 |
+
"grad_norm": 3.0082364904112566,
|
| 57 |
+
"learning_rate": 2.2988505747126437e-07,
|
| 58 |
+
"loss": 1.6851,
|
| 59 |
+
"step": 7
|
| 60 |
+
},
|
| 61 |
+
{
|
| 62 |
+
"epoch": 0.015362457993278924,
|
| 63 |
+
"grad_norm": 2.880521601062656,
|
| 64 |
+
"learning_rate": 2.681992337164751e-07,
|
| 65 |
+
"loss": 1.557,
|
| 66 |
+
"step": 8
|
| 67 |
+
},
|
| 68 |
+
{
|
| 69 |
+
"epoch": 0.01728276524243879,
|
| 70 |
+
"grad_norm": 2.8379079611890896,
|
| 71 |
+
"learning_rate": 3.0651340996168583e-07,
|
| 72 |
+
"loss": 1.6569,
|
| 73 |
+
"step": 9
|
| 74 |
+
},
|
| 75 |
+
{
|
| 76 |
+
"epoch": 0.019203072491598656,
|
| 77 |
+
"grad_norm": 2.902207545955143,
|
| 78 |
+
"learning_rate": 3.4482758620689656e-07,
|
| 79 |
+
"loss": 1.637,
|
| 80 |
+
"step": 10
|
| 81 |
+
},
|
| 82 |
+
{
|
| 83 |
+
"epoch": 0.02112337974075852,
|
| 84 |
+
"grad_norm": 2.8146383036248883,
|
| 85 |
+
"learning_rate": 3.831417624521073e-07,
|
| 86 |
+
"loss": 1.7074,
|
| 87 |
+
"step": 11
|
| 88 |
+
},
|
| 89 |
+
{
|
| 90 |
+
"epoch": 0.023043686989918388,
|
| 91 |
+
"grad_norm": 2.7702439023075422,
|
| 92 |
+
"learning_rate": 4.2145593869731807e-07,
|
| 93 |
+
"loss": 1.6621,
|
| 94 |
+
"step": 12
|
| 95 |
+
},
|
| 96 |
+
{
|
| 97 |
+
"epoch": 0.024963994239078253,
|
| 98 |
+
"grad_norm": 2.948897328700205,
|
| 99 |
+
"learning_rate": 4.5977011494252875e-07,
|
| 100 |
+
"loss": 1.7141,
|
| 101 |
+
"step": 13
|
| 102 |
+
},
|
| 103 |
+
{
|
| 104 |
+
"epoch": 0.02688430148823812,
|
| 105 |
+
"grad_norm": 2.6155066202719666,
|
| 106 |
+
"learning_rate": 4.980842911877395e-07,
|
| 107 |
+
"loss": 1.6133,
|
| 108 |
+
"step": 14
|
| 109 |
+
},
|
| 110 |
+
{
|
| 111 |
+
"epoch": 0.028804608737397985,
|
| 112 |
+
"grad_norm": 2.7754744384918335,
|
| 113 |
+
"learning_rate": 5.363984674329502e-07,
|
| 114 |
+
"loss": 1.6922,
|
| 115 |
+
"step": 15
|
| 116 |
+
},
|
| 117 |
+
{
|
| 118 |
+
"epoch": 0.030724915986557848,
|
| 119 |
+
"grad_norm": 3.005540548334177,
|
| 120 |
+
"learning_rate": 5.747126436781609e-07,
|
| 121 |
+
"loss": 1.5753,
|
| 122 |
+
"step": 16
|
| 123 |
+
},
|
| 124 |
+
{
|
| 125 |
+
"epoch": 0.03264522323571772,
|
| 126 |
+
"grad_norm": 2.6675051377737486,
|
| 127 |
+
"learning_rate": 6.130268199233717e-07,
|
| 128 |
+
"loss": 1.6697,
|
| 129 |
+
"step": 17
|
| 130 |
+
},
|
| 131 |
+
{
|
| 132 |
+
"epoch": 0.03456553048487758,
|
| 133 |
+
"grad_norm": 2.7911452731594326,
|
| 134 |
+
"learning_rate": 6.513409961685824e-07,
|
| 135 |
+
"loss": 1.6166,
|
| 136 |
+
"step": 18
|
| 137 |
+
},
|
| 138 |
+
{
|
| 139 |
+
"epoch": 0.03648583773403745,
|
| 140 |
+
"grad_norm": 2.754640389635153,
|
| 141 |
+
"learning_rate": 6.896551724137931e-07,
|
| 142 |
+
"loss": 1.4773,
|
| 143 |
+
"step": 19
|
| 144 |
+
},
|
| 145 |
+
{
|
| 146 |
+
"epoch": 0.03840614498319731,
|
| 147 |
+
"grad_norm": 2.58056430792743,
|
| 148 |
+
"learning_rate": 7.27969348659004e-07,
|
| 149 |
+
"loss": 1.5533,
|
| 150 |
+
"step": 20
|
| 151 |
+
},
|
| 152 |
+
{
|
| 153 |
+
"epoch": 0.040326452232357174,
|
| 154 |
+
"grad_norm": 2.5780862888672047,
|
| 155 |
+
"learning_rate": 7.662835249042146e-07,
|
| 156 |
+
"loss": 1.5408,
|
| 157 |
+
"step": 21
|
| 158 |
+
},
|
| 159 |
+
{
|
| 160 |
+
"epoch": 0.04224675948151704,
|
| 161 |
+
"grad_norm": 2.2939155489081293,
|
| 162 |
+
"learning_rate": 8.045977011494253e-07,
|
| 163 |
+
"loss": 1.4477,
|
| 164 |
+
"step": 22
|
| 165 |
+
},
|
| 166 |
+
{
|
| 167 |
+
"epoch": 0.044167066730676906,
|
| 168 |
+
"grad_norm": 2.326783109749172,
|
| 169 |
+
"learning_rate": 8.429118773946361e-07,
|
| 170 |
+
"loss": 1.6446,
|
| 171 |
+
"step": 23
|
| 172 |
+
},
|
| 173 |
+
{
|
| 174 |
+
"epoch": 0.046087373979836775,
|
| 175 |
+
"grad_norm": 1.9784500676559427,
|
| 176 |
+
"learning_rate": 8.812260536398468e-07,
|
| 177 |
+
"loss": 1.4741,
|
| 178 |
+
"step": 24
|
| 179 |
+
},
|
| 180 |
+
{
|
| 181 |
+
"epoch": 0.04800768122899664,
|
| 182 |
+
"grad_norm": 2.158116045848602,
|
| 183 |
+
"learning_rate": 9.195402298850575e-07,
|
| 184 |
+
"loss": 1.8359,
|
| 185 |
+
"step": 25
|
| 186 |
+
},
|
| 187 |
+
{
|
| 188 |
+
"epoch": 0.04992798847815651,
|
| 189 |
+
"grad_norm": 2.035070253571019,
|
| 190 |
+
"learning_rate": 9.578544061302683e-07,
|
| 191 |
+
"loss": 1.6079,
|
| 192 |
+
"step": 26
|
| 193 |
+
},
|
| 194 |
+
{
|
| 195 |
+
"epoch": 0.05184829572731637,
|
| 196 |
+
"grad_norm": 1.9828772550714657,
|
| 197 |
+
"learning_rate": 9.96168582375479e-07,
|
| 198 |
+
"loss": 1.6275,
|
| 199 |
+
"step": 27
|
| 200 |
+
},
|
| 201 |
+
{
|
| 202 |
+
"epoch": 0.05376860297647624,
|
| 203 |
+
"grad_norm": 2.063763559262756,
|
| 204 |
+
"learning_rate": 1.0344827586206898e-06,
|
| 205 |
+
"loss": 1.6298,
|
| 206 |
+
"step": 28
|
| 207 |
+
},
|
| 208 |
+
{
|
| 209 |
+
"epoch": 0.0556889102256361,
|
| 210 |
+
"grad_norm": 1.9339129722646953,
|
| 211 |
+
"learning_rate": 1.0727969348659004e-06,
|
| 212 |
+
"loss": 1.5816,
|
| 213 |
+
"step": 29
|
| 214 |
+
},
|
| 215 |
+
{
|
| 216 |
+
"epoch": 0.05760921747479597,
|
| 217 |
+
"grad_norm": 1.916925980149754,
|
| 218 |
+
"learning_rate": 1.111111111111111e-06,
|
| 219 |
+
"loss": 1.6064,
|
| 220 |
+
"step": 30
|
| 221 |
+
},
|
| 222 |
+
{
|
| 223 |
+
"epoch": 0.05952952472395583,
|
| 224 |
+
"grad_norm": 1.6450444187274702,
|
| 225 |
+
"learning_rate": 1.1494252873563219e-06,
|
| 226 |
+
"loss": 1.5159,
|
| 227 |
+
"step": 31
|
| 228 |
+
},
|
| 229 |
+
{
|
| 230 |
+
"epoch": 0.061449831973115696,
|
| 231 |
+
"grad_norm": 1.6132237873302806,
|
| 232 |
+
"learning_rate": 1.1877394636015327e-06,
|
| 233 |
+
"loss": 1.5367,
|
| 234 |
+
"step": 32
|
| 235 |
+
},
|
| 236 |
+
{
|
| 237 |
+
"epoch": 0.06337013922227556,
|
| 238 |
+
"grad_norm": 1.818936433606168,
|
| 239 |
+
"learning_rate": 1.2260536398467433e-06,
|
| 240 |
+
"loss": 1.4623,
|
| 241 |
+
"step": 33
|
| 242 |
+
},
|
| 243 |
+
{
|
| 244 |
+
"epoch": 0.06529044647143543,
|
| 245 |
+
"grad_norm": 1.7241994573893415,
|
| 246 |
+
"learning_rate": 1.2643678160919542e-06,
|
| 247 |
+
"loss": 1.6151,
|
| 248 |
+
"step": 34
|
| 249 |
+
},
|
| 250 |
+
{
|
| 251 |
+
"epoch": 0.06721075372059529,
|
| 252 |
+
"grad_norm": 1.5649464939481088,
|
| 253 |
+
"learning_rate": 1.3026819923371648e-06,
|
| 254 |
+
"loss": 1.6588,
|
| 255 |
+
"step": 35
|
| 256 |
+
},
|
| 257 |
+
{
|
| 258 |
+
"epoch": 0.06913106096975516,
|
| 259 |
+
"grad_norm": 1.5636025180091495,
|
| 260 |
+
"learning_rate": 1.3409961685823756e-06,
|
| 261 |
+
"loss": 1.3946,
|
| 262 |
+
"step": 36
|
| 263 |
+
},
|
| 264 |
+
{
|
| 265 |
+
"epoch": 0.07105136821891503,
|
| 266 |
+
"grad_norm": 1.5461645880192942,
|
| 267 |
+
"learning_rate": 1.3793103448275862e-06,
|
| 268 |
+
"loss": 1.6768,
|
| 269 |
+
"step": 37
|
| 270 |
+
},
|
| 271 |
+
{
|
| 272 |
+
"epoch": 0.0729716754680749,
|
| 273 |
+
"grad_norm": 1.4344137662856442,
|
| 274 |
+
"learning_rate": 1.417624521072797e-06,
|
| 275 |
+
"loss": 1.4397,
|
| 276 |
+
"step": 38
|
| 277 |
+
},
|
| 278 |
+
{
|
| 279 |
+
"epoch": 0.07489198271723475,
|
| 280 |
+
"grad_norm": 1.3960130764357097,
|
| 281 |
+
"learning_rate": 1.455938697318008e-06,
|
| 282 |
+
"loss": 1.6793,
|
| 283 |
+
"step": 39
|
| 284 |
+
},
|
| 285 |
+
{
|
| 286 |
+
"epoch": 0.07681228996639462,
|
| 287 |
+
"grad_norm": 1.2396850770578887,
|
| 288 |
+
"learning_rate": 1.4942528735632185e-06,
|
| 289 |
+
"loss": 1.5595,
|
| 290 |
+
"step": 40
|
| 291 |
+
},
|
| 292 |
+
{
|
| 293 |
+
"epoch": 0.07873259721555449,
|
| 294 |
+
"grad_norm": 1.2226941074613882,
|
| 295 |
+
"learning_rate": 1.5325670498084292e-06,
|
| 296 |
+
"loss": 1.4513,
|
| 297 |
+
"step": 41
|
| 298 |
+
},
|
| 299 |
+
{
|
| 300 |
+
"epoch": 0.08065290446471435,
|
| 301 |
+
"grad_norm": 1.2420772331499856,
|
| 302 |
+
"learning_rate": 1.57088122605364e-06,
|
| 303 |
+
"loss": 1.5815,
|
| 304 |
+
"step": 42
|
| 305 |
+
},
|
| 306 |
+
{
|
| 307 |
+
"epoch": 0.08257321171387422,
|
| 308 |
+
"grad_norm": 1.1487654644464287,
|
| 309 |
+
"learning_rate": 1.6091954022988506e-06,
|
| 310 |
+
"loss": 1.5939,
|
| 311 |
+
"step": 43
|
| 312 |
+
},
|
| 313 |
+
{
|
| 314 |
+
"epoch": 0.08449351896303409,
|
| 315 |
+
"grad_norm": 1.2124391317795524,
|
| 316 |
+
"learning_rate": 1.6475095785440615e-06,
|
| 317 |
+
"loss": 1.3123,
|
| 318 |
+
"step": 44
|
| 319 |
+
},
|
| 320 |
+
{
|
| 321 |
+
"epoch": 0.08641382621219396,
|
| 322 |
+
"grad_norm": 1.2527034268005153,
|
| 323 |
+
"learning_rate": 1.6858237547892723e-06,
|
| 324 |
+
"loss": 1.6962,
|
| 325 |
+
"step": 45
|
| 326 |
+
},
|
| 327 |
+
{
|
| 328 |
+
"epoch": 0.08833413346135381,
|
| 329 |
+
"grad_norm": 1.22540150664902,
|
| 330 |
+
"learning_rate": 1.724137931034483e-06,
|
| 331 |
+
"loss": 1.5573,
|
| 332 |
+
"step": 46
|
| 333 |
+
},
|
| 334 |
+
{
|
| 335 |
+
"epoch": 0.09025444071051368,
|
| 336 |
+
"grad_norm": 1.0822330995590186,
|
| 337 |
+
"learning_rate": 1.7624521072796935e-06,
|
| 338 |
+
"loss": 1.6174,
|
| 339 |
+
"step": 47
|
| 340 |
+
},
|
| 341 |
+
{
|
| 342 |
+
"epoch": 0.09217474795967355,
|
| 343 |
+
"grad_norm": 1.3725369113494932,
|
| 344 |
+
"learning_rate": 1.8007662835249044e-06,
|
| 345 |
+
"loss": 1.5724,
|
| 346 |
+
"step": 48
|
| 347 |
+
},
|
| 348 |
+
{
|
| 349 |
+
"epoch": 0.09409505520883342,
|
| 350 |
+
"grad_norm": 1.1246522439222844,
|
| 351 |
+
"learning_rate": 1.839080459770115e-06,
|
| 352 |
+
"loss": 1.6577,
|
| 353 |
+
"step": 49
|
| 354 |
+
},
|
| 355 |
+
{
|
| 356 |
+
"epoch": 0.09601536245799328,
|
| 357 |
+
"grad_norm": 1.153435955007641,
|
| 358 |
+
"learning_rate": 1.8773946360153258e-06,
|
| 359 |
+
"loss": 1.6045,
|
| 360 |
+
"step": 50
|
| 361 |
+
},
|
| 362 |
+
{
|
| 363 |
+
"epoch": 0.09793566970715314,
|
| 364 |
+
"grad_norm": 1.1142741754051628,
|
| 365 |
+
"learning_rate": 1.9157088122605367e-06,
|
| 366 |
+
"loss": 1.6562,
|
| 367 |
+
"step": 51
|
| 368 |
+
},
|
| 369 |
+
{
|
| 370 |
+
"epoch": 0.09985597695631301,
|
| 371 |
+
"grad_norm": 1.0608003189926583,
|
| 372 |
+
"learning_rate": 1.9540229885057475e-06,
|
| 373 |
+
"loss": 1.4951,
|
| 374 |
+
"step": 52
|
| 375 |
+
},
|
| 376 |
+
{
|
| 377 |
+
"epoch": 0.10177628420547287,
|
| 378 |
+
"grad_norm": 1.0049278590265711,
|
| 379 |
+
"learning_rate": 1.992337164750958e-06,
|
| 380 |
+
"loss": 1.5432,
|
| 381 |
+
"step": 53
|
| 382 |
+
},
|
| 383 |
+
{
|
| 384 |
+
"epoch": 0.10369659145463274,
|
| 385 |
+
"grad_norm": 0.895715467779371,
|
| 386 |
+
"learning_rate": 2.0306513409961687e-06,
|
| 387 |
+
"loss": 1.4494,
|
| 388 |
+
"step": 54
|
| 389 |
+
},
|
| 390 |
+
{
|
| 391 |
+
"epoch": 0.10561689870379261,
|
| 392 |
+
"grad_norm": 0.948460307989256,
|
| 393 |
+
"learning_rate": 2.0689655172413796e-06,
|
| 394 |
+
"loss": 1.6377,
|
| 395 |
+
"step": 55
|
| 396 |
+
},
|
| 397 |
+
{
|
| 398 |
+
"epoch": 0.10753720595295248,
|
| 399 |
+
"grad_norm": 0.8960302855343928,
|
| 400 |
+
"learning_rate": 2.1072796934865904e-06,
|
| 401 |
+
"loss": 1.5476,
|
| 402 |
+
"step": 56
|
| 403 |
+
},
|
| 404 |
+
{
|
| 405 |
+
"epoch": 0.10945751320211233,
|
| 406 |
+
"grad_norm": 0.8555220673502346,
|
| 407 |
+
"learning_rate": 2.145593869731801e-06,
|
| 408 |
+
"loss": 1.2937,
|
| 409 |
+
"step": 57
|
| 410 |
+
},
|
| 411 |
+
{
|
| 412 |
+
"epoch": 0.1113778204512722,
|
| 413 |
+
"grad_norm": 0.9297918052847216,
|
| 414 |
+
"learning_rate": 2.1839080459770117e-06,
|
| 415 |
+
"loss": 1.5018,
|
| 416 |
+
"step": 58
|
| 417 |
+
},
|
| 418 |
+
{
|
| 419 |
+
"epoch": 0.11329812770043207,
|
| 420 |
+
"grad_norm": 0.8615767845690797,
|
| 421 |
+
"learning_rate": 2.222222222222222e-06,
|
| 422 |
+
"loss": 1.4411,
|
| 423 |
+
"step": 59
|
| 424 |
+
},
|
| 425 |
+
{
|
| 426 |
+
"epoch": 0.11521843494959194,
|
| 427 |
+
"grad_norm": 0.9800340953282465,
|
| 428 |
+
"learning_rate": 2.260536398467433e-06,
|
| 429 |
+
"loss": 1.6592,
|
| 430 |
+
"step": 60
|
| 431 |
+
},
|
| 432 |
+
{
|
| 433 |
+
"epoch": 0.1171387421987518,
|
| 434 |
+
"grad_norm": 0.8319044483038768,
|
| 435 |
+
"learning_rate": 2.2988505747126437e-06,
|
| 436 |
+
"loss": 1.4999,
|
| 437 |
+
"step": 61
|
| 438 |
+
},
|
| 439 |
+
{
|
| 440 |
+
"epoch": 0.11905904944791167,
|
| 441 |
+
"grad_norm": 0.8113904065691636,
|
| 442 |
+
"learning_rate": 2.3371647509578546e-06,
|
| 443 |
+
"loss": 1.4058,
|
| 444 |
+
"step": 62
|
| 445 |
+
},
|
| 446 |
+
{
|
| 447 |
+
"epoch": 0.12097935669707154,
|
| 448 |
+
"grad_norm": 0.7584474578599453,
|
| 449 |
+
"learning_rate": 2.3754789272030654e-06,
|
| 450 |
+
"loss": 1.1995,
|
| 451 |
+
"step": 63
|
| 452 |
+
},
|
| 453 |
+
{
|
| 454 |
+
"epoch": 0.12289966394623139,
|
| 455 |
+
"grad_norm": 0.8112593744821786,
|
| 456 |
+
"learning_rate": 2.4137931034482762e-06,
|
| 457 |
+
"loss": 1.622,
|
| 458 |
+
"step": 64
|
| 459 |
+
},
|
| 460 |
+
{
|
| 461 |
+
"epoch": 0.12481997119539126,
|
| 462 |
+
"grad_norm": 0.8465973433211744,
|
| 463 |
+
"learning_rate": 2.4521072796934867e-06,
|
| 464 |
+
"loss": 1.5474,
|
| 465 |
+
"step": 65
|
| 466 |
+
},
|
| 467 |
+
{
|
| 468 |
+
"epoch": 0.12674027844455113,
|
| 469 |
+
"grad_norm": 0.829645722256521,
|
| 470 |
+
"learning_rate": 2.4904214559386975e-06,
|
| 471 |
+
"loss": 1.485,
|
| 472 |
+
"step": 66
|
| 473 |
+
},
|
| 474 |
+
{
|
| 475 |
+
"epoch": 0.128660585693711,
|
| 476 |
+
"grad_norm": 0.8480123859041653,
|
| 477 |
+
"learning_rate": 2.5287356321839083e-06,
|
| 478 |
+
"loss": 1.5641,
|
| 479 |
+
"step": 67
|
| 480 |
+
},
|
| 481 |
+
{
|
| 482 |
+
"epoch": 0.13058089294287087,
|
| 483 |
+
"grad_norm": 0.7945937151249043,
|
| 484 |
+
"learning_rate": 2.567049808429119e-06,
|
| 485 |
+
"loss": 1.3511,
|
| 486 |
+
"step": 68
|
| 487 |
+
},
|
| 488 |
+
{
|
| 489 |
+
"epoch": 0.13250120019203074,
|
| 490 |
+
"grad_norm": 0.8452583555772669,
|
| 491 |
+
"learning_rate": 2.6053639846743296e-06,
|
| 492 |
+
"loss": 1.4936,
|
| 493 |
+
"step": 69
|
| 494 |
+
},
|
| 495 |
+
{
|
| 496 |
+
"epoch": 0.13442150744119058,
|
| 497 |
+
"grad_norm": 0.7913167472525273,
|
| 498 |
+
"learning_rate": 2.6436781609195404e-06,
|
| 499 |
+
"loss": 1.524,
|
| 500 |
+
"step": 70
|
| 501 |
+
},
|
| 502 |
+
{
|
| 503 |
+
"epoch": 0.13634181469035045,
|
| 504 |
+
"grad_norm": 0.7632883226077274,
|
| 505 |
+
"learning_rate": 2.6819923371647512e-06,
|
| 506 |
+
"loss": 1.4957,
|
| 507 |
+
"step": 71
|
| 508 |
+
},
|
| 509 |
+
{
|
| 510 |
+
"epoch": 0.13826212193951032,
|
| 511 |
+
"grad_norm": 0.8040467176753551,
|
| 512 |
+
"learning_rate": 2.720306513409962e-06,
|
| 513 |
+
"loss": 1.5472,
|
| 514 |
+
"step": 72
|
| 515 |
+
},
|
| 516 |
+
{
|
| 517 |
+
"epoch": 0.1401824291886702,
|
| 518 |
+
"grad_norm": 0.8063495654842968,
|
| 519 |
+
"learning_rate": 2.7586206896551725e-06,
|
| 520 |
+
"loss": 1.4355,
|
| 521 |
+
"step": 73
|
| 522 |
+
},
|
| 523 |
+
{
|
| 524 |
+
"epoch": 0.14210273643783006,
|
| 525 |
+
"grad_norm": 0.8632589003342163,
|
| 526 |
+
"learning_rate": 2.796934865900383e-06,
|
| 527 |
+
"loss": 1.6251,
|
| 528 |
+
"step": 74
|
| 529 |
+
},
|
| 530 |
+
{
|
| 531 |
+
"epoch": 0.14402304368698993,
|
| 532 |
+
"grad_norm": 0.9065110727033228,
|
| 533 |
+
"learning_rate": 2.835249042145594e-06,
|
| 534 |
+
"loss": 1.3482,
|
| 535 |
+
"step": 75
|
| 536 |
+
},
|
| 537 |
+
{
|
| 538 |
+
"epoch": 0.1459433509361498,
|
| 539 |
+
"grad_norm": 0.7358621824934779,
|
| 540 |
+
"learning_rate": 2.8735632183908046e-06,
|
| 541 |
+
"loss": 1.4579,
|
| 542 |
+
"step": 76
|
| 543 |
+
},
|
| 544 |
+
{
|
| 545 |
+
"epoch": 0.14786365818530964,
|
| 546 |
+
"grad_norm": 0.7882740690499183,
|
| 547 |
+
"learning_rate": 2.911877394636016e-06,
|
| 548 |
+
"loss": 1.584,
|
| 549 |
+
"step": 77
|
| 550 |
+
},
|
| 551 |
+
{
|
| 552 |
+
"epoch": 0.1497839654344695,
|
| 553 |
+
"grad_norm": 0.8028390602285591,
|
| 554 |
+
"learning_rate": 2.9501915708812262e-06,
|
| 555 |
+
"loss": 1.5799,
|
| 556 |
+
"step": 78
|
| 557 |
+
},
|
| 558 |
+
{
|
| 559 |
+
"epoch": 0.15170427268362938,
|
| 560 |
+
"grad_norm": 0.7087212262202383,
|
| 561 |
+
"learning_rate": 2.988505747126437e-06,
|
| 562 |
+
"loss": 1.3796,
|
| 563 |
+
"step": 79
|
| 564 |
+
},
|
| 565 |
+
{
|
| 566 |
+
"epoch": 0.15362457993278925,
|
| 567 |
+
"grad_norm": 0.7477246745009772,
|
| 568 |
+
"learning_rate": 3.026819923371648e-06,
|
| 569 |
+
"loss": 1.4577,
|
| 570 |
+
"step": 80
|
| 571 |
+
},
|
| 572 |
+
{
|
| 573 |
+
"epoch": 0.15554488718194912,
|
| 574 |
+
"grad_norm": 0.7362367028641865,
|
| 575 |
+
"learning_rate": 3.0651340996168583e-06,
|
| 576 |
+
"loss": 1.3986,
|
| 577 |
+
"step": 81
|
| 578 |
+
},
|
| 579 |
+
{
|
| 580 |
+
"epoch": 0.15746519443110898,
|
| 581 |
+
"grad_norm": 0.7542749931181064,
|
| 582 |
+
"learning_rate": 3.103448275862069e-06,
|
| 583 |
+
"loss": 1.3923,
|
| 584 |
+
"step": 82
|
| 585 |
+
},
|
| 586 |
+
{
|
| 587 |
+
"epoch": 0.15938550168026885,
|
| 588 |
+
"grad_norm": 0.7591236429919996,
|
| 589 |
+
"learning_rate": 3.14176245210728e-06,
|
| 590 |
+
"loss": 1.468,
|
| 591 |
+
"step": 83
|
| 592 |
+
},
|
| 593 |
+
{
|
| 594 |
+
"epoch": 0.1613058089294287,
|
| 595 |
+
"grad_norm": 0.750073455610315,
|
| 596 |
+
"learning_rate": 3.180076628352491e-06,
|
| 597 |
+
"loss": 1.5728,
|
| 598 |
+
"step": 84
|
| 599 |
+
},
|
| 600 |
+
{
|
| 601 |
+
"epoch": 0.16322611617858857,
|
| 602 |
+
"grad_norm": 0.7463483577071213,
|
| 603 |
+
"learning_rate": 3.2183908045977012e-06,
|
| 604 |
+
"loss": 1.5751,
|
| 605 |
+
"step": 85
|
| 606 |
+
},
|
| 607 |
+
{
|
| 608 |
+
"epoch": 0.16514642342774843,
|
| 609 |
+
"grad_norm": 0.7459336348523459,
|
| 610 |
+
"learning_rate": 3.256704980842912e-06,
|
| 611 |
+
"loss": 1.5821,
|
| 612 |
+
"step": 86
|
| 613 |
+
},
|
| 614 |
+
{
|
| 615 |
+
"epoch": 0.1670667306769083,
|
| 616 |
+
"grad_norm": 0.7503745075545026,
|
| 617 |
+
"learning_rate": 3.295019157088123e-06,
|
| 618 |
+
"loss": 1.3811,
|
| 619 |
+
"step": 87
|
| 620 |
+
},
|
| 621 |
+
{
|
| 622 |
+
"epoch": 0.16898703792606817,
|
| 623 |
+
"grad_norm": 0.6781019129991772,
|
| 624 |
+
"learning_rate": 3.3333333333333333e-06,
|
| 625 |
+
"loss": 1.4967,
|
| 626 |
+
"step": 88
|
| 627 |
+
},
|
| 628 |
+
{
|
| 629 |
+
"epoch": 0.17090734517522804,
|
| 630 |
+
"grad_norm": 0.6772160890677477,
|
| 631 |
+
"learning_rate": 3.3716475095785446e-06,
|
| 632 |
+
"loss": 1.4602,
|
| 633 |
+
"step": 89
|
| 634 |
+
},
|
| 635 |
+
{
|
| 636 |
+
"epoch": 0.1728276524243879,
|
| 637 |
+
"grad_norm": 0.7414559131468873,
|
| 638 |
+
"learning_rate": 3.409961685823755e-06,
|
| 639 |
+
"loss": 1.5384,
|
| 640 |
+
"step": 90
|
| 641 |
+
},
|
| 642 |
+
{
|
| 643 |
+
"epoch": 0.17474795967354778,
|
| 644 |
+
"grad_norm": 0.7339713894607118,
|
| 645 |
+
"learning_rate": 3.448275862068966e-06,
|
| 646 |
+
"loss": 1.3478,
|
| 647 |
+
"step": 91
|
| 648 |
+
},
|
| 649 |
+
{
|
| 650 |
+
"epoch": 0.17666826692270762,
|
| 651 |
+
"grad_norm": 0.6741291120903733,
|
| 652 |
+
"learning_rate": 3.4865900383141767e-06,
|
| 653 |
+
"loss": 1.3051,
|
| 654 |
+
"step": 92
|
| 655 |
+
},
|
| 656 |
+
{
|
| 657 |
+
"epoch": 0.1785885741718675,
|
| 658 |
+
"grad_norm": 0.8466746593898973,
|
| 659 |
+
"learning_rate": 3.524904214559387e-06,
|
| 660 |
+
"loss": 1.6414,
|
| 661 |
+
"step": 93
|
| 662 |
+
},
|
| 663 |
+
{
|
| 664 |
+
"epoch": 0.18050888142102736,
|
| 665 |
+
"grad_norm": 0.6235998792480368,
|
| 666 |
+
"learning_rate": 3.563218390804598e-06,
|
| 667 |
+
"loss": 1.3774,
|
| 668 |
+
"step": 94
|
| 669 |
+
},
|
| 670 |
+
{
|
| 671 |
+
"epoch": 0.18242918867018723,
|
| 672 |
+
"grad_norm": 0.7888875616341429,
|
| 673 |
+
"learning_rate": 3.6015325670498087e-06,
|
| 674 |
+
"loss": 1.2273,
|
| 675 |
+
"step": 95
|
| 676 |
+
},
|
| 677 |
+
{
|
| 678 |
+
"epoch": 0.1843494959193471,
|
| 679 |
+
"grad_norm": 0.7184060206606023,
|
| 680 |
+
"learning_rate": 3.6398467432950196e-06,
|
| 681 |
+
"loss": 1.4414,
|
| 682 |
+
"step": 96
|
| 683 |
+
},
|
| 684 |
+
{
|
| 685 |
+
"epoch": 0.18626980316850697,
|
| 686 |
+
"grad_norm": 0.6931282624303644,
|
| 687 |
+
"learning_rate": 3.67816091954023e-06,
|
| 688 |
+
"loss": 1.1996,
|
| 689 |
+
"step": 97
|
| 690 |
+
},
|
| 691 |
+
{
|
| 692 |
+
"epoch": 0.18819011041766684,
|
| 693 |
+
"grad_norm": 0.6898899817332669,
|
| 694 |
+
"learning_rate": 3.7164750957854412e-06,
|
| 695 |
+
"loss": 1.153,
|
| 696 |
+
"step": 98
|
| 697 |
+
},
|
| 698 |
+
{
|
| 699 |
+
"epoch": 0.19011041766682668,
|
| 700 |
+
"grad_norm": 0.6706065855351341,
|
| 701 |
+
"learning_rate": 3.7547892720306517e-06,
|
| 702 |
+
"loss": 1.3219,
|
| 703 |
+
"step": 99
|
| 704 |
+
},
|
| 705 |
+
{
|
| 706 |
+
"epoch": 0.19203072491598655,
|
| 707 |
+
"grad_norm": 0.6618017863324709,
|
| 708 |
+
"learning_rate": 3.793103448275862e-06,
|
| 709 |
+
"loss": 1.3694,
|
| 710 |
+
"step": 100
|
| 711 |
+
},
|
| 712 |
+
{
|
| 713 |
+
"epoch": 0.19395103216514642,
|
| 714 |
+
"grad_norm": 0.7084267342732283,
|
| 715 |
+
"learning_rate": 3.831417624521073e-06,
|
| 716 |
+
"loss": 1.5242,
|
| 717 |
+
"step": 101
|
| 718 |
+
},
|
| 719 |
+
{
|
| 720 |
+
"epoch": 0.1958713394143063,
|
| 721 |
+
"grad_norm": 0.726545416016091,
|
| 722 |
+
"learning_rate": 3.869731800766283e-06,
|
| 723 |
+
"loss": 1.4521,
|
| 724 |
+
"step": 102
|
| 725 |
+
},
|
| 726 |
+
{
|
| 727 |
+
"epoch": 0.19779164666346616,
|
| 728 |
+
"grad_norm": 0.7462891561612502,
|
| 729 |
+
"learning_rate": 3.908045977011495e-06,
|
| 730 |
+
"loss": 1.4687,
|
| 731 |
+
"step": 103
|
| 732 |
+
},
|
| 733 |
+
{
|
| 734 |
+
"epoch": 0.19971195391262603,
|
| 735 |
+
"grad_norm": 0.7186363274122183,
|
| 736 |
+
"learning_rate": 3.946360153256705e-06,
|
| 737 |
+
"loss": 1.4222,
|
| 738 |
+
"step": 104
|
| 739 |
+
},
|
| 740 |
+
{
|
| 741 |
+
"epoch": 0.2016322611617859,
|
| 742 |
+
"grad_norm": 0.6562522942973675,
|
| 743 |
+
"learning_rate": 3.984674329501916e-06,
|
| 744 |
+
"loss": 1.3302,
|
| 745 |
+
"step": 105
|
| 746 |
+
},
|
| 747 |
+
{
|
| 748 |
+
"epoch": 0.20355256841094574,
|
| 749 |
+
"grad_norm": 0.7593764693035522,
|
| 750 |
+
"learning_rate": 4.022988505747127e-06,
|
| 751 |
+
"loss": 1.4029,
|
| 752 |
+
"step": 106
|
| 753 |
+
},
|
| 754 |
+
{
|
| 755 |
+
"epoch": 0.2054728756601056,
|
| 756 |
+
"grad_norm": 0.674187794860422,
|
| 757 |
+
"learning_rate": 4.0613026819923375e-06,
|
| 758 |
+
"loss": 1.2851,
|
| 759 |
+
"step": 107
|
| 760 |
+
},
|
| 761 |
+
{
|
| 762 |
+
"epoch": 0.20739318290926548,
|
| 763 |
+
"grad_norm": 0.6771453444719904,
|
| 764 |
+
"learning_rate": 4.099616858237548e-06,
|
| 765 |
+
"loss": 1.3873,
|
| 766 |
+
"step": 108
|
| 767 |
+
},
|
| 768 |
+
{
|
| 769 |
+
"epoch": 0.20931349015842535,
|
| 770 |
+
"grad_norm": 0.6904184501885661,
|
| 771 |
+
"learning_rate": 4.137931034482759e-06,
|
| 772 |
+
"loss": 1.4671,
|
| 773 |
+
"step": 109
|
| 774 |
+
},
|
| 775 |
+
{
|
| 776 |
+
"epoch": 0.21123379740758522,
|
| 777 |
+
"grad_norm": 0.7386010515763627,
|
| 778 |
+
"learning_rate": 4.17624521072797e-06,
|
| 779 |
+
"loss": 1.4114,
|
| 780 |
+
"step": 110
|
| 781 |
+
},
|
| 782 |
+
{
|
| 783 |
+
"epoch": 0.21315410465674509,
|
| 784 |
+
"grad_norm": 0.6330108602988729,
|
| 785 |
+
"learning_rate": 4.214559386973181e-06,
|
| 786 |
+
"loss": 1.5344,
|
| 787 |
+
"step": 111
|
| 788 |
+
},
|
| 789 |
+
{
|
| 790 |
+
"epoch": 0.21507441190590496,
|
| 791 |
+
"grad_norm": 0.6476316086673372,
|
| 792 |
+
"learning_rate": 4.252873563218391e-06,
|
| 793 |
+
"loss": 1.4134,
|
| 794 |
+
"step": 112
|
| 795 |
+
},
|
| 796 |
+
{
|
| 797 |
+
"epoch": 0.2169947191550648,
|
| 798 |
+
"grad_norm": 0.7369608607793586,
|
| 799 |
+
"learning_rate": 4.291187739463602e-06,
|
| 800 |
+
"loss": 1.4656,
|
| 801 |
+
"step": 113
|
| 802 |
+
},
|
| 803 |
+
{
|
| 804 |
+
"epoch": 0.21891502640422467,
|
| 805 |
+
"grad_norm": 0.6991819737178624,
|
| 806 |
+
"learning_rate": 4.3295019157088125e-06,
|
| 807 |
+
"loss": 1.3801,
|
| 808 |
+
"step": 114
|
| 809 |
+
},
|
| 810 |
+
{
|
| 811 |
+
"epoch": 0.22083533365338454,
|
| 812 |
+
"grad_norm": 0.6670879445681203,
|
| 813 |
+
"learning_rate": 4.367816091954023e-06,
|
| 814 |
+
"loss": 1.4012,
|
| 815 |
+
"step": 115
|
| 816 |
+
},
|
| 817 |
+
{
|
| 818 |
+
"epoch": 0.2227556409025444,
|
| 819 |
+
"grad_norm": 0.7091321651558993,
|
| 820 |
+
"learning_rate": 4.406130268199234e-06,
|
| 821 |
+
"loss": 1.369,
|
| 822 |
+
"step": 116
|
| 823 |
+
},
|
| 824 |
+
{
|
| 825 |
+
"epoch": 0.22467594815170427,
|
| 826 |
+
"grad_norm": 0.6538069130880931,
|
| 827 |
+
"learning_rate": 4.444444444444444e-06,
|
| 828 |
+
"loss": 1.207,
|
| 829 |
+
"step": 117
|
| 830 |
+
},
|
| 831 |
+
{
|
| 832 |
+
"epoch": 0.22659625540086414,
|
| 833 |
+
"grad_norm": 0.7414604205506811,
|
| 834 |
+
"learning_rate": 4.482758620689656e-06,
|
| 835 |
+
"loss": 1.4466,
|
| 836 |
+
"step": 118
|
| 837 |
+
},
|
| 838 |
+
{
|
| 839 |
+
"epoch": 0.228516562650024,
|
| 840 |
+
"grad_norm": 0.6754242592483168,
|
| 841 |
+
"learning_rate": 4.521072796934866e-06,
|
| 842 |
+
"loss": 1.345,
|
| 843 |
+
"step": 119
|
| 844 |
+
},
|
| 845 |
+
{
|
| 846 |
+
"epoch": 0.23043686989918388,
|
| 847 |
+
"grad_norm": 0.7890890418316723,
|
| 848 |
+
"learning_rate": 4.5593869731800775e-06,
|
| 849 |
+
"loss": 1.4887,
|
| 850 |
+
"step": 120
|
| 851 |
+
},
|
| 852 |
+
{
|
| 853 |
+
"epoch": 0.23235717714834372,
|
| 854 |
+
"grad_norm": 0.7142672200972927,
|
| 855 |
+
"learning_rate": 4.5977011494252875e-06,
|
| 856 |
+
"loss": 1.5663,
|
| 857 |
+
"step": 121
|
| 858 |
+
},
|
| 859 |
+
{
|
| 860 |
+
"epoch": 0.2342774843975036,
|
| 861 |
+
"grad_norm": 0.6607576396465201,
|
| 862 |
+
"learning_rate": 4.636015325670498e-06,
|
| 863 |
+
"loss": 1.5097,
|
| 864 |
+
"step": 122
|
| 865 |
+
},
|
| 866 |
+
{
|
| 867 |
+
"epoch": 0.23619779164666346,
|
| 868 |
+
"grad_norm": 0.7801245141924045,
|
| 869 |
+
"learning_rate": 4.674329501915709e-06,
|
| 870 |
+
"loss": 1.5577,
|
| 871 |
+
"step": 123
|
| 872 |
+
},
|
| 873 |
+
{
|
| 874 |
+
"epoch": 0.23811809889582333,
|
| 875 |
+
"grad_norm": 0.7853237789383211,
|
| 876 |
+
"learning_rate": 4.71264367816092e-06,
|
| 877 |
+
"loss": 1.5542,
|
| 878 |
+
"step": 124
|
| 879 |
+
},
|
| 880 |
+
{
|
| 881 |
+
"epoch": 0.2400384061449832,
|
| 882 |
+
"grad_norm": 0.6731916164633106,
|
| 883 |
+
"learning_rate": 4.750957854406131e-06,
|
| 884 |
+
"loss": 1.5991,
|
| 885 |
+
"step": 125
|
| 886 |
+
},
|
| 887 |
+
{
|
| 888 |
+
"epoch": 0.24195871339414307,
|
| 889 |
+
"grad_norm": 0.7081285505123779,
|
| 890 |
+
"learning_rate": 4.789272030651342e-06,
|
| 891 |
+
"loss": 1.4219,
|
| 892 |
+
"step": 126
|
| 893 |
+
},
|
| 894 |
+
{
|
| 895 |
+
"epoch": 0.24387902064330294,
|
| 896 |
+
"grad_norm": 0.6523124091427233,
|
| 897 |
+
"learning_rate": 4.8275862068965525e-06,
|
| 898 |
+
"loss": 1.3967,
|
| 899 |
+
"step": 127
|
| 900 |
+
},
|
| 901 |
+
{
|
| 902 |
+
"epoch": 0.24579932789246278,
|
| 903 |
+
"grad_norm": 0.7010318704056578,
|
| 904 |
+
"learning_rate": 4.8659003831417625e-06,
|
| 905 |
+
"loss": 1.4079,
|
| 906 |
+
"step": 128
|
| 907 |
+
},
|
| 908 |
+
{
|
| 909 |
+
"epoch": 0.24771963514162265,
|
| 910 |
+
"grad_norm": 0.7310188880844346,
|
| 911 |
+
"learning_rate": 4.904214559386973e-06,
|
| 912 |
+
"loss": 1.5645,
|
| 913 |
+
"step": 129
|
| 914 |
+
},
|
| 915 |
+
{
|
| 916 |
+
"epoch": 0.24963994239078252,
|
| 917 |
+
"grad_norm": 0.7370196750980766,
|
| 918 |
+
"learning_rate": 4.942528735632184e-06,
|
| 919 |
+
"loss": 1.3163,
|
| 920 |
+
"step": 130
|
| 921 |
+
},
|
| 922 |
+
{
|
| 923 |
+
"epoch": 0.2515602496399424,
|
| 924 |
+
"grad_norm": 0.5988613538056734,
|
| 925 |
+
"learning_rate": 4.980842911877395e-06,
|
| 926 |
+
"loss": 1.2164,
|
| 927 |
+
"step": 131
|
| 928 |
+
},
|
| 929 |
+
{
|
| 930 |
+
"epoch": 0.25348055688910226,
|
| 931 |
+
"grad_norm": 0.6686452758995931,
|
| 932 |
+
"learning_rate": 5.019157088122606e-06,
|
| 933 |
+
"loss": 1.3216,
|
| 934 |
+
"step": 132
|
| 935 |
+
},
|
| 936 |
+
{
|
| 937 |
+
"epoch": 0.25540086413826213,
|
| 938 |
+
"grad_norm": 0.6283032311907456,
|
| 939 |
+
"learning_rate": 5.057471264367817e-06,
|
| 940 |
+
"loss": 1.3004,
|
| 941 |
+
"step": 133
|
| 942 |
+
},
|
| 943 |
+
{
|
| 944 |
+
"epoch": 0.257321171387422,
|
| 945 |
+
"grad_norm": 0.7131274515928692,
|
| 946 |
+
"learning_rate": 5.095785440613027e-06,
|
| 947 |
+
"loss": 1.3574,
|
| 948 |
+
"step": 134
|
| 949 |
+
},
|
| 950 |
+
{
|
| 951 |
+
"epoch": 0.25924147863658187,
|
| 952 |
+
"grad_norm": 0.7562023685666645,
|
| 953 |
+
"learning_rate": 5.134099616858238e-06,
|
| 954 |
+
"loss": 1.4755,
|
| 955 |
+
"step": 135
|
| 956 |
+
},
|
| 957 |
+
{
|
| 958 |
+
"epoch": 0.26116178588574174,
|
| 959 |
+
"grad_norm": 0.7260126586378673,
|
| 960 |
+
"learning_rate": 5.172413793103449e-06,
|
| 961 |
+
"loss": 1.3512,
|
| 962 |
+
"step": 136
|
| 963 |
+
},
|
| 964 |
+
{
|
| 965 |
+
"epoch": 0.2630820931349016,
|
| 966 |
+
"grad_norm": 0.7027786093003081,
|
| 967 |
+
"learning_rate": 5.210727969348659e-06,
|
| 968 |
+
"loss": 1.3988,
|
| 969 |
+
"step": 137
|
| 970 |
+
},
|
| 971 |
+
{
|
| 972 |
+
"epoch": 0.2650024003840615,
|
| 973 |
+
"grad_norm": 0.6536542941035637,
|
| 974 |
+
"learning_rate": 5.24904214559387e-06,
|
| 975 |
+
"loss": 1.3403,
|
| 976 |
+
"step": 138
|
| 977 |
+
},
|
| 978 |
+
{
|
| 979 |
+
"epoch": 0.2669227076332213,
|
| 980 |
+
"grad_norm": 0.6887374540995002,
|
| 981 |
+
"learning_rate": 5.287356321839081e-06,
|
| 982 |
+
"loss": 1.4009,
|
| 983 |
+
"step": 139
|
| 984 |
+
},
|
| 985 |
+
{
|
| 986 |
+
"epoch": 0.26884301488238116,
|
| 987 |
+
"grad_norm": 0.6904650924816887,
|
| 988 |
+
"learning_rate": 5.3256704980842925e-06,
|
| 989 |
+
"loss": 1.3674,
|
| 990 |
+
"step": 140
|
| 991 |
+
},
|
| 992 |
+
{
|
| 993 |
+
"epoch": 0.27076332213154103,
|
| 994 |
+
"grad_norm": 0.7396766783545521,
|
| 995 |
+
"learning_rate": 5.3639846743295025e-06,
|
| 996 |
+
"loss": 1.2224,
|
| 997 |
+
"step": 141
|
| 998 |
+
},
|
| 999 |
+
{
|
| 1000 |
+
"epoch": 0.2726836293807009,
|
| 1001 |
+
"grad_norm": 0.6618698222762107,
|
| 1002 |
+
"learning_rate": 5.402298850574713e-06,
|
| 1003 |
+
"loss": 1.3261,
|
| 1004 |
+
"step": 142
|
| 1005 |
+
},
|
| 1006 |
+
{
|
| 1007 |
+
"epoch": 0.27460393662986077,
|
| 1008 |
+
"grad_norm": 0.7346869512327489,
|
| 1009 |
+
"learning_rate": 5.440613026819924e-06,
|
| 1010 |
+
"loss": 1.5539,
|
| 1011 |
+
"step": 143
|
| 1012 |
+
},
|
| 1013 |
+
{
|
| 1014 |
+
"epoch": 0.27652424387902064,
|
| 1015 |
+
"grad_norm": 0.6542272405748857,
|
| 1016 |
+
"learning_rate": 5.478927203065134e-06,
|
| 1017 |
+
"loss": 1.2301,
|
| 1018 |
+
"step": 144
|
| 1019 |
+
},
|
| 1020 |
+
{
|
| 1021 |
+
"epoch": 0.2784445511281805,
|
| 1022 |
+
"grad_norm": 0.652844033827654,
|
| 1023 |
+
"learning_rate": 5.517241379310345e-06,
|
| 1024 |
+
"loss": 1.3203,
|
| 1025 |
+
"step": 145
|
| 1026 |
+
},
|
| 1027 |
+
{
|
| 1028 |
+
"epoch": 0.2803648583773404,
|
| 1029 |
+
"grad_norm": 0.7093255205591261,
|
| 1030 |
+
"learning_rate": 5.555555555555557e-06,
|
| 1031 |
+
"loss": 1.4194,
|
| 1032 |
+
"step": 146
|
| 1033 |
+
},
|
| 1034 |
+
{
|
| 1035 |
+
"epoch": 0.28228516562650025,
|
| 1036 |
+
"grad_norm": 0.7713263587807493,
|
| 1037 |
+
"learning_rate": 5.593869731800766e-06,
|
| 1038 |
+
"loss": 1.3986,
|
| 1039 |
+
"step": 147
|
| 1040 |
+
},
|
| 1041 |
+
{
|
| 1042 |
+
"epoch": 0.2842054728756601,
|
| 1043 |
+
"grad_norm": 0.7273045777114594,
|
| 1044 |
+
"learning_rate": 5.6321839080459775e-06,
|
| 1045 |
+
"loss": 1.5226,
|
| 1046 |
+
"step": 148
|
| 1047 |
+
},
|
| 1048 |
+
{
|
| 1049 |
+
"epoch": 0.28612578012482,
|
| 1050 |
+
"grad_norm": 0.6416135588874926,
|
| 1051 |
+
"learning_rate": 5.670498084291188e-06,
|
| 1052 |
+
"loss": 1.4148,
|
| 1053 |
+
"step": 149
|
| 1054 |
+
},
|
| 1055 |
+
{
|
| 1056 |
+
"epoch": 0.28804608737397985,
|
| 1057 |
+
"grad_norm": 0.6767941047038493,
|
| 1058 |
+
"learning_rate": 5.708812260536399e-06,
|
| 1059 |
+
"loss": 1.4741,
|
| 1060 |
+
"step": 150
|
| 1061 |
+
},
|
| 1062 |
+
{
|
| 1063 |
+
"epoch": 0.2899663946231397,
|
| 1064 |
+
"grad_norm": 0.7125976753134923,
|
| 1065 |
+
"learning_rate": 5.747126436781609e-06,
|
| 1066 |
+
"loss": 1.4689,
|
| 1067 |
+
"step": 151
|
| 1068 |
+
},
|
| 1069 |
+
{
|
| 1070 |
+
"epoch": 0.2918867018722996,
|
| 1071 |
+
"grad_norm": 0.6848434615690435,
|
| 1072 |
+
"learning_rate": 5.78544061302682e-06,
|
| 1073 |
+
"loss": 1.3208,
|
| 1074 |
+
"step": 152
|
| 1075 |
+
},
|
| 1076 |
+
{
|
| 1077 |
+
"epoch": 0.2938070091214594,
|
| 1078 |
+
"grad_norm": 0.7637154008633908,
|
| 1079 |
+
"learning_rate": 5.823754789272032e-06,
|
| 1080 |
+
"loss": 1.5237,
|
| 1081 |
+
"step": 153
|
| 1082 |
+
},
|
| 1083 |
+
{
|
| 1084 |
+
"epoch": 0.2957273163706193,
|
| 1085 |
+
"grad_norm": 0.6483331857341429,
|
| 1086 |
+
"learning_rate": 5.862068965517242e-06,
|
| 1087 |
+
"loss": 1.3073,
|
| 1088 |
+
"step": 154
|
| 1089 |
+
},
|
| 1090 |
+
{
|
| 1091 |
+
"epoch": 0.29764762361977914,
|
| 1092 |
+
"grad_norm": 0.684818235289912,
|
| 1093 |
+
"learning_rate": 5.9003831417624525e-06,
|
| 1094 |
+
"loss": 1.4076,
|
| 1095 |
+
"step": 155
|
| 1096 |
+
},
|
| 1097 |
+
{
|
| 1098 |
+
"epoch": 0.299567930868939,
|
| 1099 |
+
"grad_norm": 0.6683114123494819,
|
| 1100 |
+
"learning_rate": 5.938697318007663e-06,
|
| 1101 |
+
"loss": 1.3518,
|
| 1102 |
+
"step": 156
|
| 1103 |
+
},
|
| 1104 |
+
{
|
| 1105 |
+
"epoch": 0.3014882381180989,
|
| 1106 |
+
"grad_norm": 0.8301668940114854,
|
| 1107 |
+
"learning_rate": 5.977011494252874e-06,
|
| 1108 |
+
"loss": 1.5087,
|
| 1109 |
+
"step": 157
|
| 1110 |
+
},
|
| 1111 |
+
{
|
| 1112 |
+
"epoch": 0.30340854536725875,
|
| 1113 |
+
"grad_norm": 0.7306107739349151,
|
| 1114 |
+
"learning_rate": 6.015325670498084e-06,
|
| 1115 |
+
"loss": 1.4187,
|
| 1116 |
+
"step": 158
|
| 1117 |
+
},
|
| 1118 |
+
{
|
| 1119 |
+
"epoch": 0.3053288526164186,
|
| 1120 |
+
"grad_norm": 0.692887187718929,
|
| 1121 |
+
"learning_rate": 6.053639846743296e-06,
|
| 1122 |
+
"loss": 1.5365,
|
| 1123 |
+
"step": 159
|
| 1124 |
+
},
|
| 1125 |
+
{
|
| 1126 |
+
"epoch": 0.3072491598655785,
|
| 1127 |
+
"grad_norm": 0.6502853635559999,
|
| 1128 |
+
"learning_rate": 6.091954022988507e-06,
|
| 1129 |
+
"loss": 1.3497,
|
| 1130 |
+
"step": 160
|
| 1131 |
+
},
|
| 1132 |
+
{
|
| 1133 |
+
"epoch": 0.30916946711473836,
|
| 1134 |
+
"grad_norm": 0.7309674020853324,
|
| 1135 |
+
"learning_rate": 6.130268199233717e-06,
|
| 1136 |
+
"loss": 1.4965,
|
| 1137 |
+
"step": 161
|
| 1138 |
+
},
|
| 1139 |
+
{
|
| 1140 |
+
"epoch": 0.31108977436389823,
|
| 1141 |
+
"grad_norm": 0.7124865800378807,
|
| 1142 |
+
"learning_rate": 6.1685823754789275e-06,
|
| 1143 |
+
"loss": 1.4449,
|
| 1144 |
+
"step": 162
|
| 1145 |
+
},
|
| 1146 |
+
{
|
| 1147 |
+
"epoch": 0.3130100816130581,
|
| 1148 |
+
"grad_norm": 0.692769353628125,
|
| 1149 |
+
"learning_rate": 6.206896551724138e-06,
|
| 1150 |
+
"loss": 1.2823,
|
| 1151 |
+
"step": 163
|
| 1152 |
+
},
|
| 1153 |
+
{
|
| 1154 |
+
"epoch": 0.31493038886221797,
|
| 1155 |
+
"grad_norm": 0.8120061941639997,
|
| 1156 |
+
"learning_rate": 6.24521072796935e-06,
|
| 1157 |
+
"loss": 1.5322,
|
| 1158 |
+
"step": 164
|
| 1159 |
+
},
|
| 1160 |
+
{
|
| 1161 |
+
"epoch": 0.31685069611137784,
|
| 1162 |
+
"grad_norm": 0.6506906315887734,
|
| 1163 |
+
"learning_rate": 6.28352490421456e-06,
|
| 1164 |
+
"loss": 1.4138,
|
| 1165 |
+
"step": 165
|
| 1166 |
+
},
|
| 1167 |
+
{
|
| 1168 |
+
"epoch": 0.3187710033605377,
|
| 1169 |
+
"grad_norm": 0.7021274588006857,
|
| 1170 |
+
"learning_rate": 6.321839080459771e-06,
|
| 1171 |
+
"loss": 1.5534,
|
| 1172 |
+
"step": 166
|
| 1173 |
+
},
|
| 1174 |
+
{
|
| 1175 |
+
"epoch": 0.3206913106096976,
|
| 1176 |
+
"grad_norm": 0.6965648094070332,
|
| 1177 |
+
"learning_rate": 6.360153256704982e-06,
|
| 1178 |
+
"loss": 1.3055,
|
| 1179 |
+
"step": 167
|
| 1180 |
+
},
|
| 1181 |
+
{
|
| 1182 |
+
"epoch": 0.3226116178588574,
|
| 1183 |
+
"grad_norm": 0.7498732720147595,
|
| 1184 |
+
"learning_rate": 6.398467432950192e-06,
|
| 1185 |
+
"loss": 1.2775,
|
| 1186 |
+
"step": 168
|
| 1187 |
+
},
|
| 1188 |
+
{
|
| 1189 |
+
"epoch": 0.32453192510801726,
|
| 1190 |
+
"grad_norm": 0.7097564261194121,
|
| 1191 |
+
"learning_rate": 6.4367816091954025e-06,
|
| 1192 |
+
"loss": 1.3029,
|
| 1193 |
+
"step": 169
|
| 1194 |
+
},
|
| 1195 |
+
{
|
| 1196 |
+
"epoch": 0.32645223235717713,
|
| 1197 |
+
"grad_norm": 0.6382917432482148,
|
| 1198 |
+
"learning_rate": 6.475095785440614e-06,
|
| 1199 |
+
"loss": 1.3569,
|
| 1200 |
+
"step": 170
|
| 1201 |
+
},
|
| 1202 |
+
{
|
| 1203 |
+
"epoch": 0.328372539606337,
|
| 1204 |
+
"grad_norm": 0.6745359700702276,
|
| 1205 |
+
"learning_rate": 6.513409961685824e-06,
|
| 1206 |
+
"loss": 1.3339,
|
| 1207 |
+
"step": 171
|
| 1208 |
+
},
|
| 1209 |
+
{
|
| 1210 |
+
"epoch": 0.33029284685549687,
|
| 1211 |
+
"grad_norm": 0.8056549461489378,
|
| 1212 |
+
"learning_rate": 6.551724137931035e-06,
|
| 1213 |
+
"loss": 1.4649,
|
| 1214 |
+
"step": 172
|
| 1215 |
+
},
|
| 1216 |
+
{
|
| 1217 |
+
"epoch": 0.33221315410465674,
|
| 1218 |
+
"grad_norm": 0.7305964712888819,
|
| 1219 |
+
"learning_rate": 6.590038314176246e-06,
|
| 1220 |
+
"loss": 1.4451,
|
| 1221 |
+
"step": 173
|
| 1222 |
+
},
|
| 1223 |
+
{
|
| 1224 |
+
"epoch": 0.3341334613538166,
|
| 1225 |
+
"grad_norm": 0.6201165387321146,
|
| 1226 |
+
"learning_rate": 6.628352490421457e-06,
|
| 1227 |
+
"loss": 1.3352,
|
| 1228 |
+
"step": 174
|
| 1229 |
+
},
|
| 1230 |
+
{
|
| 1231 |
+
"epoch": 0.3360537686029765,
|
| 1232 |
+
"grad_norm": 0.8265036713279577,
|
| 1233 |
+
"learning_rate": 6.666666666666667e-06,
|
| 1234 |
+
"loss": 1.4794,
|
| 1235 |
+
"step": 175
|
| 1236 |
+
},
|
| 1237 |
+
{
|
| 1238 |
+
"epoch": 0.33797407585213635,
|
| 1239 |
+
"grad_norm": 0.6893681404195715,
|
| 1240 |
+
"learning_rate": 6.7049808429118775e-06,
|
| 1241 |
+
"loss": 1.4419,
|
| 1242 |
+
"step": 176
|
| 1243 |
+
},
|
| 1244 |
+
{
|
| 1245 |
+
"epoch": 0.3398943831012962,
|
| 1246 |
+
"grad_norm": 0.7509743815259918,
|
| 1247 |
+
"learning_rate": 6.743295019157089e-06,
|
| 1248 |
+
"loss": 1.3666,
|
| 1249 |
+
"step": 177
|
| 1250 |
+
},
|
| 1251 |
+
{
|
| 1252 |
+
"epoch": 0.3418146903504561,
|
| 1253 |
+
"grad_norm": 0.7122960885573658,
|
| 1254 |
+
"learning_rate": 6.781609195402299e-06,
|
| 1255 |
+
"loss": 1.4108,
|
| 1256 |
+
"step": 178
|
| 1257 |
+
},
|
| 1258 |
+
{
|
| 1259 |
+
"epoch": 0.34373499759961595,
|
| 1260 |
+
"grad_norm": 0.848930385570575,
|
| 1261 |
+
"learning_rate": 6.81992337164751e-06,
|
| 1262 |
+
"loss": 1.4827,
|
| 1263 |
+
"step": 179
|
| 1264 |
+
},
|
| 1265 |
+
{
|
| 1266 |
+
"epoch": 0.3456553048487758,
|
| 1267 |
+
"grad_norm": 0.7602028733722221,
|
| 1268 |
+
"learning_rate": 6.858237547892721e-06,
|
| 1269 |
+
"loss": 1.3414,
|
| 1270 |
+
"step": 180
|
| 1271 |
+
},
|
| 1272 |
+
{
|
| 1273 |
+
"epoch": 0.3475756120979357,
|
| 1274 |
+
"grad_norm": 0.8288114979771807,
|
| 1275 |
+
"learning_rate": 6.896551724137932e-06,
|
| 1276 |
+
"loss": 1.2727,
|
| 1277 |
+
"step": 181
|
| 1278 |
+
},
|
| 1279 |
+
{
|
| 1280 |
+
"epoch": 0.34949591934709556,
|
| 1281 |
+
"grad_norm": 0.7693760683257455,
|
| 1282 |
+
"learning_rate": 6.934865900383142e-06,
|
| 1283 |
+
"loss": 1.3706,
|
| 1284 |
+
"step": 182
|
| 1285 |
+
},
|
| 1286 |
+
{
|
| 1287 |
+
"epoch": 0.3514162265962554,
|
| 1288 |
+
"grad_norm": 0.7808563776887848,
|
| 1289 |
+
"learning_rate": 6.973180076628353e-06,
|
| 1290 |
+
"loss": 1.4723,
|
| 1291 |
+
"step": 183
|
| 1292 |
+
},
|
| 1293 |
+
{
|
| 1294 |
+
"epoch": 0.35333653384541525,
|
| 1295 |
+
"grad_norm": 0.8734769267258163,
|
| 1296 |
+
"learning_rate": 7.011494252873564e-06,
|
| 1297 |
+
"loss": 1.2891,
|
| 1298 |
+
"step": 184
|
| 1299 |
+
},
|
| 1300 |
+
{
|
| 1301 |
+
"epoch": 0.3552568410945751,
|
| 1302 |
+
"grad_norm": 0.8867229876837837,
|
| 1303 |
+
"learning_rate": 7.049808429118774e-06,
|
| 1304 |
+
"loss": 1.4359,
|
| 1305 |
+
"step": 185
|
| 1306 |
+
},
|
| 1307 |
+
{
|
| 1308 |
+
"epoch": 0.357177148343735,
|
| 1309 |
+
"grad_norm": 0.8349083935516824,
|
| 1310 |
+
"learning_rate": 7.088122605363985e-06,
|
| 1311 |
+
"loss": 1.5565,
|
| 1312 |
+
"step": 186
|
| 1313 |
+
},
|
| 1314 |
+
{
|
| 1315 |
+
"epoch": 0.35909745559289485,
|
| 1316 |
+
"grad_norm": 0.7400284977493244,
|
| 1317 |
+
"learning_rate": 7.126436781609196e-06,
|
| 1318 |
+
"loss": 1.456,
|
| 1319 |
+
"step": 187
|
| 1320 |
+
},
|
| 1321 |
+
{
|
| 1322 |
+
"epoch": 0.3610177628420547,
|
| 1323 |
+
"grad_norm": 0.6439707610744461,
|
| 1324 |
+
"learning_rate": 7.1647509578544075e-06,
|
| 1325 |
+
"loss": 1.2718,
|
| 1326 |
+
"step": 188
|
| 1327 |
+
},
|
| 1328 |
+
{
|
| 1329 |
+
"epoch": 0.3629380700912146,
|
| 1330 |
+
"grad_norm": 0.757428349385491,
|
| 1331 |
+
"learning_rate": 7.2030651340996175e-06,
|
| 1332 |
+
"loss": 1.3176,
|
| 1333 |
+
"step": 189
|
| 1334 |
+
},
|
| 1335 |
+
{
|
| 1336 |
+
"epoch": 0.36485837734037446,
|
| 1337 |
+
"grad_norm": 0.6979336476743889,
|
| 1338 |
+
"learning_rate": 7.241379310344828e-06,
|
| 1339 |
+
"loss": 1.1578,
|
| 1340 |
+
"step": 190
|
| 1341 |
+
},
|
| 1342 |
+
{
|
| 1343 |
+
"epoch": 0.36677868458953433,
|
| 1344 |
+
"grad_norm": 0.7318936685975646,
|
| 1345 |
+
"learning_rate": 7.279693486590039e-06,
|
| 1346 |
+
"loss": 1.5306,
|
| 1347 |
+
"step": 191
|
| 1348 |
+
},
|
| 1349 |
+
{
|
| 1350 |
+
"epoch": 0.3686989918386942,
|
| 1351 |
+
"grad_norm": 0.6968684758048505,
|
| 1352 |
+
"learning_rate": 7.318007662835249e-06,
|
| 1353 |
+
"loss": 1.3176,
|
| 1354 |
+
"step": 192
|
| 1355 |
+
},
|
| 1356 |
+
{
|
| 1357 |
+
"epoch": 0.37061929908785407,
|
| 1358 |
+
"grad_norm": 0.8360636142316585,
|
| 1359 |
+
"learning_rate": 7.35632183908046e-06,
|
| 1360 |
+
"loss": 1.6162,
|
| 1361 |
+
"step": 193
|
| 1362 |
+
},
|
| 1363 |
+
{
|
| 1364 |
+
"epoch": 0.37253960633701394,
|
| 1365 |
+
"grad_norm": 0.6842163000752954,
|
| 1366 |
+
"learning_rate": 7.394636015325672e-06,
|
| 1367 |
+
"loss": 1.3775,
|
| 1368 |
+
"step": 194
|
| 1369 |
+
},
|
| 1370 |
+
{
|
| 1371 |
+
"epoch": 0.3744599135861738,
|
| 1372 |
+
"grad_norm": 0.7405931672623491,
|
| 1373 |
+
"learning_rate": 7.4329501915708825e-06,
|
| 1374 |
+
"loss": 1.4155,
|
| 1375 |
+
"step": 195
|
| 1376 |
+
},
|
| 1377 |
+
{
|
| 1378 |
+
"epoch": 0.3763802208353337,
|
| 1379 |
+
"grad_norm": 0.6724666872249973,
|
| 1380 |
+
"learning_rate": 7.4712643678160925e-06,
|
| 1381 |
+
"loss": 1.6041,
|
| 1382 |
+
"step": 196
|
| 1383 |
+
},
|
| 1384 |
+
{
|
| 1385 |
+
"epoch": 0.3783005280844935,
|
| 1386 |
+
"grad_norm": 0.6600816017352631,
|
| 1387 |
+
"learning_rate": 7.509578544061303e-06,
|
| 1388 |
+
"loss": 1.3836,
|
| 1389 |
+
"step": 197
|
| 1390 |
+
},
|
| 1391 |
+
{
|
| 1392 |
+
"epoch": 0.38022083533365336,
|
| 1393 |
+
"grad_norm": 0.7294649653837092,
|
| 1394 |
+
"learning_rate": 7.547892720306514e-06,
|
| 1395 |
+
"loss": 1.3381,
|
| 1396 |
+
"step": 198
|
| 1397 |
+
},
|
| 1398 |
+
{
|
| 1399 |
+
"epoch": 0.38214114258281323,
|
| 1400 |
+
"grad_norm": 0.6849006152291969,
|
| 1401 |
+
"learning_rate": 7.586206896551724e-06,
|
| 1402 |
+
"loss": 1.3448,
|
| 1403 |
+
"step": 199
|
| 1404 |
+
},
|
| 1405 |
+
{
|
| 1406 |
+
"epoch": 0.3840614498319731,
|
| 1407 |
+
"grad_norm": 0.6413698682933802,
|
| 1408 |
+
"learning_rate": 7.624521072796936e-06,
|
| 1409 |
+
"loss": 1.1691,
|
| 1410 |
+
"step": 200
|
| 1411 |
+
},
|
| 1412 |
+
{
|
| 1413 |
+
"epoch": 0.38598175708113297,
|
| 1414 |
+
"grad_norm": 0.6761946714227771,
|
| 1415 |
+
"learning_rate": 7.662835249042147e-06,
|
| 1416 |
+
"loss": 1.2401,
|
| 1417 |
+
"step": 201
|
| 1418 |
+
},
|
| 1419 |
+
{
|
| 1420 |
+
"epoch": 0.38790206433029284,
|
| 1421 |
+
"grad_norm": 0.6604987264007839,
|
| 1422 |
+
"learning_rate": 7.701149425287356e-06,
|
| 1423 |
+
"loss": 1.4297,
|
| 1424 |
+
"step": 202
|
| 1425 |
+
},
|
| 1426 |
+
{
|
| 1427 |
+
"epoch": 0.3898223715794527,
|
| 1428 |
+
"grad_norm": 0.6655444711020334,
|
| 1429 |
+
"learning_rate": 7.739463601532567e-06,
|
| 1430 |
+
"loss": 1.2069,
|
| 1431 |
+
"step": 203
|
| 1432 |
+
},
|
| 1433 |
+
{
|
| 1434 |
+
"epoch": 0.3917426788286126,
|
| 1435 |
+
"grad_norm": 0.716356344463303,
|
| 1436 |
+
"learning_rate": 7.77777777777778e-06,
|
| 1437 |
+
"loss": 1.3456,
|
| 1438 |
+
"step": 204
|
| 1439 |
+
},
|
| 1440 |
+
{
|
| 1441 |
+
"epoch": 0.39366298607777245,
|
| 1442 |
+
"grad_norm": 0.7371288713977551,
|
| 1443 |
+
"learning_rate": 7.81609195402299e-06,
|
| 1444 |
+
"loss": 1.3331,
|
| 1445 |
+
"step": 205
|
| 1446 |
+
},
|
| 1447 |
+
{
|
| 1448 |
+
"epoch": 0.3955832933269323,
|
| 1449 |
+
"grad_norm": 0.6679678204725035,
|
| 1450 |
+
"learning_rate": 7.854406130268199e-06,
|
| 1451 |
+
"loss": 1.4027,
|
| 1452 |
+
"step": 206
|
| 1453 |
+
},
|
| 1454 |
+
{
|
| 1455 |
+
"epoch": 0.3975036005760922,
|
| 1456 |
+
"grad_norm": 0.6255494545199866,
|
| 1457 |
+
"learning_rate": 7.89272030651341e-06,
|
| 1458 |
+
"loss": 1.4204,
|
| 1459 |
+
"step": 207
|
| 1460 |
+
},
|
| 1461 |
+
{
|
| 1462 |
+
"epoch": 0.39942390782525206,
|
| 1463 |
+
"grad_norm": 0.7776077277070255,
|
| 1464 |
+
"learning_rate": 7.93103448275862e-06,
|
| 1465 |
+
"loss": 1.4262,
|
| 1466 |
+
"step": 208
|
| 1467 |
+
},
|
| 1468 |
+
{
|
| 1469 |
+
"epoch": 0.4013442150744119,
|
| 1470 |
+
"grad_norm": 0.7495735486802019,
|
| 1471 |
+
"learning_rate": 7.969348659003832e-06,
|
| 1472 |
+
"loss": 1.3803,
|
| 1473 |
+
"step": 209
|
| 1474 |
+
},
|
| 1475 |
+
{
|
| 1476 |
+
"epoch": 0.4032645223235718,
|
| 1477 |
+
"grad_norm": 0.7359991087372613,
|
| 1478 |
+
"learning_rate": 8.007662835249042e-06,
|
| 1479 |
+
"loss": 1.3407,
|
| 1480 |
+
"step": 210
|
| 1481 |
+
},
|
| 1482 |
+
{
|
| 1483 |
+
"epoch": 0.40518482957273166,
|
| 1484 |
+
"grad_norm": 0.74502169700267,
|
| 1485 |
+
"learning_rate": 8.045977011494253e-06,
|
| 1486 |
+
"loss": 1.2109,
|
| 1487 |
+
"step": 211
|
| 1488 |
+
},
|
| 1489 |
+
{
|
| 1490 |
+
"epoch": 0.4071051368218915,
|
| 1491 |
+
"grad_norm": 0.672919730166899,
|
| 1492 |
+
"learning_rate": 8.084291187739464e-06,
|
| 1493 |
+
"loss": 1.4416,
|
| 1494 |
+
"step": 212
|
| 1495 |
+
},
|
| 1496 |
+
{
|
| 1497 |
+
"epoch": 0.40902544407105135,
|
| 1498 |
+
"grad_norm": 0.9039099669663537,
|
| 1499 |
+
"learning_rate": 8.122605363984675e-06,
|
| 1500 |
+
"loss": 1.5869,
|
| 1501 |
+
"step": 213
|
| 1502 |
+
},
|
| 1503 |
+
{
|
| 1504 |
+
"epoch": 0.4109457513202112,
|
| 1505 |
+
"grad_norm": 0.609809507238103,
|
| 1506 |
+
"learning_rate": 8.160919540229886e-06,
|
| 1507 |
+
"loss": 1.392,
|
| 1508 |
+
"step": 214
|
| 1509 |
+
},
|
| 1510 |
+
{
|
| 1511 |
+
"epoch": 0.4128660585693711,
|
| 1512 |
+
"grad_norm": 0.7209905089139385,
|
| 1513 |
+
"learning_rate": 8.199233716475097e-06,
|
| 1514 |
+
"loss": 1.5286,
|
| 1515 |
+
"step": 215
|
| 1516 |
+
},
|
| 1517 |
+
{
|
| 1518 |
+
"epoch": 0.41478636581853096,
|
| 1519 |
+
"grad_norm": 0.7641098257228572,
|
| 1520 |
+
"learning_rate": 8.237547892720307e-06,
|
| 1521 |
+
"loss": 1.4556,
|
| 1522 |
+
"step": 216
|
| 1523 |
+
},
|
| 1524 |
+
{
|
| 1525 |
+
"epoch": 0.4167066730676908,
|
| 1526 |
+
"grad_norm": 0.6671329519012665,
|
| 1527 |
+
"learning_rate": 8.275862068965518e-06,
|
| 1528 |
+
"loss": 1.4011,
|
| 1529 |
+
"step": 217
|
| 1530 |
+
},
|
| 1531 |
+
{
|
| 1532 |
+
"epoch": 0.4186269803168507,
|
| 1533 |
+
"grad_norm": 0.7571002797488336,
|
| 1534 |
+
"learning_rate": 8.31417624521073e-06,
|
| 1535 |
+
"loss": 1.3907,
|
| 1536 |
+
"step": 218
|
| 1537 |
+
},
|
| 1538 |
+
{
|
| 1539 |
+
"epoch": 0.42054728756601056,
|
| 1540 |
+
"grad_norm": 0.6765159050714699,
|
| 1541 |
+
"learning_rate": 8.35249042145594e-06,
|
| 1542 |
+
"loss": 1.411,
|
| 1543 |
+
"step": 219
|
| 1544 |
+
},
|
| 1545 |
+
{
|
| 1546 |
+
"epoch": 0.42246759481517043,
|
| 1547 |
+
"grad_norm": 0.7631812758174655,
|
| 1548 |
+
"learning_rate": 8.390804597701149e-06,
|
| 1549 |
+
"loss": 1.4568,
|
| 1550 |
+
"step": 220
|
| 1551 |
+
},
|
| 1552 |
+
{
|
| 1553 |
+
"epoch": 0.4243879020643303,
|
| 1554 |
+
"grad_norm": 0.819638920429698,
|
| 1555 |
+
"learning_rate": 8.429118773946362e-06,
|
| 1556 |
+
"loss": 1.2607,
|
| 1557 |
+
"step": 221
|
| 1558 |
+
},
|
| 1559 |
+
{
|
| 1560 |
+
"epoch": 0.42630820931349017,
|
| 1561 |
+
"grad_norm": 0.6856567916211197,
|
| 1562 |
+
"learning_rate": 8.467432950191573e-06,
|
| 1563 |
+
"loss": 1.3665,
|
| 1564 |
+
"step": 222
|
| 1565 |
+
},
|
| 1566 |
+
{
|
| 1567 |
+
"epoch": 0.42822851656265004,
|
| 1568 |
+
"grad_norm": 0.756851173923122,
|
| 1569 |
+
"learning_rate": 8.505747126436782e-06,
|
| 1570 |
+
"loss": 1.4053,
|
| 1571 |
+
"step": 223
|
| 1572 |
+
},
|
| 1573 |
+
{
|
| 1574 |
+
"epoch": 0.4301488238118099,
|
| 1575 |
+
"grad_norm": 0.7234111087737882,
|
| 1576 |
+
"learning_rate": 8.544061302681992e-06,
|
| 1577 |
+
"loss": 1.2986,
|
| 1578 |
+
"step": 224
|
| 1579 |
+
},
|
| 1580 |
+
{
|
| 1581 |
+
"epoch": 0.4320691310609698,
|
| 1582 |
+
"grad_norm": 0.7822272702322975,
|
| 1583 |
+
"learning_rate": 8.582375478927203e-06,
|
| 1584 |
+
"loss": 1.4298,
|
| 1585 |
+
"step": 225
|
| 1586 |
+
},
|
| 1587 |
+
{
|
| 1588 |
+
"epoch": 0.4339894383101296,
|
| 1589 |
+
"grad_norm": 0.6810248686630753,
|
| 1590 |
+
"learning_rate": 8.620689655172414e-06,
|
| 1591 |
+
"loss": 1.3399,
|
| 1592 |
+
"step": 226
|
| 1593 |
+
},
|
| 1594 |
+
{
|
| 1595 |
+
"epoch": 0.43590974555928946,
|
| 1596 |
+
"grad_norm": 0.8051128970700839,
|
| 1597 |
+
"learning_rate": 8.659003831417625e-06,
|
| 1598 |
+
"loss": 1.5267,
|
| 1599 |
+
"step": 227
|
| 1600 |
+
},
|
| 1601 |
+
{
|
| 1602 |
+
"epoch": 0.43783005280844933,
|
| 1603 |
+
"grad_norm": 0.732357170450308,
|
| 1604 |
+
"learning_rate": 8.697318007662836e-06,
|
| 1605 |
+
"loss": 1.4766,
|
| 1606 |
+
"step": 228
|
| 1607 |
+
},
|
| 1608 |
+
{
|
| 1609 |
+
"epoch": 0.4397503600576092,
|
| 1610 |
+
"grad_norm": 0.8096174835706853,
|
| 1611 |
+
"learning_rate": 8.735632183908047e-06,
|
| 1612 |
+
"loss": 1.5061,
|
| 1613 |
+
"step": 229
|
| 1614 |
+
},
|
| 1615 |
+
{
|
| 1616 |
+
"epoch": 0.44167066730676907,
|
| 1617 |
+
"grad_norm": 0.7498363788557091,
|
| 1618 |
+
"learning_rate": 8.773946360153257e-06,
|
| 1619 |
+
"loss": 1.5328,
|
| 1620 |
+
"step": 230
|
| 1621 |
+
},
|
| 1622 |
+
{
|
| 1623 |
+
"epoch": 0.44359097455592894,
|
| 1624 |
+
"grad_norm": 0.6639308793432624,
|
| 1625 |
+
"learning_rate": 8.812260536398468e-06,
|
| 1626 |
+
"loss": 1.5014,
|
| 1627 |
+
"step": 231
|
| 1628 |
+
},
|
| 1629 |
+
{
|
| 1630 |
+
"epoch": 0.4455112818050888,
|
| 1631 |
+
"grad_norm": 0.7955581619122697,
|
| 1632 |
+
"learning_rate": 8.85057471264368e-06,
|
| 1633 |
+
"loss": 1.4619,
|
| 1634 |
+
"step": 232
|
| 1635 |
+
},
|
| 1636 |
+
{
|
| 1637 |
+
"epoch": 0.4474315890542487,
|
| 1638 |
+
"grad_norm": 0.6665415125116451,
|
| 1639 |
+
"learning_rate": 8.888888888888888e-06,
|
| 1640 |
+
"loss": 1.4401,
|
| 1641 |
+
"step": 233
|
| 1642 |
+
},
|
| 1643 |
+
{
|
| 1644 |
+
"epoch": 0.44935189630340855,
|
| 1645 |
+
"grad_norm": 0.7497106975893845,
|
| 1646 |
+
"learning_rate": 8.9272030651341e-06,
|
| 1647 |
+
"loss": 1.4444,
|
| 1648 |
+
"step": 234
|
| 1649 |
+
},
|
| 1650 |
+
{
|
| 1651 |
+
"epoch": 0.4512722035525684,
|
| 1652 |
+
"grad_norm": 0.7655250611774667,
|
| 1653 |
+
"learning_rate": 8.965517241379312e-06,
|
| 1654 |
+
"loss": 1.4183,
|
| 1655 |
+
"step": 235
|
| 1656 |
+
},
|
| 1657 |
+
{
|
| 1658 |
+
"epoch": 0.4531925108017283,
|
| 1659 |
+
"grad_norm": 0.7069725743129521,
|
| 1660 |
+
"learning_rate": 9.003831417624522e-06,
|
| 1661 |
+
"loss": 1.4695,
|
| 1662 |
+
"step": 236
|
| 1663 |
+
},
|
| 1664 |
+
{
|
| 1665 |
+
"epoch": 0.45511281805088816,
|
| 1666 |
+
"grad_norm": 0.7033810098540295,
|
| 1667 |
+
"learning_rate": 9.042145593869732e-06,
|
| 1668 |
+
"loss": 1.432,
|
| 1669 |
+
"step": 237
|
| 1670 |
+
},
|
| 1671 |
+
{
|
| 1672 |
+
"epoch": 0.457033125300048,
|
| 1673 |
+
"grad_norm": 0.7657511117560273,
|
| 1674 |
+
"learning_rate": 9.080459770114942e-06,
|
| 1675 |
+
"loss": 1.3106,
|
| 1676 |
+
"step": 238
|
| 1677 |
+
},
|
| 1678 |
+
{
|
| 1679 |
+
"epoch": 0.4589534325492079,
|
| 1680 |
+
"grad_norm": 0.6734934664683107,
|
| 1681 |
+
"learning_rate": 9.118773946360155e-06,
|
| 1682 |
+
"loss": 1.2657,
|
| 1683 |
+
"step": 239
|
| 1684 |
+
},
|
| 1685 |
+
{
|
| 1686 |
+
"epoch": 0.46087373979836777,
|
| 1687 |
+
"grad_norm": 0.6793414583903499,
|
| 1688 |
+
"learning_rate": 9.157088122605364e-06,
|
| 1689 |
+
"loss": 1.2823,
|
| 1690 |
+
"step": 240
|
| 1691 |
+
},
|
| 1692 |
+
{
|
| 1693 |
+
"epoch": 0.4627940470475276,
|
| 1694 |
+
"grad_norm": 0.6868551209136969,
|
| 1695 |
+
"learning_rate": 9.195402298850575e-06,
|
| 1696 |
+
"loss": 1.1981,
|
| 1697 |
+
"step": 241
|
| 1698 |
+
},
|
| 1699 |
+
{
|
| 1700 |
+
"epoch": 0.46471435429668745,
|
| 1701 |
+
"grad_norm": 0.7999498220323118,
|
| 1702 |
+
"learning_rate": 9.233716475095786e-06,
|
| 1703 |
+
"loss": 1.3222,
|
| 1704 |
+
"step": 242
|
| 1705 |
+
},
|
| 1706 |
+
{
|
| 1707 |
+
"epoch": 0.4666346615458473,
|
| 1708 |
+
"grad_norm": 0.6765218175071678,
|
| 1709 |
+
"learning_rate": 9.272030651340997e-06,
|
| 1710 |
+
"loss": 1.3159,
|
| 1711 |
+
"step": 243
|
| 1712 |
+
},
|
| 1713 |
+
{
|
| 1714 |
+
"epoch": 0.4685549687950072,
|
| 1715 |
+
"grad_norm": 0.7633174577339077,
|
| 1716 |
+
"learning_rate": 9.310344827586207e-06,
|
| 1717 |
+
"loss": 1.4493,
|
| 1718 |
+
"step": 244
|
| 1719 |
+
},
|
| 1720 |
+
{
|
| 1721 |
+
"epoch": 0.47047527604416706,
|
| 1722 |
+
"grad_norm": 0.7434731700432043,
|
| 1723 |
+
"learning_rate": 9.348659003831418e-06,
|
| 1724 |
+
"loss": 1.3771,
|
| 1725 |
+
"step": 245
|
| 1726 |
+
},
|
| 1727 |
+
{
|
| 1728 |
+
"epoch": 0.4723955832933269,
|
| 1729 |
+
"grad_norm": 0.7887594763056447,
|
| 1730 |
+
"learning_rate": 9.386973180076629e-06,
|
| 1731 |
+
"loss": 1.2978,
|
| 1732 |
+
"step": 246
|
| 1733 |
+
},
|
| 1734 |
+
{
|
| 1735 |
+
"epoch": 0.4743158905424868,
|
| 1736 |
+
"grad_norm": 0.6816410513843812,
|
| 1737 |
+
"learning_rate": 9.42528735632184e-06,
|
| 1738 |
+
"loss": 1.3221,
|
| 1739 |
+
"step": 247
|
| 1740 |
+
},
|
| 1741 |
+
{
|
| 1742 |
+
"epoch": 0.47623619779164666,
|
| 1743 |
+
"grad_norm": 0.6726044542699641,
|
| 1744 |
+
"learning_rate": 9.46360153256705e-06,
|
| 1745 |
+
"loss": 1.3954,
|
| 1746 |
+
"step": 248
|
| 1747 |
+
},
|
| 1748 |
+
{
|
| 1749 |
+
"epoch": 0.47815650504080653,
|
| 1750 |
+
"grad_norm": 0.8209401718350966,
|
| 1751 |
+
"learning_rate": 9.501915708812262e-06,
|
| 1752 |
+
"loss": 1.2964,
|
| 1753 |
+
"step": 249
|
| 1754 |
+
},
|
| 1755 |
+
{
|
| 1756 |
+
"epoch": 0.4800768122899664,
|
| 1757 |
+
"grad_norm": 0.7150467022402414,
|
| 1758 |
+
"learning_rate": 9.54022988505747e-06,
|
| 1759 |
+
"loss": 1.2462,
|
| 1760 |
+
"step": 250
|
| 1761 |
+
},
|
| 1762 |
+
{
|
| 1763 |
+
"epoch": 0.4819971195391263,
|
| 1764 |
+
"grad_norm": 0.7473286809494867,
|
| 1765 |
+
"learning_rate": 9.578544061302683e-06,
|
| 1766 |
+
"loss": 1.3987,
|
| 1767 |
+
"step": 251
|
| 1768 |
+
},
|
| 1769 |
+
{
|
| 1770 |
+
"epoch": 0.48391742678828614,
|
| 1771 |
+
"grad_norm": 0.8919512518954593,
|
| 1772 |
+
"learning_rate": 9.616858237547894e-06,
|
| 1773 |
+
"loss": 1.3271,
|
| 1774 |
+
"step": 252
|
| 1775 |
+
},
|
| 1776 |
+
{
|
| 1777 |
+
"epoch": 0.485837734037446,
|
| 1778 |
+
"grad_norm": 0.7235436092130889,
|
| 1779 |
+
"learning_rate": 9.655172413793105e-06,
|
| 1780 |
+
"loss": 1.4006,
|
| 1781 |
+
"step": 253
|
| 1782 |
+
},
|
| 1783 |
+
{
|
| 1784 |
+
"epoch": 0.4877580412866059,
|
| 1785 |
+
"grad_norm": 0.7496985395380509,
|
| 1786 |
+
"learning_rate": 9.693486590038314e-06,
|
| 1787 |
+
"loss": 1.3485,
|
| 1788 |
+
"step": 254
|
| 1789 |
+
},
|
| 1790 |
+
{
|
| 1791 |
+
"epoch": 0.4896783485357657,
|
| 1792 |
+
"grad_norm": 0.7558104853132458,
|
| 1793 |
+
"learning_rate": 9.731800766283525e-06,
|
| 1794 |
+
"loss": 1.4354,
|
| 1795 |
+
"step": 255
|
| 1796 |
+
},
|
| 1797 |
+
{
|
| 1798 |
+
"epoch": 0.49159865578492556,
|
| 1799 |
+
"grad_norm": 0.8026084646949407,
|
| 1800 |
+
"learning_rate": 9.770114942528738e-06,
|
| 1801 |
+
"loss": 1.3458,
|
| 1802 |
+
"step": 256
|
| 1803 |
+
},
|
| 1804 |
+
{
|
| 1805 |
+
"epoch": 0.49351896303408543,
|
| 1806 |
+
"grad_norm": 0.6871351528584623,
|
| 1807 |
+
"learning_rate": 9.808429118773947e-06,
|
| 1808 |
+
"loss": 1.2849,
|
| 1809 |
+
"step": 257
|
| 1810 |
+
},
|
| 1811 |
+
{
|
| 1812 |
+
"epoch": 0.4954392702832453,
|
| 1813 |
+
"grad_norm": 0.6733156882936058,
|
| 1814 |
+
"learning_rate": 9.846743295019157e-06,
|
| 1815 |
+
"loss": 1.3416,
|
| 1816 |
+
"step": 258
|
| 1817 |
+
},
|
| 1818 |
+
{
|
| 1819 |
+
"epoch": 0.4973595775324052,
|
| 1820 |
+
"grad_norm": 0.8040078483269378,
|
| 1821 |
+
"learning_rate": 9.885057471264368e-06,
|
| 1822 |
+
"loss": 1.3933,
|
| 1823 |
+
"step": 259
|
| 1824 |
+
},
|
| 1825 |
+
{
|
| 1826 |
+
"epoch": 0.49927988478156504,
|
| 1827 |
+
"grad_norm": 0.7019620968242437,
|
| 1828 |
+
"learning_rate": 9.923371647509579e-06,
|
| 1829 |
+
"loss": 1.4092,
|
| 1830 |
+
"step": 260
|
| 1831 |
+
},
|
| 1832 |
+
{
|
| 1833 |
+
"epoch": 0.501200192030725,
|
| 1834 |
+
"grad_norm": 0.7993119421084648,
|
| 1835 |
+
"learning_rate": 9.96168582375479e-06,
|
| 1836 |
+
"loss": 1.4496,
|
| 1837 |
+
"step": 261
|
| 1838 |
+
},
|
| 1839 |
+
{
|
| 1840 |
+
"epoch": 0.5031204992798848,
|
| 1841 |
+
"grad_norm": 0.7500420731214819,
|
| 1842 |
+
"learning_rate": 1e-05,
|
| 1843 |
+
"loss": 1.275,
|
| 1844 |
+
"step": 262
|
| 1845 |
+
},
|
| 1846 |
+
{
|
| 1847 |
+
"epoch": 0.5050408065290446,
|
| 1848 |
+
"grad_norm": 0.7096092331830312,
|
| 1849 |
+
"learning_rate": 9.999995509192137e-06,
|
| 1850 |
+
"loss": 1.4075,
|
| 1851 |
+
"step": 263
|
| 1852 |
+
},
|
| 1853 |
+
{
|
| 1854 |
+
"epoch": 0.5069611137782045,
|
| 1855 |
+
"grad_norm": 0.6880277184241935,
|
| 1856 |
+
"learning_rate": 9.999982036776617e-06,
|
| 1857 |
+
"loss": 1.3853,
|
| 1858 |
+
"step": 264
|
| 1859 |
+
},
|
| 1860 |
+
{
|
| 1861 |
+
"epoch": 0.5088814210273643,
|
| 1862 |
+
"grad_norm": 0.6887794428820988,
|
| 1863 |
+
"learning_rate": 9.999959582777638e-06,
|
| 1864 |
+
"loss": 1.2526,
|
| 1865 |
+
"step": 265
|
| 1866 |
+
},
|
| 1867 |
+
{
|
| 1868 |
+
"epoch": 0.5108017282765243,
|
| 1869 |
+
"grad_norm": 0.6962486538004352,
|
| 1870 |
+
"learning_rate": 9.999928147235536e-06,
|
| 1871 |
+
"loss": 1.385,
|
| 1872 |
+
"step": 266
|
| 1873 |
+
},
|
| 1874 |
+
{
|
| 1875 |
+
"epoch": 0.5127220355256841,
|
| 1876 |
+
"grad_norm": 0.7314717827625464,
|
| 1877 |
+
"learning_rate": 9.99988773020678e-06,
|
| 1878 |
+
"loss": 1.5364,
|
| 1879 |
+
"step": 267
|
| 1880 |
+
},
|
| 1881 |
+
{
|
| 1882 |
+
"epoch": 0.514642342774844,
|
| 1883 |
+
"grad_norm": 0.6755436676174023,
|
| 1884 |
+
"learning_rate": 9.99983833176397e-06,
|
| 1885 |
+
"loss": 1.1625,
|
| 1886 |
+
"step": 268
|
| 1887 |
+
},
|
| 1888 |
+
{
|
| 1889 |
+
"epoch": 0.5165626500240038,
|
| 1890 |
+
"grad_norm": 0.6799257698916303,
|
| 1891 |
+
"learning_rate": 9.999779951995845e-06,
|
| 1892 |
+
"loss": 1.3743,
|
| 1893 |
+
"step": 269
|
| 1894 |
+
},
|
| 1895 |
+
{
|
| 1896 |
+
"epoch": 0.5184829572731637,
|
| 1897 |
+
"grad_norm": 0.6967760972692357,
|
| 1898 |
+
"learning_rate": 9.99971259100727e-06,
|
| 1899 |
+
"loss": 1.4619,
|
| 1900 |
+
"step": 270
|
| 1901 |
+
},
|
| 1902 |
+
{
|
| 1903 |
+
"epoch": 0.5204032645223235,
|
| 1904 |
+
"grad_norm": 0.6876004824004736,
|
| 1905 |
+
"learning_rate": 9.99963624891925e-06,
|
| 1906 |
+
"loss": 1.2302,
|
| 1907 |
+
"step": 271
|
| 1908 |
+
},
|
| 1909 |
+
{
|
| 1910 |
+
"epoch": 0.5223235717714835,
|
| 1911 |
+
"grad_norm": 0.741525025016876,
|
| 1912 |
+
"learning_rate": 9.999550925868919e-06,
|
| 1913 |
+
"loss": 1.4944,
|
| 1914 |
+
"step": 272
|
| 1915 |
+
},
|
| 1916 |
+
{
|
| 1917 |
+
"epoch": 0.5242438790206433,
|
| 1918 |
+
"grad_norm": 0.7044462970993084,
|
| 1919 |
+
"learning_rate": 9.999456622009545e-06,
|
| 1920 |
+
"loss": 1.3233,
|
| 1921 |
+
"step": 273
|
| 1922 |
+
},
|
| 1923 |
+
{
|
| 1924 |
+
"epoch": 0.5261641862698032,
|
| 1925 |
+
"grad_norm": 0.7147463675731596,
|
| 1926 |
+
"learning_rate": 9.999353337510526e-06,
|
| 1927 |
+
"loss": 1.4728,
|
| 1928 |
+
"step": 274
|
| 1929 |
+
},
|
| 1930 |
+
{
|
| 1931 |
+
"epoch": 0.528084493518963,
|
| 1932 |
+
"grad_norm": 0.7580689885973482,
|
| 1933 |
+
"learning_rate": 9.9992410725574e-06,
|
| 1934 |
+
"loss": 1.3894,
|
| 1935 |
+
"step": 275
|
| 1936 |
+
},
|
| 1937 |
+
{
|
| 1938 |
+
"epoch": 0.530004800768123,
|
| 1939 |
+
"grad_norm": 0.627159916011877,
|
| 1940 |
+
"learning_rate": 9.999119827351824e-06,
|
| 1941 |
+
"loss": 1.1499,
|
| 1942 |
+
"step": 276
|
| 1943 |
+
},
|
| 1944 |
+
{
|
| 1945 |
+
"epoch": 0.5319251080172828,
|
| 1946 |
+
"grad_norm": 0.7347721430138173,
|
| 1947 |
+
"learning_rate": 9.998989602111599e-06,
|
| 1948 |
+
"loss": 1.3863,
|
| 1949 |
+
"step": 277
|
| 1950 |
+
},
|
| 1951 |
+
{
|
| 1952 |
+
"epoch": 0.5338454152664426,
|
| 1953 |
+
"grad_norm": 0.7561542947388183,
|
| 1954 |
+
"learning_rate": 9.99885039707065e-06,
|
| 1955 |
+
"loss": 1.4094,
|
| 1956 |
+
"step": 278
|
| 1957 |
+
},
|
| 1958 |
+
{
|
| 1959 |
+
"epoch": 0.5357657225156025,
|
| 1960 |
+
"grad_norm": 0.7257428578657052,
|
| 1961 |
+
"learning_rate": 9.998702212479031e-06,
|
| 1962 |
+
"loss": 1.3558,
|
| 1963 |
+
"step": 279
|
| 1964 |
+
},
|
| 1965 |
+
{
|
| 1966 |
+
"epoch": 0.5376860297647623,
|
| 1967 |
+
"grad_norm": 0.7156710718415759,
|
| 1968 |
+
"learning_rate": 9.998545048602938e-06,
|
| 1969 |
+
"loss": 1.3932,
|
| 1970 |
+
"step": 280
|
| 1971 |
+
},
|
| 1972 |
+
{
|
| 1973 |
+
"epoch": 0.5396063370139222,
|
| 1974 |
+
"grad_norm": 0.8324536861856755,
|
| 1975 |
+
"learning_rate": 9.998378905724677e-06,
|
| 1976 |
+
"loss": 1.4631,
|
| 1977 |
+
"step": 281
|
| 1978 |
+
},
|
| 1979 |
+
{
|
| 1980 |
+
"epoch": 0.5415266442630821,
|
| 1981 |
+
"grad_norm": 0.769865333129953,
|
| 1982 |
+
"learning_rate": 9.998203784142701e-06,
|
| 1983 |
+
"loss": 1.4778,
|
| 1984 |
+
"step": 282
|
| 1985 |
+
},
|
| 1986 |
+
{
|
| 1987 |
+
"epoch": 0.543446951512242,
|
| 1988 |
+
"grad_norm": 0.7558894226395197,
|
| 1989 |
+
"learning_rate": 9.998019684171585e-06,
|
| 1990 |
+
"loss": 1.3401,
|
| 1991 |
+
"step": 283
|
| 1992 |
+
},
|
| 1993 |
+
{
|
| 1994 |
+
"epoch": 0.5453672587614018,
|
| 1995 |
+
"grad_norm": 0.745453902467428,
|
| 1996 |
+
"learning_rate": 9.997826606142031e-06,
|
| 1997 |
+
"loss": 1.376,
|
| 1998 |
+
"step": 284
|
| 1999 |
+
},
|
| 2000 |
+
{
|
| 2001 |
+
"epoch": 0.5472875660105617,
|
| 2002 |
+
"grad_norm": 0.8525307677948906,
|
| 2003 |
+
"learning_rate": 9.997624550400869e-06,
|
| 2004 |
+
"loss": 1.3269,
|
| 2005 |
+
"step": 285
|
| 2006 |
+
},
|
| 2007 |
+
{
|
| 2008 |
+
"epoch": 0.5492078732597215,
|
| 2009 |
+
"grad_norm": 0.8993675673573773,
|
| 2010 |
+
"learning_rate": 9.997413517311055e-06,
|
| 2011 |
+
"loss": 1.3973,
|
| 2012 |
+
"step": 286
|
| 2013 |
+
},
|
| 2014 |
+
{
|
| 2015 |
+
"epoch": 0.5511281805088815,
|
| 2016 |
+
"grad_norm": 0.7637767723846134,
|
| 2017 |
+
"learning_rate": 9.997193507251676e-06,
|
| 2018 |
+
"loss": 1.4107,
|
| 2019 |
+
"step": 287
|
| 2020 |
+
},
|
| 2021 |
+
{
|
| 2022 |
+
"epoch": 0.5530484877580413,
|
| 2023 |
+
"grad_norm": 0.7334145684503066,
|
| 2024 |
+
"learning_rate": 9.996964520617938e-06,
|
| 2025 |
+
"loss": 1.2548,
|
| 2026 |
+
"step": 288
|
| 2027 |
+
},
|
| 2028 |
+
{
|
| 2029 |
+
"epoch": 0.5549687950072012,
|
| 2030 |
+
"grad_norm": 0.8286763467838726,
|
| 2031 |
+
"learning_rate": 9.996726557821177e-06,
|
| 2032 |
+
"loss": 1.3915,
|
| 2033 |
+
"step": 289
|
| 2034 |
+
},
|
| 2035 |
+
{
|
| 2036 |
+
"epoch": 0.556889102256361,
|
| 2037 |
+
"grad_norm": 0.786223417485439,
|
| 2038 |
+
"learning_rate": 9.996479619288853e-06,
|
| 2039 |
+
"loss": 1.2113,
|
| 2040 |
+
"step": 290
|
| 2041 |
+
},
|
| 2042 |
+
{
|
| 2043 |
+
"epoch": 0.5588094095055209,
|
| 2044 |
+
"grad_norm": 0.6629161249458739,
|
| 2045 |
+
"learning_rate": 9.996223705464542e-06,
|
| 2046 |
+
"loss": 1.383,
|
| 2047 |
+
"step": 291
|
| 2048 |
+
},
|
| 2049 |
+
{
|
| 2050 |
+
"epoch": 0.5607297167546808,
|
| 2051 |
+
"grad_norm": 0.7763568743151492,
|
| 2052 |
+
"learning_rate": 9.995958816807951e-06,
|
| 2053 |
+
"loss": 1.511,
|
| 2054 |
+
"step": 292
|
| 2055 |
+
},
|
| 2056 |
+
{
|
| 2057 |
+
"epoch": 0.5626500240038406,
|
| 2058 |
+
"grad_norm": 0.8706771128343518,
|
| 2059 |
+
"learning_rate": 9.995684953794905e-06,
|
| 2060 |
+
"loss": 1.301,
|
| 2061 |
+
"step": 293
|
| 2062 |
+
},
|
| 2063 |
+
{
|
| 2064 |
+
"epoch": 0.5645703312530005,
|
| 2065 |
+
"grad_norm": 0.7186979734065922,
|
| 2066 |
+
"learning_rate": 9.995402116917353e-06,
|
| 2067 |
+
"loss": 1.3137,
|
| 2068 |
+
"step": 294
|
| 2069 |
+
},
|
| 2070 |
+
{
|
| 2071 |
+
"epoch": 0.5664906385021603,
|
| 2072 |
+
"grad_norm": 0.7197477949946243,
|
| 2073 |
+
"learning_rate": 9.995110306683358e-06,
|
| 2074 |
+
"loss": 1.3924,
|
| 2075 |
+
"step": 295
|
| 2076 |
+
},
|
| 2077 |
+
{
|
| 2078 |
+
"epoch": 0.5684109457513202,
|
| 2079 |
+
"grad_norm": 0.7990094094001562,
|
| 2080 |
+
"learning_rate": 9.994809523617109e-06,
|
| 2081 |
+
"loss": 1.3595,
|
| 2082 |
+
"step": 296
|
| 2083 |
+
},
|
| 2084 |
+
{
|
| 2085 |
+
"epoch": 0.57033125300048,
|
| 2086 |
+
"grad_norm": 0.7548256910113419,
|
| 2087 |
+
"learning_rate": 9.994499768258905e-06,
|
| 2088 |
+
"loss": 1.2627,
|
| 2089 |
+
"step": 297
|
| 2090 |
+
},
|
| 2091 |
+
{
|
| 2092 |
+
"epoch": 0.57225156024964,
|
| 2093 |
+
"grad_norm": 0.6080847660246027,
|
| 2094 |
+
"learning_rate": 9.994181041165169e-06,
|
| 2095 |
+
"loss": 1.233,
|
| 2096 |
+
"step": 298
|
| 2097 |
+
},
|
| 2098 |
+
{
|
| 2099 |
+
"epoch": 0.5741718674987998,
|
| 2100 |
+
"grad_norm": 0.7522747291038051,
|
| 2101 |
+
"learning_rate": 9.99385334290844e-06,
|
| 2102 |
+
"loss": 1.4473,
|
| 2103 |
+
"step": 299
|
| 2104 |
+
},
|
| 2105 |
+
{
|
| 2106 |
+
"epoch": 0.5760921747479597,
|
| 2107 |
+
"grad_norm": 0.693071662167599,
|
| 2108 |
+
"learning_rate": 9.993516674077367e-06,
|
| 2109 |
+
"loss": 1.3112,
|
| 2110 |
+
"step": 300
|
| 2111 |
+
},
|
| 2112 |
+
{
|
| 2113 |
+
"epoch": 0.5780124819971195,
|
| 2114 |
+
"grad_norm": 0.7289575683988432,
|
| 2115 |
+
"learning_rate": 9.993171035276717e-06,
|
| 2116 |
+
"loss": 1.4447,
|
| 2117 |
+
"step": 301
|
| 2118 |
+
},
|
| 2119 |
+
{
|
| 2120 |
+
"epoch": 0.5799327892462794,
|
| 2121 |
+
"grad_norm": 0.7219332107019164,
|
| 2122 |
+
"learning_rate": 9.992816427127367e-06,
|
| 2123 |
+
"loss": 1.3059,
|
| 2124 |
+
"step": 302
|
| 2125 |
+
},
|
| 2126 |
+
{
|
| 2127 |
+
"epoch": 0.5818530964954393,
|
| 2128 |
+
"grad_norm": 0.7884436507160677,
|
| 2129 |
+
"learning_rate": 9.992452850266313e-06,
|
| 2130 |
+
"loss": 1.4828,
|
| 2131 |
+
"step": 303
|
| 2132 |
+
},
|
| 2133 |
+
{
|
| 2134 |
+
"epoch": 0.5837734037445992,
|
| 2135 |
+
"grad_norm": 0.6835750513473184,
|
| 2136 |
+
"learning_rate": 9.992080305346652e-06,
|
| 2137 |
+
"loss": 1.3351,
|
| 2138 |
+
"step": 304
|
| 2139 |
+
},
|
| 2140 |
+
{
|
| 2141 |
+
"epoch": 0.585693710993759,
|
| 2142 |
+
"grad_norm": 0.7455682427352298,
|
| 2143 |
+
"learning_rate": 9.991698793037596e-06,
|
| 2144 |
+
"loss": 1.3393,
|
| 2145 |
+
"step": 305
|
| 2146 |
+
},
|
| 2147 |
+
{
|
| 2148 |
+
"epoch": 0.5876140182429188,
|
| 2149 |
+
"grad_norm": 0.6344234674402865,
|
| 2150 |
+
"learning_rate": 9.991308314024466e-06,
|
| 2151 |
+
"loss": 1.1186,
|
| 2152 |
+
"step": 306
|
| 2153 |
+
},
|
| 2154 |
+
{
|
| 2155 |
+
"epoch": 0.5895343254920787,
|
| 2156 |
+
"grad_norm": 0.6463680302231726,
|
| 2157 |
+
"learning_rate": 9.990908869008685e-06,
|
| 2158 |
+
"loss": 1.3536,
|
| 2159 |
+
"step": 307
|
| 2160 |
+
},
|
| 2161 |
+
{
|
| 2162 |
+
"epoch": 0.5914546327412386,
|
| 2163 |
+
"grad_norm": 0.7763640180054763,
|
| 2164 |
+
"learning_rate": 9.99050045870779e-06,
|
| 2165 |
+
"loss": 1.4034,
|
| 2166 |
+
"step": 308
|
| 2167 |
+
},
|
| 2168 |
+
{
|
| 2169 |
+
"epoch": 0.5933749399903985,
|
| 2170 |
+
"grad_norm": 0.7729679972786335,
|
| 2171 |
+
"learning_rate": 9.990083083855413e-06,
|
| 2172 |
+
"loss": 1.518,
|
| 2173 |
+
"step": 309
|
| 2174 |
+
},
|
| 2175 |
+
{
|
| 2176 |
+
"epoch": 0.5952952472395583,
|
| 2177 |
+
"grad_norm": 0.7293910429882318,
|
| 2178 |
+
"learning_rate": 9.9896567452013e-06,
|
| 2179 |
+
"loss": 1.4168,
|
| 2180 |
+
"step": 310
|
| 2181 |
+
},
|
| 2182 |
+
{
|
| 2183 |
+
"epoch": 0.5972155544887182,
|
| 2184 |
+
"grad_norm": 0.6938721572185663,
|
| 2185 |
+
"learning_rate": 9.989221443511286e-06,
|
| 2186 |
+
"loss": 1.5813,
|
| 2187 |
+
"step": 311
|
| 2188 |
+
},
|
| 2189 |
+
{
|
| 2190 |
+
"epoch": 0.599135861737878,
|
| 2191 |
+
"grad_norm": 0.6823348506968784,
|
| 2192 |
+
"learning_rate": 9.98877717956732e-06,
|
| 2193 |
+
"loss": 1.396,
|
| 2194 |
+
"step": 312
|
| 2195 |
+
},
|
| 2196 |
+
{
|
| 2197 |
+
"epoch": 0.601056168987038,
|
| 2198 |
+
"grad_norm": 0.6470598419144085,
|
| 2199 |
+
"learning_rate": 9.988323954167438e-06,
|
| 2200 |
+
"loss": 1.3138,
|
| 2201 |
+
"step": 313
|
| 2202 |
+
},
|
| 2203 |
+
{
|
| 2204 |
+
"epoch": 0.6029764762361978,
|
| 2205 |
+
"grad_norm": 0.6955870872672735,
|
| 2206 |
+
"learning_rate": 9.987861768125783e-06,
|
| 2207 |
+
"loss": 1.4043,
|
| 2208 |
+
"step": 314
|
| 2209 |
+
},
|
| 2210 |
+
{
|
| 2211 |
+
"epoch": 0.6048967834853577,
|
| 2212 |
+
"grad_norm": 0.7788214111440995,
|
| 2213 |
+
"learning_rate": 9.98739062227259e-06,
|
| 2214 |
+
"loss": 1.5305,
|
| 2215 |
+
"step": 315
|
| 2216 |
+
},
|
| 2217 |
+
{
|
| 2218 |
+
"epoch": 0.6068170907345175,
|
| 2219 |
+
"grad_norm": 0.6598071275711943,
|
| 2220 |
+
"learning_rate": 9.986910517454188e-06,
|
| 2221 |
+
"loss": 1.185,
|
| 2222 |
+
"step": 316
|
| 2223 |
+
},
|
| 2224 |
+
{
|
| 2225 |
+
"epoch": 0.6087373979836774,
|
| 2226 |
+
"grad_norm": 0.7478469808999688,
|
| 2227 |
+
"learning_rate": 9.986421454533001e-06,
|
| 2228 |
+
"loss": 1.2875,
|
| 2229 |
+
"step": 317
|
| 2230 |
+
},
|
| 2231 |
+
{
|
| 2232 |
+
"epoch": 0.6106577052328372,
|
| 2233 |
+
"grad_norm": 0.7102386979345604,
|
| 2234 |
+
"learning_rate": 9.985923434387545e-06,
|
| 2235 |
+
"loss": 1.2623,
|
| 2236 |
+
"step": 318
|
| 2237 |
+
},
|
| 2238 |
+
{
|
| 2239 |
+
"epoch": 0.6125780124819972,
|
| 2240 |
+
"grad_norm": 0.8159684281974479,
|
| 2241 |
+
"learning_rate": 9.985416457912423e-06,
|
| 2242 |
+
"loss": 1.3859,
|
| 2243 |
+
"step": 319
|
| 2244 |
+
},
|
| 2245 |
+
{
|
| 2246 |
+
"epoch": 0.614498319731157,
|
| 2247 |
+
"grad_norm": 0.7359831696017346,
|
| 2248 |
+
"learning_rate": 9.984900526018331e-06,
|
| 2249 |
+
"loss": 1.3127,
|
| 2250 |
+
"step": 320
|
| 2251 |
+
},
|
| 2252 |
+
{
|
| 2253 |
+
"epoch": 0.6164186269803168,
|
| 2254 |
+
"grad_norm": 0.7406050107164467,
|
| 2255 |
+
"learning_rate": 9.984375639632047e-06,
|
| 2256 |
+
"loss": 1.3526,
|
| 2257 |
+
"step": 321
|
| 2258 |
+
},
|
| 2259 |
+
{
|
| 2260 |
+
"epoch": 0.6183389342294767,
|
| 2261 |
+
"grad_norm": 0.7171563092825125,
|
| 2262 |
+
"learning_rate": 9.98384179969644e-06,
|
| 2263 |
+
"loss": 1.3718,
|
| 2264 |
+
"step": 322
|
| 2265 |
+
},
|
| 2266 |
+
{
|
| 2267 |
+
"epoch": 0.6202592414786365,
|
| 2268 |
+
"grad_norm": 0.7444992833186831,
|
| 2269 |
+
"learning_rate": 9.983299007170454e-06,
|
| 2270 |
+
"loss": 1.2605,
|
| 2271 |
+
"step": 323
|
| 2272 |
+
},
|
| 2273 |
+
{
|
| 2274 |
+
"epoch": 0.6221795487277965,
|
| 2275 |
+
"grad_norm": 0.6718703991955216,
|
| 2276 |
+
"learning_rate": 9.982747263029123e-06,
|
| 2277 |
+
"loss": 1.2696,
|
| 2278 |
+
"step": 324
|
| 2279 |
+
},
|
| 2280 |
+
{
|
| 2281 |
+
"epoch": 0.6240998559769563,
|
| 2282 |
+
"grad_norm": 0.6953480856589247,
|
| 2283 |
+
"learning_rate": 9.982186568263558e-06,
|
| 2284 |
+
"loss": 1.402,
|
| 2285 |
+
"step": 325
|
| 2286 |
+
},
|
| 2287 |
+
{
|
| 2288 |
+
"epoch": 0.6260201632261162,
|
| 2289 |
+
"grad_norm": 0.6814410132323387,
|
| 2290 |
+
"learning_rate": 9.981616923880948e-06,
|
| 2291 |
+
"loss": 1.357,
|
| 2292 |
+
"step": 326
|
| 2293 |
+
},
|
| 2294 |
+
{
|
| 2295 |
+
"epoch": 0.627940470475276,
|
| 2296 |
+
"grad_norm": 0.6789399695802566,
|
| 2297 |
+
"learning_rate": 9.981038330904556e-06,
|
| 2298 |
+
"loss": 1.3563,
|
| 2299 |
+
"step": 327
|
| 2300 |
+
},
|
| 2301 |
+
{
|
| 2302 |
+
"epoch": 0.6298607777244359,
|
| 2303 |
+
"grad_norm": 0.7084278817620212,
|
| 2304 |
+
"learning_rate": 9.980450790373724e-06,
|
| 2305 |
+
"loss": 1.3983,
|
| 2306 |
+
"step": 328
|
| 2307 |
+
},
|
| 2308 |
+
{
|
| 2309 |
+
"epoch": 0.6317810849735958,
|
| 2310 |
+
"grad_norm": 0.7561797459599714,
|
| 2311 |
+
"learning_rate": 9.979854303343866e-06,
|
| 2312 |
+
"loss": 1.3998,
|
| 2313 |
+
"step": 329
|
| 2314 |
+
},
|
| 2315 |
+
{
|
| 2316 |
+
"epoch": 0.6337013922227557,
|
| 2317 |
+
"grad_norm": 0.7063013474407709,
|
| 2318 |
+
"learning_rate": 9.979248870886463e-06,
|
| 2319 |
+
"loss": 1.4128,
|
| 2320 |
+
"step": 330
|
| 2321 |
+
},
|
| 2322 |
+
{
|
| 2323 |
+
"epoch": 0.6356216994719155,
|
| 2324 |
+
"grad_norm": 0.7285839877290075,
|
| 2325 |
+
"learning_rate": 9.978634494089066e-06,
|
| 2326 |
+
"loss": 1.5026,
|
| 2327 |
+
"step": 331
|
| 2328 |
+
},
|
| 2329 |
+
{
|
| 2330 |
+
"epoch": 0.6375420067210754,
|
| 2331 |
+
"grad_norm": 0.7631063764422019,
|
| 2332 |
+
"learning_rate": 9.9780111740553e-06,
|
| 2333 |
+
"loss": 1.3353,
|
| 2334 |
+
"step": 332
|
| 2335 |
+
},
|
| 2336 |
+
{
|
| 2337 |
+
"epoch": 0.6394623139702352,
|
| 2338 |
+
"grad_norm": 0.8022733412976211,
|
| 2339 |
+
"learning_rate": 9.977378911904843e-06,
|
| 2340 |
+
"loss": 1.3017,
|
| 2341 |
+
"step": 333
|
| 2342 |
+
},
|
| 2343 |
+
{
|
| 2344 |
+
"epoch": 0.6413826212193952,
|
| 2345 |
+
"grad_norm": 0.7397584519382538,
|
| 2346 |
+
"learning_rate": 9.976737708773445e-06,
|
| 2347 |
+
"loss": 1.4274,
|
| 2348 |
+
"step": 334
|
| 2349 |
+
},
|
| 2350 |
+
{
|
| 2351 |
+
"epoch": 0.643302928468555,
|
| 2352 |
+
"grad_norm": 0.7498254808267637,
|
| 2353 |
+
"learning_rate": 9.976087565812913e-06,
|
| 2354 |
+
"loss": 1.2821,
|
| 2355 |
+
"step": 335
|
| 2356 |
+
},
|
| 2357 |
+
{
|
| 2358 |
+
"epoch": 0.6452232357177148,
|
| 2359 |
+
"grad_norm": 0.8440233129581642,
|
| 2360 |
+
"learning_rate": 9.975428484191117e-06,
|
| 2361 |
+
"loss": 1.507,
|
| 2362 |
+
"step": 336
|
| 2363 |
+
},
|
| 2364 |
+
{
|
| 2365 |
+
"epoch": 0.6471435429668747,
|
| 2366 |
+
"grad_norm": 0.7140420729824992,
|
| 2367 |
+
"learning_rate": 9.974760465091975e-06,
|
| 2368 |
+
"loss": 1.3541,
|
| 2369 |
+
"step": 337
|
| 2370 |
+
},
|
| 2371 |
+
{
|
| 2372 |
+
"epoch": 0.6490638502160345,
|
| 2373 |
+
"grad_norm": 0.7935959679049022,
|
| 2374 |
+
"learning_rate": 9.974083509715471e-06,
|
| 2375 |
+
"loss": 1.3704,
|
| 2376 |
+
"step": 338
|
| 2377 |
+
},
|
| 2378 |
+
{
|
| 2379 |
+
"epoch": 0.6509841574651944,
|
| 2380 |
+
"grad_norm": 0.8128531878052235,
|
| 2381 |
+
"learning_rate": 9.973397619277631e-06,
|
| 2382 |
+
"loss": 1.3941,
|
| 2383 |
+
"step": 339
|
| 2384 |
+
},
|
| 2385 |
+
{
|
| 2386 |
+
"epoch": 0.6529044647143543,
|
| 2387 |
+
"grad_norm": 0.7087809281812139,
|
| 2388 |
+
"learning_rate": 9.972702795010539e-06,
|
| 2389 |
+
"loss": 1.3024,
|
| 2390 |
+
"step": 340
|
| 2391 |
+
},
|
| 2392 |
+
{
|
| 2393 |
+
"epoch": 0.6548247719635142,
|
| 2394 |
+
"grad_norm": 0.8779292688681924,
|
| 2395 |
+
"learning_rate": 9.971999038162322e-06,
|
| 2396 |
+
"loss": 1.275,
|
| 2397 |
+
"step": 341
|
| 2398 |
+
},
|
| 2399 |
+
{
|
| 2400 |
+
"epoch": 0.656745079212674,
|
| 2401 |
+
"grad_norm": 0.8321554450658822,
|
| 2402 |
+
"learning_rate": 9.971286349997155e-06,
|
| 2403 |
+
"loss": 1.4001,
|
| 2404 |
+
"step": 342
|
| 2405 |
+
},
|
| 2406 |
+
{
|
| 2407 |
+
"epoch": 0.6586653864618339,
|
| 2408 |
+
"grad_norm": 0.6785835670278665,
|
| 2409 |
+
"learning_rate": 9.970564731795259e-06,
|
| 2410 |
+
"loss": 1.3563,
|
| 2411 |
+
"step": 343
|
| 2412 |
+
},
|
| 2413 |
+
{
|
| 2414 |
+
"epoch": 0.6605856937109937,
|
| 2415 |
+
"grad_norm": 0.8154880274231641,
|
| 2416 |
+
"learning_rate": 9.96983418485289e-06,
|
| 2417 |
+
"loss": 1.2015,
|
| 2418 |
+
"step": 344
|
| 2419 |
+
},
|
| 2420 |
+
{
|
| 2421 |
+
"epoch": 0.6625060009601537,
|
| 2422 |
+
"grad_norm": 0.7877809686842095,
|
| 2423 |
+
"learning_rate": 9.969094710482345e-06,
|
| 2424 |
+
"loss": 1.3176,
|
| 2425 |
+
"step": 345
|
| 2426 |
+
},
|
| 2427 |
+
{
|
| 2428 |
+
"epoch": 0.6644263082093135,
|
| 2429 |
+
"grad_norm": 0.737869545031943,
|
| 2430 |
+
"learning_rate": 9.968346310011965e-06,
|
| 2431 |
+
"loss": 1.2681,
|
| 2432 |
+
"step": 346
|
| 2433 |
+
},
|
| 2434 |
+
{
|
| 2435 |
+
"epoch": 0.6663466154584734,
|
| 2436 |
+
"grad_norm": 0.8367016706595558,
|
| 2437 |
+
"learning_rate": 9.967588984786113e-06,
|
| 2438 |
+
"loss": 1.3146,
|
| 2439 |
+
"step": 347
|
| 2440 |
+
},
|
| 2441 |
+
{
|
| 2442 |
+
"epoch": 0.6682669227076332,
|
| 2443 |
+
"grad_norm": 0.7157484065111132,
|
| 2444 |
+
"learning_rate": 9.966822736165194e-06,
|
| 2445 |
+
"loss": 1.2279,
|
| 2446 |
+
"step": 348
|
| 2447 |
+
},
|
| 2448 |
+
{
|
| 2449 |
+
"epoch": 0.6701872299567931,
|
| 2450 |
+
"grad_norm": 0.8340115611171157,
|
| 2451 |
+
"learning_rate": 9.966047565525636e-06,
|
| 2452 |
+
"loss": 1.346,
|
| 2453 |
+
"step": 349
|
| 2454 |
+
},
|
| 2455 |
+
{
|
| 2456 |
+
"epoch": 0.672107537205953,
|
| 2457 |
+
"grad_norm": 0.7964501684625079,
|
| 2458 |
+
"learning_rate": 9.965263474259896e-06,
|
| 2459 |
+
"loss": 1.2604,
|
| 2460 |
+
"step": 350
|
| 2461 |
+
},
|
| 2462 |
+
{
|
| 2463 |
+
"epoch": 0.6740278444551128,
|
| 2464 |
+
"grad_norm": 0.7644952492186728,
|
| 2465 |
+
"learning_rate": 9.964470463776457e-06,
|
| 2466 |
+
"loss": 1.2808,
|
| 2467 |
+
"step": 351
|
| 2468 |
+
},
|
| 2469 |
+
{
|
| 2470 |
+
"epoch": 0.6759481517042727,
|
| 2471 |
+
"grad_norm": 0.715875104396104,
|
| 2472 |
+
"learning_rate": 9.96366853549982e-06,
|
| 2473 |
+
"loss": 1.3779,
|
| 2474 |
+
"step": 352
|
| 2475 |
+
},
|
| 2476 |
+
{
|
| 2477 |
+
"epoch": 0.6778684589534325,
|
| 2478 |
+
"grad_norm": 0.6658897567313692,
|
| 2479 |
+
"learning_rate": 9.962857690870507e-06,
|
| 2480 |
+
"loss": 1.3005,
|
| 2481 |
+
"step": 353
|
| 2482 |
+
},
|
| 2483 |
+
{
|
| 2484 |
+
"epoch": 0.6797887662025924,
|
| 2485 |
+
"grad_norm": 0.7869576623216241,
|
| 2486 |
+
"learning_rate": 9.962037931345058e-06,
|
| 2487 |
+
"loss": 1.3772,
|
| 2488 |
+
"step": 354
|
| 2489 |
+
},
|
| 2490 |
+
{
|
| 2491 |
+
"epoch": 0.6817090734517522,
|
| 2492 |
+
"grad_norm": 0.9271972422960602,
|
| 2493 |
+
"learning_rate": 9.96120925839603e-06,
|
| 2494 |
+
"loss": 1.346,
|
| 2495 |
+
"step": 355
|
| 2496 |
+
},
|
| 2497 |
+
{
|
| 2498 |
+
"epoch": 0.6836293807009122,
|
| 2499 |
+
"grad_norm": 0.7660166493856924,
|
| 2500 |
+
"learning_rate": 9.96037167351198e-06,
|
| 2501 |
+
"loss": 1.2745,
|
| 2502 |
+
"step": 356
|
| 2503 |
+
},
|
| 2504 |
+
{
|
| 2505 |
+
"epoch": 0.685549687950072,
|
| 2506 |
+
"grad_norm": 0.6278698318719681,
|
| 2507 |
+
"learning_rate": 9.959525178197484e-06,
|
| 2508 |
+
"loss": 1.1849,
|
| 2509 |
+
"step": 357
|
| 2510 |
+
},
|
| 2511 |
+
{
|
| 2512 |
+
"epoch": 0.6874699951992319,
|
| 2513 |
+
"grad_norm": 0.8957448047534449,
|
| 2514 |
+
"learning_rate": 9.958669773973124e-06,
|
| 2515 |
+
"loss": 1.47,
|
| 2516 |
+
"step": 358
|
| 2517 |
+
},
|
| 2518 |
+
{
|
| 2519 |
+
"epoch": 0.6893903024483917,
|
| 2520 |
+
"grad_norm": 0.7893290798004599,
|
| 2521 |
+
"learning_rate": 9.95780546237548e-06,
|
| 2522 |
+
"loss": 1.4411,
|
| 2523 |
+
"step": 359
|
| 2524 |
+
},
|
| 2525 |
+
{
|
| 2526 |
+
"epoch": 0.6913106096975516,
|
| 2527 |
+
"grad_norm": 0.6674442252477479,
|
| 2528 |
+
"learning_rate": 9.956932244957135e-06,
|
| 2529 |
+
"loss": 1.3468,
|
| 2530 |
+
"step": 360
|
| 2531 |
+
},
|
| 2532 |
+
{
|
| 2533 |
+
"epoch": 0.6932309169467115,
|
| 2534 |
+
"grad_norm": 0.8637622685527974,
|
| 2535 |
+
"learning_rate": 9.95605012328667e-06,
|
| 2536 |
+
"loss": 1.4951,
|
| 2537 |
+
"step": 361
|
| 2538 |
+
},
|
| 2539 |
+
{
|
| 2540 |
+
"epoch": 0.6951512241958714,
|
| 2541 |
+
"grad_norm": 0.7032170307148827,
|
| 2542 |
+
"learning_rate": 9.95515909894866e-06,
|
| 2543 |
+
"loss": 1.2168,
|
| 2544 |
+
"step": 362
|
| 2545 |
+
},
|
| 2546 |
+
{
|
| 2547 |
+
"epoch": 0.6970715314450312,
|
| 2548 |
+
"grad_norm": 0.7604809716338964,
|
| 2549 |
+
"learning_rate": 9.954259173543671e-06,
|
| 2550 |
+
"loss": 1.3405,
|
| 2551 |
+
"step": 363
|
| 2552 |
+
},
|
| 2553 |
+
{
|
| 2554 |
+
"epoch": 0.6989918386941911,
|
| 2555 |
+
"grad_norm": 0.7356596357988364,
|
| 2556 |
+
"learning_rate": 9.953350348688264e-06,
|
| 2557 |
+
"loss": 1.4851,
|
| 2558 |
+
"step": 364
|
| 2559 |
+
},
|
| 2560 |
+
{
|
| 2561 |
+
"epoch": 0.7009121459433509,
|
| 2562 |
+
"grad_norm": 0.7106099387583814,
|
| 2563 |
+
"learning_rate": 9.952432626014979e-06,
|
| 2564 |
+
"loss": 1.4105,
|
| 2565 |
+
"step": 365
|
| 2566 |
+
},
|
| 2567 |
+
{
|
| 2568 |
+
"epoch": 0.7028324531925108,
|
| 2569 |
+
"grad_norm": 0.7680103674421779,
|
| 2570 |
+
"learning_rate": 9.951506007172344e-06,
|
| 2571 |
+
"loss": 1.3767,
|
| 2572 |
+
"step": 366
|
| 2573 |
+
},
|
| 2574 |
+
{
|
| 2575 |
+
"epoch": 0.7047527604416707,
|
| 2576 |
+
"grad_norm": 0.7045547217675817,
|
| 2577 |
+
"learning_rate": 9.950570493824864e-06,
|
| 2578 |
+
"loss": 1.3534,
|
| 2579 |
+
"step": 367
|
| 2580 |
+
},
|
| 2581 |
+
{
|
| 2582 |
+
"epoch": 0.7066730676908305,
|
| 2583 |
+
"grad_norm": 0.8618867023288301,
|
| 2584 |
+
"learning_rate": 9.949626087653026e-06,
|
| 2585 |
+
"loss": 1.5932,
|
| 2586 |
+
"step": 368
|
| 2587 |
+
},
|
| 2588 |
+
{
|
| 2589 |
+
"epoch": 0.7085933749399904,
|
| 2590 |
+
"grad_norm": 0.7514120877501722,
|
| 2591 |
+
"learning_rate": 9.948672790353287e-06,
|
| 2592 |
+
"loss": 1.4226,
|
| 2593 |
+
"step": 369
|
| 2594 |
+
},
|
| 2595 |
+
{
|
| 2596 |
+
"epoch": 0.7105136821891502,
|
| 2597 |
+
"grad_norm": 0.7707655494026907,
|
| 2598 |
+
"learning_rate": 9.947710603638078e-06,
|
| 2599 |
+
"loss": 1.3086,
|
| 2600 |
+
"step": 370
|
| 2601 |
+
},
|
| 2602 |
+
{
|
| 2603 |
+
"epoch": 0.7124339894383102,
|
| 2604 |
+
"grad_norm": 0.7353314917000675,
|
| 2605 |
+
"learning_rate": 9.946739529235797e-06,
|
| 2606 |
+
"loss": 1.3498,
|
| 2607 |
+
"step": 371
|
| 2608 |
+
},
|
| 2609 |
+
{
|
| 2610 |
+
"epoch": 0.71435429668747,
|
| 2611 |
+
"grad_norm": 0.7677899312066072,
|
| 2612 |
+
"learning_rate": 9.945759568890804e-06,
|
| 2613 |
+
"loss": 1.337,
|
| 2614 |
+
"step": 372
|
| 2615 |
+
},
|
| 2616 |
+
{
|
| 2617 |
+
"epoch": 0.7162746039366299,
|
| 2618 |
+
"grad_norm": 0.7323170602281932,
|
| 2619 |
+
"learning_rate": 9.944770724363428e-06,
|
| 2620 |
+
"loss": 1.2262,
|
| 2621 |
+
"step": 373
|
| 2622 |
+
},
|
| 2623 |
+
{
|
| 2624 |
+
"epoch": 0.7181949111857897,
|
| 2625 |
+
"grad_norm": 0.7030503301748048,
|
| 2626 |
+
"learning_rate": 9.943772997429955e-06,
|
| 2627 |
+
"loss": 1.2604,
|
| 2628 |
+
"step": 374
|
| 2629 |
+
},
|
| 2630 |
+
{
|
| 2631 |
+
"epoch": 0.7201152184349496,
|
| 2632 |
+
"grad_norm": 0.8803804845996765,
|
| 2633 |
+
"learning_rate": 9.942766389882621e-06,
|
| 2634 |
+
"loss": 1.3465,
|
| 2635 |
+
"step": 375
|
| 2636 |
+
},
|
| 2637 |
+
{
|
| 2638 |
+
"epoch": 0.7220355256841094,
|
| 2639 |
+
"grad_norm": 0.765754153505594,
|
| 2640 |
+
"learning_rate": 9.94175090352962e-06,
|
| 2641 |
+
"loss": 1.4785,
|
| 2642 |
+
"step": 376
|
| 2643 |
+
},
|
| 2644 |
+
{
|
| 2645 |
+
"epoch": 0.7239558329332694,
|
| 2646 |
+
"grad_norm": 0.7412100725496786,
|
| 2647 |
+
"learning_rate": 9.940726540195093e-06,
|
| 2648 |
+
"loss": 1.3886,
|
| 2649 |
+
"step": 377
|
| 2650 |
+
},
|
| 2651 |
+
{
|
| 2652 |
+
"epoch": 0.7258761401824292,
|
| 2653 |
+
"grad_norm": 0.7352092180670398,
|
| 2654 |
+
"learning_rate": 9.939693301719131e-06,
|
| 2655 |
+
"loss": 1.3787,
|
| 2656 |
+
"step": 378
|
| 2657 |
+
},
|
| 2658 |
+
{
|
| 2659 |
+
"epoch": 0.727796447431589,
|
| 2660 |
+
"grad_norm": 0.7081810984489154,
|
| 2661 |
+
"learning_rate": 9.93865118995776e-06,
|
| 2662 |
+
"loss": 1.2855,
|
| 2663 |
+
"step": 379
|
| 2664 |
+
},
|
| 2665 |
+
{
|
| 2666 |
+
"epoch": 0.7297167546807489,
|
| 2667 |
+
"grad_norm": 0.721692280601312,
|
| 2668 |
+
"learning_rate": 9.937600206782951e-06,
|
| 2669 |
+
"loss": 1.2581,
|
| 2670 |
+
"step": 380
|
| 2671 |
+
},
|
| 2672 |
+
{
|
| 2673 |
+
"epoch": 0.7316370619299087,
|
| 2674 |
+
"grad_norm": 0.7219716174107607,
|
| 2675 |
+
"learning_rate": 9.93654035408261e-06,
|
| 2676 |
+
"loss": 1.3989,
|
| 2677 |
+
"step": 381
|
| 2678 |
+
},
|
| 2679 |
+
{
|
| 2680 |
+
"epoch": 0.7335573691790687,
|
| 2681 |
+
"grad_norm": 0.808844014227327,
|
| 2682 |
+
"learning_rate": 9.935471633760572e-06,
|
| 2683 |
+
"loss": 1.489,
|
| 2684 |
+
"step": 382
|
| 2685 |
+
},
|
| 2686 |
+
{
|
| 2687 |
+
"epoch": 0.7354776764282285,
|
| 2688 |
+
"grad_norm": 0.6931394591191726,
|
| 2689 |
+
"learning_rate": 9.934394047736608e-06,
|
| 2690 |
+
"loss": 1.3596,
|
| 2691 |
+
"step": 383
|
| 2692 |
+
},
|
| 2693 |
+
{
|
| 2694 |
+
"epoch": 0.7373979836773884,
|
| 2695 |
+
"grad_norm": 0.7255320444997646,
|
| 2696 |
+
"learning_rate": 9.93330759794641e-06,
|
| 2697 |
+
"loss": 1.2593,
|
| 2698 |
+
"step": 384
|
| 2699 |
+
},
|
| 2700 |
+
{
|
| 2701 |
+
"epoch": 0.7393182909265482,
|
| 2702 |
+
"grad_norm": 0.6469865776133421,
|
| 2703 |
+
"learning_rate": 9.932212286341591e-06,
|
| 2704 |
+
"loss": 1.4305,
|
| 2705 |
+
"step": 385
|
| 2706 |
+
},
|
| 2707 |
+
{
|
| 2708 |
+
"epoch": 0.7412385981757081,
|
| 2709 |
+
"grad_norm": 0.7276641692049547,
|
| 2710 |
+
"learning_rate": 9.931108114889685e-06,
|
| 2711 |
+
"loss": 1.531,
|
| 2712 |
+
"step": 386
|
| 2713 |
+
},
|
| 2714 |
+
{
|
| 2715 |
+
"epoch": 0.743158905424868,
|
| 2716 |
+
"grad_norm": 0.7064363862608019,
|
| 2717 |
+
"learning_rate": 9.929995085574142e-06,
|
| 2718 |
+
"loss": 1.3905,
|
| 2719 |
+
"step": 387
|
| 2720 |
+
},
|
| 2721 |
+
{
|
| 2722 |
+
"epoch": 0.7450792126740279,
|
| 2723 |
+
"grad_norm": 0.7331138015593877,
|
| 2724 |
+
"learning_rate": 9.928873200394323e-06,
|
| 2725 |
+
"loss": 1.3649,
|
| 2726 |
+
"step": 388
|
| 2727 |
+
},
|
| 2728 |
+
{
|
| 2729 |
+
"epoch": 0.7469995199231877,
|
| 2730 |
+
"grad_norm": 0.7324112634125343,
|
| 2731 |
+
"learning_rate": 9.927742461365493e-06,
|
| 2732 |
+
"loss": 1.4049,
|
| 2733 |
+
"step": 389
|
| 2734 |
+
},
|
| 2735 |
+
{
|
| 2736 |
+
"epoch": 0.7489198271723476,
|
| 2737 |
+
"grad_norm": 0.7448582260656762,
|
| 2738 |
+
"learning_rate": 9.926602870518826e-06,
|
| 2739 |
+
"loss": 1.3451,
|
| 2740 |
+
"step": 390
|
| 2741 |
+
},
|
| 2742 |
+
{
|
| 2743 |
+
"epoch": 0.7508401344215074,
|
| 2744 |
+
"grad_norm": 0.7290925508892867,
|
| 2745 |
+
"learning_rate": 9.925454429901397e-06,
|
| 2746 |
+
"loss": 1.265,
|
| 2747 |
+
"step": 391
|
| 2748 |
+
},
|
| 2749 |
+
{
|
| 2750 |
+
"epoch": 0.7527604416706674,
|
| 2751 |
+
"grad_norm": 0.8652107575311744,
|
| 2752 |
+
"learning_rate": 9.924297141576176e-06,
|
| 2753 |
+
"loss": 1.2601,
|
| 2754 |
+
"step": 392
|
| 2755 |
+
},
|
| 2756 |
+
{
|
| 2757 |
+
"epoch": 0.7546807489198272,
|
| 2758 |
+
"grad_norm": 0.8112589543786329,
|
| 2759 |
+
"learning_rate": 9.923131007622027e-06,
|
| 2760 |
+
"loss": 1.3949,
|
| 2761 |
+
"step": 393
|
| 2762 |
+
},
|
| 2763 |
+
{
|
| 2764 |
+
"epoch": 0.756601056168987,
|
| 2765 |
+
"grad_norm": 0.7564370059278668,
|
| 2766 |
+
"learning_rate": 9.9219560301337e-06,
|
| 2767 |
+
"loss": 1.5582,
|
| 2768 |
+
"step": 394
|
| 2769 |
+
},
|
| 2770 |
+
{
|
| 2771 |
+
"epoch": 0.7585213634181469,
|
| 2772 |
+
"grad_norm": 0.7217323314506744,
|
| 2773 |
+
"learning_rate": 9.920772211221841e-06,
|
| 2774 |
+
"loss": 1.3385,
|
| 2775 |
+
"step": 395
|
| 2776 |
+
},
|
| 2777 |
+
{
|
| 2778 |
+
"epoch": 0.7604416706673067,
|
| 2779 |
+
"grad_norm": 0.7276996906484348,
|
| 2780 |
+
"learning_rate": 9.919579553012964e-06,
|
| 2781 |
+
"loss": 1.3778,
|
| 2782 |
+
"step": 396
|
| 2783 |
+
},
|
| 2784 |
+
{
|
| 2785 |
+
"epoch": 0.7623619779164666,
|
| 2786 |
+
"grad_norm": 0.7823149650395126,
|
| 2787 |
+
"learning_rate": 9.918378057649474e-06,
|
| 2788 |
+
"loss": 1.3767,
|
| 2789 |
+
"step": 397
|
| 2790 |
+
},
|
| 2791 |
+
{
|
| 2792 |
+
"epoch": 0.7642822851656265,
|
| 2793 |
+
"grad_norm": 0.6630175095699308,
|
| 2794 |
+
"learning_rate": 9.917167727289641e-06,
|
| 2795 |
+
"loss": 1.4844,
|
| 2796 |
+
"step": 398
|
| 2797 |
+
},
|
| 2798 |
+
{
|
| 2799 |
+
"epoch": 0.7662025924147864,
|
| 2800 |
+
"grad_norm": 0.7344567983746931,
|
| 2801 |
+
"learning_rate": 9.915948564107611e-06,
|
| 2802 |
+
"loss": 1.3379,
|
| 2803 |
+
"step": 399
|
| 2804 |
+
},
|
| 2805 |
+
{
|
| 2806 |
+
"epoch": 0.7681228996639462,
|
| 2807 |
+
"grad_norm": 0.7466071399468908,
|
| 2808 |
+
"learning_rate": 9.914720570293397e-06,
|
| 2809 |
+
"loss": 1.3972,
|
| 2810 |
+
"step": 400
|
| 2811 |
+
},
|
| 2812 |
+
{
|
| 2813 |
+
"epoch": 0.7700432069131061,
|
| 2814 |
+
"grad_norm": 0.6949526386517407,
|
| 2815 |
+
"learning_rate": 9.913483748052871e-06,
|
| 2816 |
+
"loss": 1.4014,
|
| 2817 |
+
"step": 401
|
| 2818 |
+
},
|
| 2819 |
+
{
|
| 2820 |
+
"epoch": 0.7719635141622659,
|
| 2821 |
+
"grad_norm": 0.6613334975361209,
|
| 2822 |
+
"learning_rate": 9.912238099607763e-06,
|
| 2823 |
+
"loss": 1.2069,
|
| 2824 |
+
"step": 402
|
| 2825 |
+
},
|
| 2826 |
+
{
|
| 2827 |
+
"epoch": 0.7738838214114259,
|
| 2828 |
+
"grad_norm": 0.6632714829710001,
|
| 2829 |
+
"learning_rate": 9.910983627195665e-06,
|
| 2830 |
+
"loss": 1.2427,
|
| 2831 |
+
"step": 403
|
| 2832 |
+
},
|
| 2833 |
+
{
|
| 2834 |
+
"epoch": 0.7758041286605857,
|
| 2835 |
+
"grad_norm": 0.6899922310091848,
|
| 2836 |
+
"learning_rate": 9.90972033307001e-06,
|
| 2837 |
+
"loss": 1.4041,
|
| 2838 |
+
"step": 404
|
| 2839 |
+
},
|
| 2840 |
+
{
|
| 2841 |
+
"epoch": 0.7777244359097456,
|
| 2842 |
+
"grad_norm": 0.6259530173512385,
|
| 2843 |
+
"learning_rate": 9.908448219500087e-06,
|
| 2844 |
+
"loss": 1.0889,
|
| 2845 |
+
"step": 405
|
| 2846 |
+
},
|
| 2847 |
+
{
|
| 2848 |
+
"epoch": 0.7796447431589054,
|
| 2849 |
+
"grad_norm": 0.7856357851084043,
|
| 2850 |
+
"learning_rate": 9.90716728877102e-06,
|
| 2851 |
+
"loss": 1.4446,
|
| 2852 |
+
"step": 406
|
| 2853 |
+
},
|
| 2854 |
+
{
|
| 2855 |
+
"epoch": 0.7815650504080653,
|
| 2856 |
+
"grad_norm": 0.6391414313005859,
|
| 2857 |
+
"learning_rate": 9.905877543183776e-06,
|
| 2858 |
+
"loss": 1.3569,
|
| 2859 |
+
"step": 407
|
| 2860 |
+
},
|
| 2861 |
+
{
|
| 2862 |
+
"epoch": 0.7834853576572252,
|
| 2863 |
+
"grad_norm": 0.7168868905941123,
|
| 2864 |
+
"learning_rate": 9.904578985055151e-06,
|
| 2865 |
+
"loss": 1.3422,
|
| 2866 |
+
"step": 408
|
| 2867 |
+
},
|
| 2868 |
+
{
|
| 2869 |
+
"epoch": 0.785405664906385,
|
| 2870 |
+
"grad_norm": 0.7244557046923163,
|
| 2871 |
+
"learning_rate": 9.903271616717782e-06,
|
| 2872 |
+
"loss": 1.4439,
|
| 2873 |
+
"step": 409
|
| 2874 |
+
},
|
| 2875 |
+
{
|
| 2876 |
+
"epoch": 0.7873259721555449,
|
| 2877 |
+
"grad_norm": 0.7135679454347851,
|
| 2878 |
+
"learning_rate": 9.901955440520121e-06,
|
| 2879 |
+
"loss": 1.417,
|
| 2880 |
+
"step": 410
|
| 2881 |
+
},
|
| 2882 |
+
{
|
| 2883 |
+
"epoch": 0.7892462794047047,
|
| 2884 |
+
"grad_norm": 0.6975305523738247,
|
| 2885 |
+
"learning_rate": 9.900630458826443e-06,
|
| 2886 |
+
"loss": 1.2732,
|
| 2887 |
+
"step": 411
|
| 2888 |
+
},
|
| 2889 |
+
{
|
| 2890 |
+
"epoch": 0.7911665866538646,
|
| 2891 |
+
"grad_norm": 0.6844791536520864,
|
| 2892 |
+
"learning_rate": 9.89929667401685e-06,
|
| 2893 |
+
"loss": 1.1994,
|
| 2894 |
+
"step": 412
|
| 2895 |
+
},
|
| 2896 |
+
{
|
| 2897 |
+
"epoch": 0.7930868939030244,
|
| 2898 |
+
"grad_norm": 0.6995208409953875,
|
| 2899 |
+
"learning_rate": 9.897954088487245e-06,
|
| 2900 |
+
"loss": 1.44,
|
| 2901 |
+
"step": 413
|
| 2902 |
+
},
|
| 2903 |
+
{
|
| 2904 |
+
"epoch": 0.7950072011521844,
|
| 2905 |
+
"grad_norm": 0.6664160171541003,
|
| 2906 |
+
"learning_rate": 9.896602704649348e-06,
|
| 2907 |
+
"loss": 1.3604,
|
| 2908 |
+
"step": 414
|
| 2909 |
+
},
|
| 2910 |
+
{
|
| 2911 |
+
"epoch": 0.7969275084013442,
|
| 2912 |
+
"grad_norm": 0.6554390013099766,
|
| 2913 |
+
"learning_rate": 9.89524252493068e-06,
|
| 2914 |
+
"loss": 1.3002,
|
| 2915 |
+
"step": 415
|
| 2916 |
+
},
|
| 2917 |
+
{
|
| 2918 |
+
"epoch": 0.7988478156505041,
|
| 2919 |
+
"grad_norm": 0.7714848495681179,
|
| 2920 |
+
"learning_rate": 9.893873551774561e-06,
|
| 2921 |
+
"loss": 1.4559,
|
| 2922 |
+
"step": 416
|
| 2923 |
+
},
|
| 2924 |
+
{
|
| 2925 |
+
"epoch": 0.8007681228996639,
|
| 2926 |
+
"grad_norm": 0.684531285979124,
|
| 2927 |
+
"learning_rate": 9.892495787640117e-06,
|
| 2928 |
+
"loss": 1.4116,
|
| 2929 |
+
"step": 417
|
| 2930 |
+
},
|
| 2931 |
+
{
|
| 2932 |
+
"epoch": 0.8026884301488239,
|
| 2933 |
+
"grad_norm": 0.625351185162249,
|
| 2934 |
+
"learning_rate": 9.891109235002248e-06,
|
| 2935 |
+
"loss": 1.2968,
|
| 2936 |
+
"step": 418
|
| 2937 |
+
},
|
| 2938 |
+
{
|
| 2939 |
+
"epoch": 0.8046087373979837,
|
| 2940 |
+
"grad_norm": 0.6072425157093212,
|
| 2941 |
+
"learning_rate": 9.889713896351658e-06,
|
| 2942 |
+
"loss": 1.2834,
|
| 2943 |
+
"step": 419
|
| 2944 |
+
},
|
| 2945 |
+
{
|
| 2946 |
+
"epoch": 0.8065290446471436,
|
| 2947 |
+
"grad_norm": 0.7557266979543664,
|
| 2948 |
+
"learning_rate": 9.888309774194822e-06,
|
| 2949 |
+
"loss": 1.2581,
|
| 2950 |
+
"step": 420
|
| 2951 |
+
},
|
| 2952 |
+
{
|
| 2953 |
+
"epoch": 0.8084493518963034,
|
| 2954 |
+
"grad_norm": 0.6948893024278046,
|
| 2955 |
+
"learning_rate": 9.886896871053996e-06,
|
| 2956 |
+
"loss": 1.3472,
|
| 2957 |
+
"step": 421
|
| 2958 |
+
},
|
| 2959 |
+
{
|
| 2960 |
+
"epoch": 0.8103696591454633,
|
| 2961 |
+
"grad_norm": 0.782279217584078,
|
| 2962 |
+
"learning_rate": 9.885475189467217e-06,
|
| 2963 |
+
"loss": 1.3546,
|
| 2964 |
+
"step": 422
|
| 2965 |
+
},
|
| 2966 |
+
{
|
| 2967 |
+
"epoch": 0.8122899663946231,
|
| 2968 |
+
"grad_norm": 0.7188760215338773,
|
| 2969 |
+
"learning_rate": 9.884044731988278e-06,
|
| 2970 |
+
"loss": 1.3683,
|
| 2971 |
+
"step": 423
|
| 2972 |
+
},
|
| 2973 |
+
{
|
| 2974 |
+
"epoch": 0.814210273643783,
|
| 2975 |
+
"grad_norm": 0.7215722020243497,
|
| 2976 |
+
"learning_rate": 9.882605501186747e-06,
|
| 2977 |
+
"loss": 1.2629,
|
| 2978 |
+
"step": 424
|
| 2979 |
+
},
|
| 2980 |
+
{
|
| 2981 |
+
"epoch": 0.8161305808929429,
|
| 2982 |
+
"grad_norm": 0.699083447265363,
|
| 2983 |
+
"learning_rate": 9.881157499647944e-06,
|
| 2984 |
+
"loss": 1.3218,
|
| 2985 |
+
"step": 425
|
| 2986 |
+
},
|
| 2987 |
+
{
|
| 2988 |
+
"epoch": 0.8180508881421027,
|
| 2989 |
+
"grad_norm": 0.724984065762376,
|
| 2990 |
+
"learning_rate": 9.87970072997295e-06,
|
| 2991 |
+
"loss": 1.3034,
|
| 2992 |
+
"step": 426
|
| 2993 |
+
},
|
| 2994 |
+
{
|
| 2995 |
+
"epoch": 0.8199711953912626,
|
| 2996 |
+
"grad_norm": 0.7049961948332424,
|
| 2997 |
+
"learning_rate": 9.878235194778594e-06,
|
| 2998 |
+
"loss": 1.4015,
|
| 2999 |
+
"step": 427
|
| 3000 |
+
},
|
| 3001 |
+
{
|
| 3002 |
+
"epoch": 0.8218915026404224,
|
| 3003 |
+
"grad_norm": 0.6961558656551843,
|
| 3004 |
+
"learning_rate": 9.87676089669745e-06,
|
| 3005 |
+
"loss": 1.3292,
|
| 3006 |
+
"step": 428
|
| 3007 |
+
},
|
| 3008 |
+
{
|
| 3009 |
+
"epoch": 0.8238118098895824,
|
| 3010 |
+
"grad_norm": 0.6755568609982437,
|
| 3011 |
+
"learning_rate": 9.875277838377835e-06,
|
| 3012 |
+
"loss": 1.2485,
|
| 3013 |
+
"step": 429
|
| 3014 |
+
},
|
| 3015 |
+
{
|
| 3016 |
+
"epoch": 0.8257321171387422,
|
| 3017 |
+
"grad_norm": 0.731506928442002,
|
| 3018 |
+
"learning_rate": 9.8737860224838e-06,
|
| 3019 |
+
"loss": 1.371,
|
| 3020 |
+
"step": 430
|
| 3021 |
+
},
|
| 3022 |
+
{
|
| 3023 |
+
"epoch": 0.8276524243879021,
|
| 3024 |
+
"grad_norm": 0.8321982922227138,
|
| 3025 |
+
"learning_rate": 9.872285451695128e-06,
|
| 3026 |
+
"loss": 1.3981,
|
| 3027 |
+
"step": 431
|
| 3028 |
+
},
|
| 3029 |
+
{
|
| 3030 |
+
"epoch": 0.8295727316370619,
|
| 3031 |
+
"grad_norm": 0.7315030508325402,
|
| 3032 |
+
"learning_rate": 9.87077612870733e-06,
|
| 3033 |
+
"loss": 1.3311,
|
| 3034 |
+
"step": 432
|
| 3035 |
+
},
|
| 3036 |
+
{
|
| 3037 |
+
"epoch": 0.8314930388862218,
|
| 3038 |
+
"grad_norm": 0.798773303498576,
|
| 3039 |
+
"learning_rate": 9.869258056231638e-06,
|
| 3040 |
+
"loss": 1.3727,
|
| 3041 |
+
"step": 433
|
| 3042 |
+
},
|
| 3043 |
+
{
|
| 3044 |
+
"epoch": 0.8334133461353816,
|
| 3045 |
+
"grad_norm": 0.651844540018506,
|
| 3046 |
+
"learning_rate": 9.867731236995e-06,
|
| 3047 |
+
"loss": 1.3471,
|
| 3048 |
+
"step": 434
|
| 3049 |
+
},
|
| 3050 |
+
{
|
| 3051 |
+
"epoch": 0.8353336533845416,
|
| 3052 |
+
"grad_norm": 0.6771670988304741,
|
| 3053 |
+
"learning_rate": 9.866195673740076e-06,
|
| 3054 |
+
"loss": 1.3032,
|
| 3055 |
+
"step": 435
|
| 3056 |
+
},
|
| 3057 |
+
{
|
| 3058 |
+
"epoch": 0.8372539606337014,
|
| 3059 |
+
"grad_norm": 0.8611651792236157,
|
| 3060 |
+
"learning_rate": 9.864651369225236e-06,
|
| 3061 |
+
"loss": 1.2559,
|
| 3062 |
+
"step": 436
|
| 3063 |
+
},
|
| 3064 |
+
{
|
| 3065 |
+
"epoch": 0.8391742678828612,
|
| 3066 |
+
"grad_norm": 0.7436061953882284,
|
| 3067 |
+
"learning_rate": 9.863098326224546e-06,
|
| 3068 |
+
"loss": 1.3166,
|
| 3069 |
+
"step": 437
|
| 3070 |
+
},
|
| 3071 |
+
{
|
| 3072 |
+
"epoch": 0.8410945751320211,
|
| 3073 |
+
"grad_norm": 0.7409544469403813,
|
| 3074 |
+
"learning_rate": 9.86153654752778e-06,
|
| 3075 |
+
"loss": 1.4249,
|
| 3076 |
+
"step": 438
|
| 3077 |
+
},
|
| 3078 |
+
{
|
| 3079 |
+
"epoch": 0.8430148823811809,
|
| 3080 |
+
"grad_norm": 0.7184845856939001,
|
| 3081 |
+
"learning_rate": 9.859966035940391e-06,
|
| 3082 |
+
"loss": 1.3899,
|
| 3083 |
+
"step": 439
|
| 3084 |
+
},
|
| 3085 |
+
{
|
| 3086 |
+
"epoch": 0.8449351896303409,
|
| 3087 |
+
"grad_norm": 0.7569549756216626,
|
| 3088 |
+
"learning_rate": 9.858386794283527e-06,
|
| 3089 |
+
"loss": 1.4622,
|
| 3090 |
+
"step": 440
|
| 3091 |
+
},
|
| 3092 |
+
{
|
| 3093 |
+
"epoch": 0.8468554968795007,
|
| 3094 |
+
"grad_norm": 0.7230751877755235,
|
| 3095 |
+
"learning_rate": 9.856798825394017e-06,
|
| 3096 |
+
"loss": 1.3834,
|
| 3097 |
+
"step": 441
|
| 3098 |
+
},
|
| 3099 |
+
{
|
| 3100 |
+
"epoch": 0.8487758041286606,
|
| 3101 |
+
"grad_norm": 0.7861385241652444,
|
| 3102 |
+
"learning_rate": 9.855202132124367e-06,
|
| 3103 |
+
"loss": 1.4005,
|
| 3104 |
+
"step": 442
|
| 3105 |
+
},
|
| 3106 |
+
{
|
| 3107 |
+
"epoch": 0.8506961113778204,
|
| 3108 |
+
"grad_norm": 0.654961628331442,
|
| 3109 |
+
"learning_rate": 9.853596717342751e-06,
|
| 3110 |
+
"loss": 1.2536,
|
| 3111 |
+
"step": 443
|
| 3112 |
+
},
|
| 3113 |
+
{
|
| 3114 |
+
"epoch": 0.8526164186269803,
|
| 3115 |
+
"grad_norm": 0.7338664793979522,
|
| 3116 |
+
"learning_rate": 9.851982583933015e-06,
|
| 3117 |
+
"loss": 1.4289,
|
| 3118 |
+
"step": 444
|
| 3119 |
+
},
|
| 3120 |
+
{
|
| 3121 |
+
"epoch": 0.8545367258761402,
|
| 3122 |
+
"grad_norm": 0.647102767057043,
|
| 3123 |
+
"learning_rate": 9.850359734794664e-06,
|
| 3124 |
+
"loss": 1.3167,
|
| 3125 |
+
"step": 445
|
| 3126 |
+
},
|
| 3127 |
+
{
|
| 3128 |
+
"epoch": 0.8564570331253001,
|
| 3129 |
+
"grad_norm": 0.7940838292459027,
|
| 3130 |
+
"learning_rate": 9.84872817284286e-06,
|
| 3131 |
+
"loss": 1.4604,
|
| 3132 |
+
"step": 446
|
| 3133 |
+
},
|
| 3134 |
+
{
|
| 3135 |
+
"epoch": 0.8583773403744599,
|
| 3136 |
+
"grad_norm": 0.7447428727236874,
|
| 3137 |
+
"learning_rate": 9.847087901008415e-06,
|
| 3138 |
+
"loss": 1.392,
|
| 3139 |
+
"step": 447
|
| 3140 |
+
},
|
| 3141 |
+
{
|
| 3142 |
+
"epoch": 0.8602976476236198,
|
| 3143 |
+
"grad_norm": 0.7643508165383381,
|
| 3144 |
+
"learning_rate": 9.845438922237787e-06,
|
| 3145 |
+
"loss": 1.3017,
|
| 3146 |
+
"step": 448
|
| 3147 |
+
},
|
| 3148 |
+
{
|
| 3149 |
+
"epoch": 0.8622179548727796,
|
| 3150 |
+
"grad_norm": 0.7617962346454569,
|
| 3151 |
+
"learning_rate": 9.843781239493076e-06,
|
| 3152 |
+
"loss": 1.6087,
|
| 3153 |
+
"step": 449
|
| 3154 |
+
},
|
| 3155 |
+
{
|
| 3156 |
+
"epoch": 0.8641382621219396,
|
| 3157 |
+
"grad_norm": 0.7385042271210234,
|
| 3158 |
+
"learning_rate": 9.842114855752013e-06,
|
| 3159 |
+
"loss": 1.287,
|
| 3160 |
+
"step": 450
|
| 3161 |
+
},
|
| 3162 |
+
{
|
| 3163 |
+
"epoch": 0.8660585693710994,
|
| 3164 |
+
"grad_norm": 0.7904769194673538,
|
| 3165 |
+
"learning_rate": 9.840439774007963e-06,
|
| 3166 |
+
"loss": 1.3847,
|
| 3167 |
+
"step": 451
|
| 3168 |
+
},
|
| 3169 |
+
{
|
| 3170 |
+
"epoch": 0.8679788766202592,
|
| 3171 |
+
"grad_norm": 0.7796917727237478,
|
| 3172 |
+
"learning_rate": 9.838755997269917e-06,
|
| 3173 |
+
"loss": 1.4052,
|
| 3174 |
+
"step": 452
|
| 3175 |
+
},
|
| 3176 |
+
{
|
| 3177 |
+
"epoch": 0.8698991838694191,
|
| 3178 |
+
"grad_norm": 0.6685557701211076,
|
| 3179 |
+
"learning_rate": 9.837063528562479e-06,
|
| 3180 |
+
"loss": 1.2191,
|
| 3181 |
+
"step": 453
|
| 3182 |
+
},
|
| 3183 |
+
{
|
| 3184 |
+
"epoch": 0.8718194911185789,
|
| 3185 |
+
"grad_norm": 0.682007015556512,
|
| 3186 |
+
"learning_rate": 9.835362370925868e-06,
|
| 3187 |
+
"loss": 1.4041,
|
| 3188 |
+
"step": 454
|
| 3189 |
+
},
|
| 3190 |
+
{
|
| 3191 |
+
"epoch": 0.8737397983677389,
|
| 3192 |
+
"grad_norm": 0.6809420760471568,
|
| 3193 |
+
"learning_rate": 9.833652527415918e-06,
|
| 3194 |
+
"loss": 1.1179,
|
| 3195 |
+
"step": 455
|
| 3196 |
+
},
|
| 3197 |
+
{
|
| 3198 |
+
"epoch": 0.8756601056168987,
|
| 3199 |
+
"grad_norm": 0.7496451496119366,
|
| 3200 |
+
"learning_rate": 9.831934001104056e-06,
|
| 3201 |
+
"loss": 1.1863,
|
| 3202 |
+
"step": 456
|
| 3203 |
+
},
|
| 3204 |
+
{
|
| 3205 |
+
"epoch": 0.8775804128660586,
|
| 3206 |
+
"grad_norm": 0.7958820882337777,
|
| 3207 |
+
"learning_rate": 9.830206795077313e-06,
|
| 3208 |
+
"loss": 1.4097,
|
| 3209 |
+
"step": 457
|
| 3210 |
+
},
|
| 3211 |
+
{
|
| 3212 |
+
"epoch": 0.8795007201152184,
|
| 3213 |
+
"grad_norm": 0.7760893359826682,
|
| 3214 |
+
"learning_rate": 9.828470912438308e-06,
|
| 3215 |
+
"loss": 1.4765,
|
| 3216 |
+
"step": 458
|
| 3217 |
+
},
|
| 3218 |
+
{
|
| 3219 |
+
"epoch": 0.8814210273643783,
|
| 3220 |
+
"grad_norm": 0.7181251163054755,
|
| 3221 |
+
"learning_rate": 9.826726356305248e-06,
|
| 3222 |
+
"loss": 1.2336,
|
| 3223 |
+
"step": 459
|
| 3224 |
+
},
|
| 3225 |
+
{
|
| 3226 |
+
"epoch": 0.8833413346135381,
|
| 3227 |
+
"grad_norm": 0.7130113363618711,
|
| 3228 |
+
"learning_rate": 9.824973129811919e-06,
|
| 3229 |
+
"loss": 1.3356,
|
| 3230 |
+
"step": 460
|
| 3231 |
+
},
|
| 3232 |
+
{
|
| 3233 |
+
"epoch": 0.8852616418626981,
|
| 3234 |
+
"grad_norm": 0.6976783021258673,
|
| 3235 |
+
"learning_rate": 9.823211236107684e-06,
|
| 3236 |
+
"loss": 1.5375,
|
| 3237 |
+
"step": 461
|
| 3238 |
+
},
|
| 3239 |
+
{
|
| 3240 |
+
"epoch": 0.8871819491118579,
|
| 3241 |
+
"grad_norm": 0.6494482314881563,
|
| 3242 |
+
"learning_rate": 9.82144067835747e-06,
|
| 3243 |
+
"loss": 1.4216,
|
| 3244 |
+
"step": 462
|
| 3245 |
+
},
|
| 3246 |
+
{
|
| 3247 |
+
"epoch": 0.8891022563610178,
|
| 3248 |
+
"grad_norm": 0.6799368531582445,
|
| 3249 |
+
"learning_rate": 9.819661459741774e-06,
|
| 3250 |
+
"loss": 1.2607,
|
| 3251 |
+
"step": 463
|
| 3252 |
+
},
|
| 3253 |
+
{
|
| 3254 |
+
"epoch": 0.8910225636101776,
|
| 3255 |
+
"grad_norm": 0.7200924252996468,
|
| 3256 |
+
"learning_rate": 9.817873583456646e-06,
|
| 3257 |
+
"loss": 1.3954,
|
| 3258 |
+
"step": 464
|
| 3259 |
+
},
|
| 3260 |
+
{
|
| 3261 |
+
"epoch": 0.8929428708593375,
|
| 3262 |
+
"grad_norm": 0.723830426362561,
|
| 3263 |
+
"learning_rate": 9.816077052713689e-06,
|
| 3264 |
+
"loss": 1.2634,
|
| 3265 |
+
"step": 465
|
| 3266 |
+
},
|
| 3267 |
+
{
|
| 3268 |
+
"epoch": 0.8948631781084974,
|
| 3269 |
+
"grad_norm": 0.6795402172591166,
|
| 3270 |
+
"learning_rate": 9.814271870740054e-06,
|
| 3271 |
+
"loss": 1.288,
|
| 3272 |
+
"step": 466
|
| 3273 |
+
},
|
| 3274 |
+
{
|
| 3275 |
+
"epoch": 0.8967834853576572,
|
| 3276 |
+
"grad_norm": 0.7798610485610813,
|
| 3277 |
+
"learning_rate": 9.812458040778433e-06,
|
| 3278 |
+
"loss": 1.3816,
|
| 3279 |
+
"step": 467
|
| 3280 |
+
},
|
| 3281 |
+
{
|
| 3282 |
+
"epoch": 0.8987037926068171,
|
| 3283 |
+
"grad_norm": 0.6598552167407624,
|
| 3284 |
+
"learning_rate": 9.810635566087046e-06,
|
| 3285 |
+
"loss": 1.3142,
|
| 3286 |
+
"step": 468
|
| 3287 |
+
},
|
| 3288 |
+
{
|
| 3289 |
+
"epoch": 0.9006240998559769,
|
| 3290 |
+
"grad_norm": 0.8267440234447042,
|
| 3291 |
+
"learning_rate": 9.808804449939649e-06,
|
| 3292 |
+
"loss": 1.3952,
|
| 3293 |
+
"step": 469
|
| 3294 |
+
},
|
| 3295 |
+
{
|
| 3296 |
+
"epoch": 0.9025444071051368,
|
| 3297 |
+
"grad_norm": 0.6831251782753334,
|
| 3298 |
+
"learning_rate": 9.806964695625521e-06,
|
| 3299 |
+
"loss": 1.3507,
|
| 3300 |
+
"step": 470
|
| 3301 |
+
},
|
| 3302 |
+
{
|
| 3303 |
+
"epoch": 0.9044647143542967,
|
| 3304 |
+
"grad_norm": 0.6913550521559437,
|
| 3305 |
+
"learning_rate": 9.80511630644945e-06,
|
| 3306 |
+
"loss": 1.3858,
|
| 3307 |
+
"step": 471
|
| 3308 |
+
},
|
| 3309 |
+
{
|
| 3310 |
+
"epoch": 0.9063850216034566,
|
| 3311 |
+
"grad_norm": 0.651357091385134,
|
| 3312 |
+
"learning_rate": 9.803259285731744e-06,
|
| 3313 |
+
"loss": 1.3119,
|
| 3314 |
+
"step": 472
|
| 3315 |
+
},
|
| 3316 |
+
{
|
| 3317 |
+
"epoch": 0.9083053288526164,
|
| 3318 |
+
"grad_norm": 0.6876771805281661,
|
| 3319 |
+
"learning_rate": 9.801393636808213e-06,
|
| 3320 |
+
"loss": 1.405,
|
| 3321 |
+
"step": 473
|
| 3322 |
+
},
|
| 3323 |
+
{
|
| 3324 |
+
"epoch": 0.9102256361017763,
|
| 3325 |
+
"grad_norm": 0.6704161705700665,
|
| 3326 |
+
"learning_rate": 9.79951936303016e-06,
|
| 3327 |
+
"loss": 1.1645,
|
| 3328 |
+
"step": 474
|
| 3329 |
+
},
|
| 3330 |
+
{
|
| 3331 |
+
"epoch": 0.9121459433509361,
|
| 3332 |
+
"grad_norm": 0.8403757549868232,
|
| 3333 |
+
"learning_rate": 9.797636467764392e-06,
|
| 3334 |
+
"loss": 1.3374,
|
| 3335 |
+
"step": 475
|
| 3336 |
+
},
|
| 3337 |
+
{
|
| 3338 |
+
"epoch": 0.914066250600096,
|
| 3339 |
+
"grad_norm": 0.6976996239643926,
|
| 3340 |
+
"learning_rate": 9.795744954393193e-06,
|
| 3341 |
+
"loss": 1.2789,
|
| 3342 |
+
"step": 476
|
| 3343 |
+
},
|
| 3344 |
+
{
|
| 3345 |
+
"epoch": 0.9159865578492559,
|
| 3346 |
+
"grad_norm": 0.7007105159698541,
|
| 3347 |
+
"learning_rate": 9.793844826314338e-06,
|
| 3348 |
+
"loss": 1.2513,
|
| 3349 |
+
"step": 477
|
| 3350 |
+
},
|
| 3351 |
+
{
|
| 3352 |
+
"epoch": 0.9179068650984158,
|
| 3353 |
+
"grad_norm": 0.8046443692914484,
|
| 3354 |
+
"learning_rate": 9.791936086941065e-06,
|
| 3355 |
+
"loss": 1.4276,
|
| 3356 |
+
"step": 478
|
| 3357 |
+
},
|
| 3358 |
+
{
|
| 3359 |
+
"epoch": 0.9198271723475756,
|
| 3360 |
+
"grad_norm": 0.6689604084398844,
|
| 3361 |
+
"learning_rate": 9.790018739702091e-06,
|
| 3362 |
+
"loss": 1.1329,
|
| 3363 |
+
"step": 479
|
| 3364 |
+
},
|
| 3365 |
+
{
|
| 3366 |
+
"epoch": 0.9217474795967355,
|
| 3367 |
+
"grad_norm": 0.7418530237185074,
|
| 3368 |
+
"learning_rate": 9.788092788041589e-06,
|
| 3369 |
+
"loss": 1.2312,
|
| 3370 |
+
"step": 480
|
| 3371 |
+
},
|
| 3372 |
+
{
|
| 3373 |
+
"epoch": 0.9236677868458953,
|
| 3374 |
+
"grad_norm": 0.7344158824384261,
|
| 3375 |
+
"learning_rate": 9.78615823541919e-06,
|
| 3376 |
+
"loss": 1.5327,
|
| 3377 |
+
"step": 481
|
| 3378 |
+
},
|
| 3379 |
+
{
|
| 3380 |
+
"epoch": 0.9255880940950552,
|
| 3381 |
+
"grad_norm": 0.7029451657520306,
|
| 3382 |
+
"learning_rate": 9.784215085309977e-06,
|
| 3383 |
+
"loss": 1.3297,
|
| 3384 |
+
"step": 482
|
| 3385 |
+
},
|
| 3386 |
+
{
|
| 3387 |
+
"epoch": 0.9275084013442151,
|
| 3388 |
+
"grad_norm": 0.8107964882673727,
|
| 3389 |
+
"learning_rate": 9.782263341204477e-06,
|
| 3390 |
+
"loss": 1.2561,
|
| 3391 |
+
"step": 483
|
| 3392 |
+
},
|
| 3393 |
+
{
|
| 3394 |
+
"epoch": 0.9294287085933749,
|
| 3395 |
+
"grad_norm": 0.7114545290156662,
|
| 3396 |
+
"learning_rate": 9.78030300660865e-06,
|
| 3397 |
+
"loss": 1.3645,
|
| 3398 |
+
"step": 484
|
| 3399 |
+
},
|
| 3400 |
+
{
|
| 3401 |
+
"epoch": 0.9313490158425348,
|
| 3402 |
+
"grad_norm": 0.7402003366232237,
|
| 3403 |
+
"learning_rate": 9.77833408504389e-06,
|
| 3404 |
+
"loss": 1.3642,
|
| 3405 |
+
"step": 485
|
| 3406 |
+
},
|
| 3407 |
+
{
|
| 3408 |
+
"epoch": 0.9332693230916946,
|
| 3409 |
+
"grad_norm": 0.7109408774118504,
|
| 3410 |
+
"learning_rate": 9.77635658004702e-06,
|
| 3411 |
+
"loss": 1.3221,
|
| 3412 |
+
"step": 486
|
| 3413 |
+
},
|
| 3414 |
+
{
|
| 3415 |
+
"epoch": 0.9351896303408546,
|
| 3416 |
+
"grad_norm": 0.7433358040489166,
|
| 3417 |
+
"learning_rate": 9.774370495170276e-06,
|
| 3418 |
+
"loss": 1.4449,
|
| 3419 |
+
"step": 487
|
| 3420 |
+
},
|
| 3421 |
+
{
|
| 3422 |
+
"epoch": 0.9371099375900144,
|
| 3423 |
+
"grad_norm": 0.6785055655567391,
|
| 3424 |
+
"learning_rate": 9.772375833981306e-06,
|
| 3425 |
+
"loss": 1.3555,
|
| 3426 |
+
"step": 488
|
| 3427 |
+
},
|
| 3428 |
+
{
|
| 3429 |
+
"epoch": 0.9390302448391743,
|
| 3430 |
+
"grad_norm": 0.76870851128488,
|
| 3431 |
+
"learning_rate": 9.770372600063172e-06,
|
| 3432 |
+
"loss": 1.284,
|
| 3433 |
+
"step": 489
|
| 3434 |
+
},
|
| 3435 |
+
{
|
| 3436 |
+
"epoch": 0.9409505520883341,
|
| 3437 |
+
"grad_norm": 0.7344357851176699,
|
| 3438 |
+
"learning_rate": 9.768360797014325e-06,
|
| 3439 |
+
"loss": 1.2853,
|
| 3440 |
+
"step": 490
|
| 3441 |
+
},
|
| 3442 |
+
{
|
| 3443 |
+
"epoch": 0.942870859337494,
|
| 3444 |
+
"grad_norm": 0.8470942465410728,
|
| 3445 |
+
"learning_rate": 9.766340428448614e-06,
|
| 3446 |
+
"loss": 1.3829,
|
| 3447 |
+
"step": 491
|
| 3448 |
+
},
|
| 3449 |
+
{
|
| 3450 |
+
"epoch": 0.9447911665866539,
|
| 3451 |
+
"grad_norm": 0.7211389944931649,
|
| 3452 |
+
"learning_rate": 9.764311497995272e-06,
|
| 3453 |
+
"loss": 1.2677,
|
| 3454 |
+
"step": 492
|
| 3455 |
+
},
|
| 3456 |
+
{
|
| 3457 |
+
"epoch": 0.9467114738358138,
|
| 3458 |
+
"grad_norm": 0.7084359929065828,
|
| 3459 |
+
"learning_rate": 9.762274009298918e-06,
|
| 3460 |
+
"loss": 1.2434,
|
| 3461 |
+
"step": 493
|
| 3462 |
+
},
|
| 3463 |
+
{
|
| 3464 |
+
"epoch": 0.9486317810849736,
|
| 3465 |
+
"grad_norm": 0.7689934246592068,
|
| 3466 |
+
"learning_rate": 9.760227966019537e-06,
|
| 3467 |
+
"loss": 1.4095,
|
| 3468 |
+
"step": 494
|
| 3469 |
+
},
|
| 3470 |
+
{
|
| 3471 |
+
"epoch": 0.9505520883341335,
|
| 3472 |
+
"grad_norm": 0.7773642092371199,
|
| 3473 |
+
"learning_rate": 9.758173371832485e-06,
|
| 3474 |
+
"loss": 1.3244,
|
| 3475 |
+
"step": 495
|
| 3476 |
+
},
|
| 3477 |
+
{
|
| 3478 |
+
"epoch": 0.9524723955832933,
|
| 3479 |
+
"grad_norm": 0.6978701658115153,
|
| 3480 |
+
"learning_rate": 9.756110230428476e-06,
|
| 3481 |
+
"loss": 1.2787,
|
| 3482 |
+
"step": 496
|
| 3483 |
+
},
|
| 3484 |
+
{
|
| 3485 |
+
"epoch": 0.9543927028324531,
|
| 3486 |
+
"grad_norm": 0.6910966359494893,
|
| 3487 |
+
"learning_rate": 9.75403854551358e-06,
|
| 3488 |
+
"loss": 1.3348,
|
| 3489 |
+
"step": 497
|
| 3490 |
+
},
|
| 3491 |
+
{
|
| 3492 |
+
"epoch": 0.9563130100816131,
|
| 3493 |
+
"grad_norm": 0.732636720833676,
|
| 3494 |
+
"learning_rate": 9.751958320809213e-06,
|
| 3495 |
+
"loss": 1.2403,
|
| 3496 |
+
"step": 498
|
| 3497 |
+
},
|
| 3498 |
+
{
|
| 3499 |
+
"epoch": 0.9582333173307729,
|
| 3500 |
+
"grad_norm": 0.7804889809056719,
|
| 3501 |
+
"learning_rate": 9.749869560052128e-06,
|
| 3502 |
+
"loss": 1.1905,
|
| 3503 |
+
"step": 499
|
| 3504 |
+
},
|
| 3505 |
+
{
|
| 3506 |
+
"epoch": 0.9601536245799328,
|
| 3507 |
+
"grad_norm": 0.7286628977028098,
|
| 3508 |
+
"learning_rate": 9.747772266994418e-06,
|
| 3509 |
+
"loss": 1.3252,
|
| 3510 |
+
"step": 500
|
| 3511 |
+
},
|
| 3512 |
+
{
|
| 3513 |
+
"epoch": 0.9620739318290926,
|
| 3514 |
+
"grad_norm": 0.730360159535326,
|
| 3515 |
+
"learning_rate": 9.745666445403496e-06,
|
| 3516 |
+
"loss": 1.4712,
|
| 3517 |
+
"step": 501
|
| 3518 |
+
},
|
| 3519 |
+
{
|
| 3520 |
+
"epoch": 0.9639942390782525,
|
| 3521 |
+
"grad_norm": 0.6650898577066633,
|
| 3522 |
+
"learning_rate": 9.7435520990621e-06,
|
| 3523 |
+
"loss": 1.2945,
|
| 3524 |
+
"step": 502
|
| 3525 |
+
},
|
| 3526 |
+
{
|
| 3527 |
+
"epoch": 0.9659145463274124,
|
| 3528 |
+
"grad_norm": 0.6813965501305161,
|
| 3529 |
+
"learning_rate": 9.741429231768278e-06,
|
| 3530 |
+
"loss": 1.3214,
|
| 3531 |
+
"step": 503
|
| 3532 |
+
},
|
| 3533 |
+
{
|
| 3534 |
+
"epoch": 0.9678348535765723,
|
| 3535 |
+
"grad_norm": 0.8240692929170976,
|
| 3536 |
+
"learning_rate": 9.739297847335387e-06,
|
| 3537 |
+
"loss": 1.4367,
|
| 3538 |
+
"step": 504
|
| 3539 |
+
},
|
| 3540 |
+
{
|
| 3541 |
+
"epoch": 0.9697551608257321,
|
| 3542 |
+
"grad_norm": 0.7664659172540482,
|
| 3543 |
+
"learning_rate": 9.73715794959208e-06,
|
| 3544 |
+
"loss": 1.2429,
|
| 3545 |
+
"step": 505
|
| 3546 |
+
},
|
| 3547 |
+
{
|
| 3548 |
+
"epoch": 0.971675468074892,
|
| 3549 |
+
"grad_norm": 0.663273604561841,
|
| 3550 |
+
"learning_rate": 9.735009542382308e-06,
|
| 3551 |
+
"loss": 1.2678,
|
| 3552 |
+
"step": 506
|
| 3553 |
+
},
|
| 3554 |
+
{
|
| 3555 |
+
"epoch": 0.9735957753240518,
|
| 3556 |
+
"grad_norm": 0.7286317666999398,
|
| 3557 |
+
"learning_rate": 9.732852629565302e-06,
|
| 3558 |
+
"loss": 1.351,
|
| 3559 |
+
"step": 507
|
| 3560 |
+
},
|
| 3561 |
+
{
|
| 3562 |
+
"epoch": 0.9755160825732118,
|
| 3563 |
+
"grad_norm": 0.7222364516570275,
|
| 3564 |
+
"learning_rate": 9.730687215015576e-06,
|
| 3565 |
+
"loss": 1.3875,
|
| 3566 |
+
"step": 508
|
| 3567 |
+
},
|
| 3568 |
+
{
|
| 3569 |
+
"epoch": 0.9774363898223716,
|
| 3570 |
+
"grad_norm": 0.792789498600007,
|
| 3571 |
+
"learning_rate": 9.728513302622911e-06,
|
| 3572 |
+
"loss": 1.4158,
|
| 3573 |
+
"step": 509
|
| 3574 |
+
},
|
| 3575 |
+
{
|
| 3576 |
+
"epoch": 0.9793566970715314,
|
| 3577 |
+
"grad_norm": 0.6898048543889689,
|
| 3578 |
+
"learning_rate": 9.72633089629236e-06,
|
| 3579 |
+
"loss": 1.3018,
|
| 3580 |
+
"step": 510
|
| 3581 |
+
},
|
| 3582 |
+
{
|
| 3583 |
+
"epoch": 0.9812770043206913,
|
| 3584 |
+
"grad_norm": 0.7080789810250435,
|
| 3585 |
+
"learning_rate": 9.72413999994423e-06,
|
| 3586 |
+
"loss": 1.2951,
|
| 3587 |
+
"step": 511
|
| 3588 |
+
},
|
| 3589 |
+
{
|
| 3590 |
+
"epoch": 0.9831973115698511,
|
| 3591 |
+
"grad_norm": 0.6471793883594157,
|
| 3592 |
+
"learning_rate": 9.721940617514076e-06,
|
| 3593 |
+
"loss": 1.1768,
|
| 3594 |
+
"step": 512
|
| 3595 |
+
},
|
| 3596 |
+
{
|
| 3597 |
+
"epoch": 0.985117618819011,
|
| 3598 |
+
"grad_norm": 0.6848848680839071,
|
| 3599 |
+
"learning_rate": 9.719732752952702e-06,
|
| 3600 |
+
"loss": 1.262,
|
| 3601 |
+
"step": 513
|
| 3602 |
+
},
|
| 3603 |
+
{
|
| 3604 |
+
"epoch": 0.9870379260681709,
|
| 3605 |
+
"grad_norm": 0.7903965882462866,
|
| 3606 |
+
"learning_rate": 9.717516410226144e-06,
|
| 3607 |
+
"loss": 1.4717,
|
| 3608 |
+
"step": 514
|
| 3609 |
+
},
|
| 3610 |
+
{
|
| 3611 |
+
"epoch": 0.9889582333173308,
|
| 3612 |
+
"grad_norm": 0.7404310033314039,
|
| 3613 |
+
"learning_rate": 9.715291593315672e-06,
|
| 3614 |
+
"loss": 1.3879,
|
| 3615 |
+
"step": 515
|
| 3616 |
+
},
|
| 3617 |
+
{
|
| 3618 |
+
"epoch": 0.9908785405664906,
|
| 3619 |
+
"grad_norm": 0.735452133325044,
|
| 3620 |
+
"learning_rate": 9.713058306217776e-06,
|
| 3621 |
+
"loss": 1.3079,
|
| 3622 |
+
"step": 516
|
| 3623 |
+
},
|
| 3624 |
+
{
|
| 3625 |
+
"epoch": 0.9927988478156505,
|
| 3626 |
+
"grad_norm": 0.8130352152653534,
|
| 3627 |
+
"learning_rate": 9.710816552944157e-06,
|
| 3628 |
+
"loss": 1.434,
|
| 3629 |
+
"step": 517
|
| 3630 |
+
},
|
| 3631 |
+
{
|
| 3632 |
+
"epoch": 0.9947191550648103,
|
| 3633 |
+
"grad_norm": 0.7502971580652452,
|
| 3634 |
+
"learning_rate": 9.708566337521736e-06,
|
| 3635 |
+
"loss": 1.3013,
|
| 3636 |
+
"step": 518
|
| 3637 |
+
},
|
| 3638 |
+
{
|
| 3639 |
+
"epoch": 0.9966394623139703,
|
| 3640 |
+
"grad_norm": 0.6582057806093718,
|
| 3641 |
+
"learning_rate": 9.70630766399262e-06,
|
| 3642 |
+
"loss": 1.2994,
|
| 3643 |
+
"step": 519
|
| 3644 |
+
},
|
| 3645 |
+
{
|
| 3646 |
+
"epoch": 0.9985597695631301,
|
| 3647 |
+
"grad_norm": 0.7398007707770013,
|
| 3648 |
+
"learning_rate": 9.70404053641412e-06,
|
| 3649 |
+
"loss": 1.3135,
|
| 3650 |
+
"step": 520
|
| 3651 |
+
},
|
| 3652 |
+
{
|
| 3653 |
+
"epoch": 1.0,
|
| 3654 |
+
"grad_norm": 0.7398007707770013,
|
| 3655 |
+
"learning_rate": 9.701764958858729e-06,
|
| 3656 |
+
"loss": 1.1265,
|
| 3657 |
+
"step": 521
|
| 3658 |
+
}
|
| 3659 |
+
],
|
| 3660 |
+
"logging_steps": 1,
|
| 3661 |
+
"max_steps": 2605,
|
| 3662 |
+
"num_input_tokens_seen": 0,
|
| 3663 |
+
"num_train_epochs": 5,
|
| 3664 |
+
"save_steps": 500,
|
| 3665 |
+
"stateful_callbacks": {
|
| 3666 |
+
"TrainerControl": {
|
| 3667 |
+
"args": {
|
| 3668 |
+
"should_epoch_stop": false,
|
| 3669 |
+
"should_evaluate": false,
|
| 3670 |
+
"should_log": false,
|
| 3671 |
+
"should_save": true,
|
| 3672 |
+
"should_training_stop": false
|
| 3673 |
+
},
|
| 3674 |
+
"attributes": {}
|
| 3675 |
+
}
|
| 3676 |
+
},
|
| 3677 |
+
"total_flos": 90367657066496.0,
|
| 3678 |
+
"train_batch_size": 1,
|
| 3679 |
+
"trial_name": null,
|
| 3680 |
+
"trial_params": null
|
| 3681 |
+
}
|
checkpoint-521/vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
checkpoint-521/zero_to_fp32.py
ADDED
|
@@ -0,0 +1,760 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# Copyright (c) Microsoft Corporation.
|
| 4 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
+
|
| 6 |
+
# DeepSpeed Team
|
| 7 |
+
|
| 8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
| 9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 11 |
+
# application.
|
| 12 |
+
#
|
| 13 |
+
# example:
|
| 14 |
+
# python zero_to_fp32.py . output_dir/
|
| 15 |
+
# or
|
| 16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
| 17 |
+
|
| 18 |
+
import argparse
|
| 19 |
+
import torch
|
| 20 |
+
import glob
|
| 21 |
+
import math
|
| 22 |
+
import os
|
| 23 |
+
import re
|
| 24 |
+
import gc
|
| 25 |
+
import json
|
| 26 |
+
import numpy as np
|
| 27 |
+
from tqdm import tqdm
|
| 28 |
+
from collections import OrderedDict
|
| 29 |
+
from dataclasses import dataclass
|
| 30 |
+
|
| 31 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 32 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
| 33 |
+
from deepspeed.utils import logger
|
| 34 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 35 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
| 36 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
@dataclass
|
| 40 |
+
class zero_model_state:
|
| 41 |
+
buffers: dict()
|
| 42 |
+
param_shapes: dict()
|
| 43 |
+
shared_params: list
|
| 44 |
+
ds_version: int
|
| 45 |
+
frozen_param_shapes: dict()
|
| 46 |
+
frozen_param_fragments: dict()
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
debug = 0
|
| 50 |
+
|
| 51 |
+
# load to cpu
|
| 52 |
+
device = torch.device('cpu')
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def atoi(text):
|
| 56 |
+
return int(text) if text.isdigit() else text
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def natural_keys(text):
|
| 60 |
+
'''
|
| 61 |
+
alist.sort(key=natural_keys) sorts in human order
|
| 62 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 63 |
+
(See Toothy's implementation in the comments)
|
| 64 |
+
'''
|
| 65 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 69 |
+
if not os.path.isdir(checkpoint_dir):
|
| 70 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 71 |
+
|
| 72 |
+
# there should be only one file
|
| 73 |
+
if zero_stage <= 2:
|
| 74 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 75 |
+
elif zero_stage == 3:
|
| 76 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 77 |
+
|
| 78 |
+
if not os.path.exists(file):
|
| 79 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 80 |
+
|
| 81 |
+
return file
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
| 85 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 86 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
| 87 |
+
|
| 88 |
+
if len(ckpt_files) == 0:
|
| 89 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
| 90 |
+
|
| 91 |
+
return ckpt_files
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def get_optim_files(checkpoint_dir):
|
| 95 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def get_model_state_files(checkpoint_dir):
|
| 99 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def parse_model_states(files):
|
| 103 |
+
zero_model_states = []
|
| 104 |
+
for file in files:
|
| 105 |
+
state_dict = torch.load(file, map_location=device, weights_only=False)
|
| 106 |
+
|
| 107 |
+
if BUFFER_NAMES not in state_dict:
|
| 108 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
| 109 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
| 110 |
+
if debug:
|
| 111 |
+
print("Found buffers:", buffer_names)
|
| 112 |
+
|
| 113 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 114 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
| 115 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
| 116 |
+
|
| 117 |
+
# collect parameters that are included in param_shapes
|
| 118 |
+
param_names = []
|
| 119 |
+
for s in param_shapes:
|
| 120 |
+
for name in s.keys():
|
| 121 |
+
param_names.append(name)
|
| 122 |
+
|
| 123 |
+
# update with frozen parameters
|
| 124 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
| 125 |
+
if frozen_param_shapes is not None:
|
| 126 |
+
if debug:
|
| 127 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
| 128 |
+
param_names += list(frozen_param_shapes.keys())
|
| 129 |
+
|
| 130 |
+
# handle shared params
|
| 131 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
| 132 |
+
|
| 133 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
| 134 |
+
|
| 135 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
| 136 |
+
|
| 137 |
+
z_model_state = zero_model_state(buffers=buffers,
|
| 138 |
+
param_shapes=param_shapes,
|
| 139 |
+
shared_params=shared_params,
|
| 140 |
+
ds_version=ds_version,
|
| 141 |
+
frozen_param_shapes=frozen_param_shapes,
|
| 142 |
+
frozen_param_fragments=frozen_param_fragments)
|
| 143 |
+
zero_model_states.append(z_model_state)
|
| 144 |
+
|
| 145 |
+
return zero_model_states
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
| 149 |
+
total_files = len(files)
|
| 150 |
+
state_dicts = []
|
| 151 |
+
for f in tqdm(files, desc='Loading checkpoint shards'):
|
| 152 |
+
state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
|
| 153 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
| 154 |
+
# and also handle the case where it was already removed by another helper script
|
| 155 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
| 156 |
+
state_dicts.append(state_dict)
|
| 157 |
+
|
| 158 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 159 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 160 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 161 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 162 |
+
|
| 163 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 164 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 165 |
+
# use the max of the partition_count to get the dp world_size.
|
| 166 |
+
|
| 167 |
+
if type(world_size) is list:
|
| 168 |
+
world_size = max(world_size)
|
| 169 |
+
|
| 170 |
+
if world_size != total_files:
|
| 171 |
+
raise ValueError(
|
| 172 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 173 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
# the groups are named differently in each stage
|
| 177 |
+
if zero_stage <= 2:
|
| 178 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 179 |
+
elif zero_stage == 3:
|
| 180 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
| 181 |
+
else:
|
| 182 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 183 |
+
|
| 184 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
| 185 |
+
return zero_stage, world_size, fp32_flat_groups
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
| 189 |
+
"""
|
| 190 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 191 |
+
|
| 192 |
+
Args:
|
| 193 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 194 |
+
|
| 195 |
+
"""
|
| 196 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 197 |
+
|
| 198 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 199 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 200 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 201 |
+
|
| 202 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
| 203 |
+
|
| 204 |
+
zero_model_states = parse_model_states(model_files)
|
| 205 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
| 206 |
+
|
| 207 |
+
if zero_stage <= 2:
|
| 208 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 209 |
+
exclude_frozen_parameters)
|
| 210 |
+
elif zero_stage == 3:
|
| 211 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 212 |
+
exclude_frozen_parameters)
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
| 216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 217 |
+
return
|
| 218 |
+
|
| 219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
| 221 |
+
|
| 222 |
+
if debug:
|
| 223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
| 224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 225 |
+
|
| 226 |
+
wanted_params = len(frozen_param_shapes)
|
| 227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
| 229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 231 |
+
|
| 232 |
+
total_params = 0
|
| 233 |
+
total_numel = 0
|
| 234 |
+
for name, shape in frozen_param_shapes.items():
|
| 235 |
+
total_params += 1
|
| 236 |
+
unpartitioned_numel = shape.numel()
|
| 237 |
+
total_numel += unpartitioned_numel
|
| 238 |
+
|
| 239 |
+
state_dict[name] = frozen_param_fragments[name]
|
| 240 |
+
|
| 241 |
+
if debug:
|
| 242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 243 |
+
|
| 244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 245 |
+
|
| 246 |
+
|
| 247 |
+
def _has_callable(obj, fn):
|
| 248 |
+
attr = getattr(obj, fn, None)
|
| 249 |
+
return callable(attr)
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 253 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 254 |
+
|
| 255 |
+
# Reconstruction protocol:
|
| 256 |
+
#
|
| 257 |
+
# XXX: document this
|
| 258 |
+
|
| 259 |
+
if debug:
|
| 260 |
+
for i in range(world_size):
|
| 261 |
+
for j in range(len(fp32_flat_groups[0])):
|
| 262 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 263 |
+
|
| 264 |
+
# XXX: memory usage doubles here (zero2)
|
| 265 |
+
num_param_groups = len(fp32_flat_groups[0])
|
| 266 |
+
merged_single_partition_of_fp32_groups = []
|
| 267 |
+
for i in range(num_param_groups):
|
| 268 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 269 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 270 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 271 |
+
avail_numel = sum(
|
| 272 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
| 273 |
+
|
| 274 |
+
if debug:
|
| 275 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 276 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 277 |
+
# not asserting if there is a mismatch due to possible padding
|
| 278 |
+
print(f"Have {avail_numel} numels to process.")
|
| 279 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 280 |
+
|
| 281 |
+
# params
|
| 282 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 283 |
+
# out-of-core computing solution
|
| 284 |
+
total_numel = 0
|
| 285 |
+
total_params = 0
|
| 286 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 287 |
+
offset = 0
|
| 288 |
+
avail_numel = full_single_fp32_vector.numel()
|
| 289 |
+
for name, shape in shapes.items():
|
| 290 |
+
|
| 291 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
| 292 |
+
total_numel += unpartitioned_numel
|
| 293 |
+
total_params += 1
|
| 294 |
+
|
| 295 |
+
if debug:
|
| 296 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 297 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
| 298 |
+
offset += unpartitioned_numel
|
| 299 |
+
|
| 300 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 301 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 302 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 303 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
| 304 |
+
align_to = 2 * world_size
|
| 305 |
+
|
| 306 |
+
def zero2_align(x):
|
| 307 |
+
return align_to * math.ceil(x / align_to)
|
| 308 |
+
|
| 309 |
+
if debug:
|
| 310 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 311 |
+
|
| 312 |
+
offset = zero2_align(offset)
|
| 313 |
+
avail_numel = zero2_align(avail_numel)
|
| 314 |
+
|
| 315 |
+
if debug:
|
| 316 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 317 |
+
|
| 318 |
+
# Sanity check
|
| 319 |
+
if offset != avail_numel:
|
| 320 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 321 |
+
|
| 322 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
| 323 |
+
|
| 324 |
+
|
| 325 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 326 |
+
exclude_frozen_parameters):
|
| 327 |
+
state_dict = OrderedDict()
|
| 328 |
+
|
| 329 |
+
# buffers
|
| 330 |
+
buffers = zero_model_states[0].buffers
|
| 331 |
+
state_dict.update(buffers)
|
| 332 |
+
if debug:
|
| 333 |
+
print(f"added {len(buffers)} buffers")
|
| 334 |
+
|
| 335 |
+
if not exclude_frozen_parameters:
|
| 336 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
| 337 |
+
|
| 338 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 339 |
+
|
| 340 |
+
# recover shared parameters
|
| 341 |
+
for pair in zero_model_states[0].shared_params:
|
| 342 |
+
if pair[1] in state_dict:
|
| 343 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 344 |
+
|
| 345 |
+
return state_dict
|
| 346 |
+
|
| 347 |
+
|
| 348 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 349 |
+
remainder = unpartitioned_numel % world_size
|
| 350 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
| 351 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 352 |
+
return partitioned_numel, padding_numel
|
| 353 |
+
|
| 354 |
+
|
| 355 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
| 356 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 357 |
+
return
|
| 358 |
+
|
| 359 |
+
if debug:
|
| 360 |
+
for i in range(world_size):
|
| 361 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
| 362 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 363 |
+
|
| 364 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 365 |
+
wanted_params = len(frozen_param_shapes)
|
| 366 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 367 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
| 368 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 369 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 370 |
+
|
| 371 |
+
total_params = 0
|
| 372 |
+
total_numel = 0
|
| 373 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
| 374 |
+
total_params += 1
|
| 375 |
+
unpartitioned_numel = shape.numel()
|
| 376 |
+
total_numel += unpartitioned_numel
|
| 377 |
+
|
| 378 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
| 379 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 380 |
+
|
| 381 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 382 |
+
|
| 383 |
+
if debug:
|
| 384 |
+
print(
|
| 385 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 386 |
+
)
|
| 387 |
+
|
| 388 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 389 |
+
|
| 390 |
+
|
| 391 |
+
class GatheredTensor:
|
| 392 |
+
"""
|
| 393 |
+
A pseudo tensor that collects partitioned weights.
|
| 394 |
+
It is more memory efficient when there are multiple groups.
|
| 395 |
+
"""
|
| 396 |
+
|
| 397 |
+
def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
|
| 398 |
+
self.flat_groups = flat_groups
|
| 399 |
+
self.flat_groups_offset = flat_groups_offset
|
| 400 |
+
self.offset = offset
|
| 401 |
+
self.partitioned_numel = partitioned_numel
|
| 402 |
+
self.shape = shape
|
| 403 |
+
self.dtype = self.flat_groups[0][0].dtype
|
| 404 |
+
|
| 405 |
+
def contiguous(self):
|
| 406 |
+
"""
|
| 407 |
+
Merge partitioned weights from flat_groups into a single tensor.
|
| 408 |
+
"""
|
| 409 |
+
end_idx = self.offset + self.partitioned_numel
|
| 410 |
+
world_size = len(self.flat_groups)
|
| 411 |
+
pad_flat_param_chunks = []
|
| 412 |
+
|
| 413 |
+
for rank_i in range(world_size):
|
| 414 |
+
# for each rank, we need to collect weights from related group/groups
|
| 415 |
+
flat_groups_at_rank_i = self.flat_groups[rank_i]
|
| 416 |
+
start_group_id = None
|
| 417 |
+
end_group_id = None
|
| 418 |
+
for group_id in range(len(self.flat_groups_offset)):
|
| 419 |
+
if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
|
| 420 |
+
start_group_id = group_id
|
| 421 |
+
if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
|
| 422 |
+
end_group_id = group_id
|
| 423 |
+
break
|
| 424 |
+
# collect weights from related group/groups
|
| 425 |
+
for group_id in range(start_group_id, end_group_id + 1):
|
| 426 |
+
flat_tensor = flat_groups_at_rank_i[group_id]
|
| 427 |
+
start_offset = self.offset - self.flat_groups_offset[group_id]
|
| 428 |
+
end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
|
| 429 |
+
pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
|
| 430 |
+
|
| 431 |
+
# collect weights from all ranks
|
| 432 |
+
pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
|
| 433 |
+
param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
|
| 434 |
+
return param
|
| 435 |
+
|
| 436 |
+
|
| 437 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 438 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 439 |
+
avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
|
| 440 |
+
|
| 441 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 442 |
+
# param, re-consolidating each param, while dealing with padding if any
|
| 443 |
+
|
| 444 |
+
# merge list of dicts, preserving order
|
| 445 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 446 |
+
|
| 447 |
+
if debug:
|
| 448 |
+
for i in range(world_size):
|
| 449 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 450 |
+
|
| 451 |
+
wanted_params = len(param_shapes)
|
| 452 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 453 |
+
# not asserting if there is a mismatch due to possible padding
|
| 454 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 455 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
| 456 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
| 457 |
+
|
| 458 |
+
# params
|
| 459 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 460 |
+
# out-of-core computing solution
|
| 461 |
+
offset = 0
|
| 462 |
+
total_numel = 0
|
| 463 |
+
total_params = 0
|
| 464 |
+
flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
|
| 465 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
|
| 466 |
+
unpartitioned_numel = shape.numel()
|
| 467 |
+
total_numel += unpartitioned_numel
|
| 468 |
+
total_params += 1
|
| 469 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 470 |
+
|
| 471 |
+
if debug:
|
| 472 |
+
print(
|
| 473 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 474 |
+
)
|
| 475 |
+
|
| 476 |
+
# memory efficient tensor
|
| 477 |
+
tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
|
| 478 |
+
state_dict[name] = tensor
|
| 479 |
+
offset += partitioned_numel
|
| 480 |
+
|
| 481 |
+
offset *= world_size
|
| 482 |
+
|
| 483 |
+
# Sanity check
|
| 484 |
+
if offset != avail_numel:
|
| 485 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 486 |
+
|
| 487 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
| 488 |
+
|
| 489 |
+
|
| 490 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 491 |
+
exclude_frozen_parameters):
|
| 492 |
+
state_dict = OrderedDict()
|
| 493 |
+
|
| 494 |
+
# buffers
|
| 495 |
+
buffers = zero_model_states[0].buffers
|
| 496 |
+
state_dict.update(buffers)
|
| 497 |
+
if debug:
|
| 498 |
+
print(f"added {len(buffers)} buffers")
|
| 499 |
+
|
| 500 |
+
if not exclude_frozen_parameters:
|
| 501 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
| 502 |
+
|
| 503 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 504 |
+
|
| 505 |
+
# recover shared parameters
|
| 506 |
+
for pair in zero_model_states[0].shared_params:
|
| 507 |
+
if pair[1] in state_dict:
|
| 508 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 509 |
+
|
| 510 |
+
return state_dict
|
| 511 |
+
|
| 512 |
+
|
| 513 |
+
def to_torch_tensor(state_dict, return_empty_tensor=False):
|
| 514 |
+
"""
|
| 515 |
+
Convert state_dict of GatheredTensor to torch tensor
|
| 516 |
+
"""
|
| 517 |
+
torch_state_dict = {}
|
| 518 |
+
converted_tensors = {}
|
| 519 |
+
for name, tensor in state_dict.items():
|
| 520 |
+
tensor_id = id(tensor)
|
| 521 |
+
if tensor_id in converted_tensors: # shared tensors
|
| 522 |
+
shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
|
| 523 |
+
torch_state_dict[name] = shared_tensor
|
| 524 |
+
else:
|
| 525 |
+
converted_tensors[tensor_id] = name
|
| 526 |
+
if return_empty_tensor:
|
| 527 |
+
torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
|
| 528 |
+
else:
|
| 529 |
+
torch_state_dict[name] = tensor.contiguous()
|
| 530 |
+
return torch_state_dict
|
| 531 |
+
|
| 532 |
+
|
| 533 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
| 534 |
+
tag=None,
|
| 535 |
+
exclude_frozen_parameters=False,
|
| 536 |
+
lazy_mode=False):
|
| 537 |
+
"""
|
| 538 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 539 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 540 |
+
via a model hub.
|
| 541 |
+
|
| 542 |
+
Args:
|
| 543 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 544 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 545 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 546 |
+
- ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
|
| 547 |
+
Convert the pesduo tensor to torch tensor by ``.contiguous()``
|
| 548 |
+
|
| 549 |
+
Returns:
|
| 550 |
+
- pytorch ``state_dict``
|
| 551 |
+
|
| 552 |
+
A typical usage might be ::
|
| 553 |
+
|
| 554 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 555 |
+
# do the training and checkpoint saving
|
| 556 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 557 |
+
model = model.cpu() # move to cpu
|
| 558 |
+
model.load_state_dict(state_dict)
|
| 559 |
+
# submit to model hub or save the model to share with others
|
| 560 |
+
|
| 561 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 562 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 563 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 564 |
+
|
| 565 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 566 |
+
|
| 567 |
+
Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
|
| 568 |
+
You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 569 |
+
the checkpoint. Or you can load state_dict in lazy mode ::
|
| 570 |
+
|
| 571 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 572 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
|
| 573 |
+
for name, lazy_tensor in state_dict.item():
|
| 574 |
+
tensor = lazy_tensor.contiguous() # to cpu
|
| 575 |
+
print(name, tensor)
|
| 576 |
+
# del tensor to release memory if it no longer in use
|
| 577 |
+
"""
|
| 578 |
+
if tag is None:
|
| 579 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 580 |
+
if os.path.isfile(latest_path):
|
| 581 |
+
with open(latest_path, 'r') as fd:
|
| 582 |
+
tag = fd.read().strip()
|
| 583 |
+
else:
|
| 584 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 585 |
+
|
| 586 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 587 |
+
|
| 588 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
| 589 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 590 |
+
|
| 591 |
+
state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
| 592 |
+
if lazy_mode:
|
| 593 |
+
return state_dict
|
| 594 |
+
else:
|
| 595 |
+
return to_torch_tensor(state_dict)
|
| 596 |
+
|
| 597 |
+
|
| 598 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
| 599 |
+
output_dir,
|
| 600 |
+
max_shard_size="5GB",
|
| 601 |
+
safe_serialization=False,
|
| 602 |
+
tag=None,
|
| 603 |
+
exclude_frozen_parameters=False):
|
| 604 |
+
"""
|
| 605 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 606 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 607 |
+
|
| 608 |
+
Args:
|
| 609 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 610 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
| 611 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
| 612 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
| 613 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 614 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 615 |
+
"""
|
| 616 |
+
|
| 617 |
+
# Dependency pre-check
|
| 618 |
+
if safe_serialization:
|
| 619 |
+
try:
|
| 620 |
+
from safetensors.torch import save_file
|
| 621 |
+
except ImportError:
|
| 622 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
| 623 |
+
raise
|
| 624 |
+
if max_shard_size is not None:
|
| 625 |
+
try:
|
| 626 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
| 627 |
+
except ImportError:
|
| 628 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
| 629 |
+
raise
|
| 630 |
+
|
| 631 |
+
# Convert zero checkpoint to state_dict
|
| 632 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
| 633 |
+
tag,
|
| 634 |
+
exclude_frozen_parameters,
|
| 635 |
+
lazy_mode=True)
|
| 636 |
+
|
| 637 |
+
# Shard the model if it is too big.
|
| 638 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
| 639 |
+
if max_shard_size is not None:
|
| 640 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
| 641 |
+
# an memory-efficient approach for sharding
|
| 642 |
+
empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
|
| 643 |
+
state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
|
| 644 |
+
filename_pattern=filename_pattern,
|
| 645 |
+
max_shard_size=max_shard_size)
|
| 646 |
+
else:
|
| 647 |
+
from collections import namedtuple
|
| 648 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
| 649 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
| 650 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
| 651 |
+
|
| 652 |
+
# Save the model by shard
|
| 653 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 654 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
| 655 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
| 656 |
+
shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
|
| 657 |
+
shard_state_dict = to_torch_tensor(shard_state_dict)
|
| 658 |
+
output_path = os.path.join(output_dir, shard_file)
|
| 659 |
+
if safe_serialization:
|
| 660 |
+
save_file(shard_state_dict, output_path, metadata={"format": "pt"})
|
| 661 |
+
else:
|
| 662 |
+
torch.save(shard_state_dict, output_path)
|
| 663 |
+
# release the memory of current shard
|
| 664 |
+
for tensor_name in list(shard_state_dict.keys()):
|
| 665 |
+
del state_dict[tensor_name]
|
| 666 |
+
del shard_state_dict[tensor_name]
|
| 667 |
+
del shard_state_dict
|
| 668 |
+
gc.collect()
|
| 669 |
+
|
| 670 |
+
# Save index if sharded
|
| 671 |
+
if state_dict_split.is_sharded:
|
| 672 |
+
index = {
|
| 673 |
+
"metadata": state_dict_split.metadata,
|
| 674 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
| 675 |
+
}
|
| 676 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
| 677 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
| 678 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
| 679 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
| 680 |
+
f.write(content)
|
| 681 |
+
|
| 682 |
+
|
| 683 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 684 |
+
"""
|
| 685 |
+
1. Put the provided model to cpu
|
| 686 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 687 |
+
3. Load it into the provided model
|
| 688 |
+
|
| 689 |
+
Args:
|
| 690 |
+
- ``model``: the model object to update
|
| 691 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 692 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 693 |
+
|
| 694 |
+
Returns:
|
| 695 |
+
- ``model`: modified model
|
| 696 |
+
|
| 697 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 698 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 699 |
+
conveniently placed for you in the checkpoint folder.
|
| 700 |
+
|
| 701 |
+
A typical usage might be ::
|
| 702 |
+
|
| 703 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 704 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 705 |
+
# submit to model hub or save the model to share with others
|
| 706 |
+
|
| 707 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 708 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 709 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 710 |
+
|
| 711 |
+
"""
|
| 712 |
+
logger.info(f"Extracting fp32 weights")
|
| 713 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 714 |
+
|
| 715 |
+
logger.info(f"Overwriting model with fp32 weights")
|
| 716 |
+
model = model.cpu()
|
| 717 |
+
model.load_state_dict(state_dict, strict=False)
|
| 718 |
+
|
| 719 |
+
return model
|
| 720 |
+
|
| 721 |
+
|
| 722 |
+
if __name__ == "__main__":
|
| 723 |
+
parser = argparse.ArgumentParser()
|
| 724 |
+
parser.add_argument("checkpoint_dir",
|
| 725 |
+
type=str,
|
| 726 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 727 |
+
parser.add_argument("output_dir",
|
| 728 |
+
type=str,
|
| 729 |
+
help="directory to the pytorch fp32 state_dict output files"
|
| 730 |
+
"(e.g. path/checkpoint-12-output/)")
|
| 731 |
+
parser.add_argument(
|
| 732 |
+
"--max_shard_size",
|
| 733 |
+
type=str,
|
| 734 |
+
default="5GB",
|
| 735 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
| 736 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
| 737 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
| 738 |
+
"without CPU OOM issues.")
|
| 739 |
+
parser.add_argument(
|
| 740 |
+
"--safe_serialization",
|
| 741 |
+
default=False,
|
| 742 |
+
action='store_true',
|
| 743 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
| 744 |
+
parser.add_argument("-t",
|
| 745 |
+
"--tag",
|
| 746 |
+
type=str,
|
| 747 |
+
default=None,
|
| 748 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
| 749 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
| 750 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 751 |
+
args = parser.parse_args()
|
| 752 |
+
|
| 753 |
+
debug = args.debug
|
| 754 |
+
|
| 755 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
| 756 |
+
args.output_dir,
|
| 757 |
+
max_shard_size=args.max_shard_size,
|
| 758 |
+
safe_serialization=args.safe_serialization,
|
| 759 |
+
tag=args.tag,
|
| 760 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
config.json
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"Qwen2ForCausalLM"
|
| 4 |
+
],
|
| 5 |
+
"attention_dropout": 0.0,
|
| 6 |
+
"bos_token_id": 151643,
|
| 7 |
+
"eos_token_id": 151645,
|
| 8 |
+
"hidden_act": "silu",
|
| 9 |
+
"hidden_size": 1536,
|
| 10 |
+
"initializer_range": 0.02,
|
| 11 |
+
"intermediate_size": 8960,
|
| 12 |
+
"max_position_embeddings": 32768,
|
| 13 |
+
"max_window_layers": 21,
|
| 14 |
+
"model_type": "qwen2",
|
| 15 |
+
"num_attention_heads": 12,
|
| 16 |
+
"num_hidden_layers": 28,
|
| 17 |
+
"num_key_value_heads": 2,
|
| 18 |
+
"rms_norm_eps": 1e-06,
|
| 19 |
+
"rope_scaling": null,
|
| 20 |
+
"rope_theta": 1000000.0,
|
| 21 |
+
"sliding_window": 32768,
|
| 22 |
+
"tie_word_embeddings": true,
|
| 23 |
+
"torch_dtype": "bfloat16",
|
| 24 |
+
"transformers_version": "4.52.4",
|
| 25 |
+
"use_cache": false,
|
| 26 |
+
"use_sliding_window": false,
|
| 27 |
+
"vocab_size": 151936
|
| 28 |
+
}
|
generation_config.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token_id": 151643,
|
| 3 |
+
"do_sample": true,
|
| 4 |
+
"eos_token_id": [
|
| 5 |
+
151645,
|
| 6 |
+
151643
|
| 7 |
+
],
|
| 8 |
+
"pad_token_id": 151643,
|
| 9 |
+
"repetition_penalty": 1.1,
|
| 10 |
+
"temperature": 0.7,
|
| 11 |
+
"top_k": 20,
|
| 12 |
+
"top_p": 0.8,
|
| 13 |
+
"transformers_version": "4.52.4"
|
| 14 |
+
}
|
merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|im_start|>",
|
| 4 |
+
"<|im_end|>",
|
| 5 |
+
"<|object_ref_start|>",
|
| 6 |
+
"<|object_ref_end|>",
|
| 7 |
+
"<|box_start|>",
|
| 8 |
+
"<|box_end|>",
|
| 9 |
+
"<|quad_start|>",
|
| 10 |
+
"<|quad_end|>",
|
| 11 |
+
"<|vision_start|>",
|
| 12 |
+
"<|vision_end|>",
|
| 13 |
+
"<|vision_pad|>",
|
| 14 |
+
"<|image_pad|>",
|
| 15 |
+
"<|video_pad|>"
|
| 16 |
+
],
|
| 17 |
+
"eos_token": {
|
| 18 |
+
"content": "<|im_end|>",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": false,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
},
|
| 24 |
+
"pad_token": {
|
| 25 |
+
"content": "<|endoftext|>",
|
| 26 |
+
"lstrip": false,
|
| 27 |
+
"normalized": false,
|
| 28 |
+
"rstrip": false,
|
| 29 |
+
"single_word": false
|
| 30 |
+
}
|
| 31 |
+
}
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_prefix_space": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"151643": {
|
| 6 |
+
"content": "<|endoftext|>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"151644": {
|
| 14 |
+
"content": "<|im_start|>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"151645": {
|
| 22 |
+
"content": "<|im_end|>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
},
|
| 29 |
+
"151646": {
|
| 30 |
+
"content": "<|object_ref_start|>",
|
| 31 |
+
"lstrip": false,
|
| 32 |
+
"normalized": false,
|
| 33 |
+
"rstrip": false,
|
| 34 |
+
"single_word": false,
|
| 35 |
+
"special": true
|
| 36 |
+
},
|
| 37 |
+
"151647": {
|
| 38 |
+
"content": "<|object_ref_end|>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false,
|
| 43 |
+
"special": true
|
| 44 |
+
},
|
| 45 |
+
"151648": {
|
| 46 |
+
"content": "<|box_start|>",
|
| 47 |
+
"lstrip": false,
|
| 48 |
+
"normalized": false,
|
| 49 |
+
"rstrip": false,
|
| 50 |
+
"single_word": false,
|
| 51 |
+
"special": true
|
| 52 |
+
},
|
| 53 |
+
"151649": {
|
| 54 |
+
"content": "<|box_end|>",
|
| 55 |
+
"lstrip": false,
|
| 56 |
+
"normalized": false,
|
| 57 |
+
"rstrip": false,
|
| 58 |
+
"single_word": false,
|
| 59 |
+
"special": true
|
| 60 |
+
},
|
| 61 |
+
"151650": {
|
| 62 |
+
"content": "<|quad_start|>",
|
| 63 |
+
"lstrip": false,
|
| 64 |
+
"normalized": false,
|
| 65 |
+
"rstrip": false,
|
| 66 |
+
"single_word": false,
|
| 67 |
+
"special": true
|
| 68 |
+
},
|
| 69 |
+
"151651": {
|
| 70 |
+
"content": "<|quad_end|>",
|
| 71 |
+
"lstrip": false,
|
| 72 |
+
"normalized": false,
|
| 73 |
+
"rstrip": false,
|
| 74 |
+
"single_word": false,
|
| 75 |
+
"special": true
|
| 76 |
+
},
|
| 77 |
+
"151652": {
|
| 78 |
+
"content": "<|vision_start|>",
|
| 79 |
+
"lstrip": false,
|
| 80 |
+
"normalized": false,
|
| 81 |
+
"rstrip": false,
|
| 82 |
+
"single_word": false,
|
| 83 |
+
"special": true
|
| 84 |
+
},
|
| 85 |
+
"151653": {
|
| 86 |
+
"content": "<|vision_end|>",
|
| 87 |
+
"lstrip": false,
|
| 88 |
+
"normalized": false,
|
| 89 |
+
"rstrip": false,
|
| 90 |
+
"single_word": false,
|
| 91 |
+
"special": true
|
| 92 |
+
},
|
| 93 |
+
"151654": {
|
| 94 |
+
"content": "<|vision_pad|>",
|
| 95 |
+
"lstrip": false,
|
| 96 |
+
"normalized": false,
|
| 97 |
+
"rstrip": false,
|
| 98 |
+
"single_word": false,
|
| 99 |
+
"special": true
|
| 100 |
+
},
|
| 101 |
+
"151655": {
|
| 102 |
+
"content": "<|image_pad|>",
|
| 103 |
+
"lstrip": false,
|
| 104 |
+
"normalized": false,
|
| 105 |
+
"rstrip": false,
|
| 106 |
+
"single_word": false,
|
| 107 |
+
"special": true
|
| 108 |
+
},
|
| 109 |
+
"151656": {
|
| 110 |
+
"content": "<|video_pad|>",
|
| 111 |
+
"lstrip": false,
|
| 112 |
+
"normalized": false,
|
| 113 |
+
"rstrip": false,
|
| 114 |
+
"single_word": false,
|
| 115 |
+
"special": true
|
| 116 |
+
},
|
| 117 |
+
"151657": {
|
| 118 |
+
"content": "<tool_call>",
|
| 119 |
+
"lstrip": false,
|
| 120 |
+
"normalized": false,
|
| 121 |
+
"rstrip": false,
|
| 122 |
+
"single_word": false,
|
| 123 |
+
"special": false
|
| 124 |
+
},
|
| 125 |
+
"151658": {
|
| 126 |
+
"content": "</tool_call>",
|
| 127 |
+
"lstrip": false,
|
| 128 |
+
"normalized": false,
|
| 129 |
+
"rstrip": false,
|
| 130 |
+
"single_word": false,
|
| 131 |
+
"special": false
|
| 132 |
+
},
|
| 133 |
+
"151659": {
|
| 134 |
+
"content": "<|fim_prefix|>",
|
| 135 |
+
"lstrip": false,
|
| 136 |
+
"normalized": false,
|
| 137 |
+
"rstrip": false,
|
| 138 |
+
"single_word": false,
|
| 139 |
+
"special": false
|
| 140 |
+
},
|
| 141 |
+
"151660": {
|
| 142 |
+
"content": "<|fim_middle|>",
|
| 143 |
+
"lstrip": false,
|
| 144 |
+
"normalized": false,
|
| 145 |
+
"rstrip": false,
|
| 146 |
+
"single_word": false,
|
| 147 |
+
"special": false
|
| 148 |
+
},
|
| 149 |
+
"151661": {
|
| 150 |
+
"content": "<|fim_suffix|>",
|
| 151 |
+
"lstrip": false,
|
| 152 |
+
"normalized": false,
|
| 153 |
+
"rstrip": false,
|
| 154 |
+
"single_word": false,
|
| 155 |
+
"special": false
|
| 156 |
+
},
|
| 157 |
+
"151662": {
|
| 158 |
+
"content": "<|fim_pad|>",
|
| 159 |
+
"lstrip": false,
|
| 160 |
+
"normalized": false,
|
| 161 |
+
"rstrip": false,
|
| 162 |
+
"single_word": false,
|
| 163 |
+
"special": false
|
| 164 |
+
},
|
| 165 |
+
"151663": {
|
| 166 |
+
"content": "<|repo_name|>",
|
| 167 |
+
"lstrip": false,
|
| 168 |
+
"normalized": false,
|
| 169 |
+
"rstrip": false,
|
| 170 |
+
"single_word": false,
|
| 171 |
+
"special": false
|
| 172 |
+
},
|
| 173 |
+
"151664": {
|
| 174 |
+
"content": "<|file_sep|>",
|
| 175 |
+
"lstrip": false,
|
| 176 |
+
"normalized": false,
|
| 177 |
+
"rstrip": false,
|
| 178 |
+
"single_word": false,
|
| 179 |
+
"special": false
|
| 180 |
+
}
|
| 181 |
+
},
|
| 182 |
+
"additional_special_tokens": [
|
| 183 |
+
"<|im_start|>",
|
| 184 |
+
"<|im_end|>",
|
| 185 |
+
"<|object_ref_start|>",
|
| 186 |
+
"<|object_ref_end|>",
|
| 187 |
+
"<|box_start|>",
|
| 188 |
+
"<|box_end|>",
|
| 189 |
+
"<|quad_start|>",
|
| 190 |
+
"<|quad_end|>",
|
| 191 |
+
"<|vision_start|>",
|
| 192 |
+
"<|vision_end|>",
|
| 193 |
+
"<|vision_pad|>",
|
| 194 |
+
"<|image_pad|>",
|
| 195 |
+
"<|video_pad|>"
|
| 196 |
+
],
|
| 197 |
+
"bos_token": null,
|
| 198 |
+
"clean_up_tokenization_spaces": false,
|
| 199 |
+
"eos_token": "<|im_end|>",
|
| 200 |
+
"errors": "replace",
|
| 201 |
+
"extra_special_tokens": {},
|
| 202 |
+
"model_max_length": 131072,
|
| 203 |
+
"pad_token": "<|endoftext|>",
|
| 204 |
+
"padding_side": "right",
|
| 205 |
+
"split_special_tokens": false,
|
| 206 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
| 207 |
+
"unk_token": null
|
| 208 |
+
}
|
train_results.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"epoch": 5.0,
|
| 3 |
+
"total_flos": 451881746563072.0,
|
| 4 |
+
"train_loss": 1.2663256504714147,
|
| 5 |
+
"train_runtime": 105590.0324,
|
| 6 |
+
"train_samples_per_second": 0.394,
|
| 7 |
+
"train_steps_per_second": 0.025
|
| 8 |
+
}
|
trainer_log.jsonl
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
trainer_state.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
training_loss.png
ADDED
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|