Update README.md
Browse files
README.md
CHANGED
|
@@ -2,146 +2,132 @@
|
|
| 2 |
language:
|
| 3 |
- en
|
| 4 |
tags:
|
|
|
|
|
|
|
| 5 |
- text-generation
|
| 6 |
- diffusion
|
| 7 |
- language-model
|
| 8 |
-
license:
|
| 9 |
---
|
| 10 |
|
| 11 |
-
#
|
| 12 |
-
|
| 13 |
-
This is a epsilon_hybrid diffusion language model trained on text data.
|
| 14 |
-
|
| 15 |
-
## Model Details
|
| 16 |
-
|
| 17 |
-
- **Model Type**: epsilon_hybrid
|
| 18 |
-
- **Architecture**: Diffusion-based language model
|
| 19 |
-
- **Training Method**: Epsilon-hybrid diffusion training
|
| 20 |
-
|
| 21 |
-
## Configuration
|
| 22 |
-
|
| 23 |
-
```yaml
|
| 24 |
-
ngpus: 2
|
| 25 |
-
type: aligned
|
| 26 |
-
gradient_accumulation_steps: 2
|
| 27 |
-
model_type: epsilon_hybrid
|
| 28 |
-
pretrain_autoregressive_path: /home/toolkit/research-diffcodegen/exp_local/openwebtext/mdlm-autoregressive/org-DiTAR-absorb-v2/checkpoints-meta/checkpoint.pth
|
| 29 |
-
tokenizer:
|
| 30 |
-
tokens: 50257
|
| 31 |
-
model: gpt2
|
| 32 |
-
training:
|
| 33 |
-
batch_size: 128
|
| 34 |
-
accum: ${gradient_accumulation_steps}
|
| 35 |
-
n_iters: 1000000
|
| 36 |
-
snapshot_freq: 5000
|
| 37 |
-
log_freq: 500
|
| 38 |
-
eval_freq: 5000
|
| 39 |
-
snapshot_freq_for_preemption: 3000
|
| 40 |
-
weight: standard
|
| 41 |
-
snapshot_sampling: true
|
| 42 |
-
ema: 0.9999
|
| 43 |
-
warmup_iter: -1
|
| 44 |
-
loss_type: hybrid
|
| 45 |
-
epsilon: 0.0
|
| 46 |
-
lambda: 0.0
|
| 47 |
-
hdlm:
|
| 48 |
-
stage: 2
|
| 49 |
-
path: /home/toolkit/research-diffcodegen/exp_local/openwebtext/ICLR-SAR-OpenWebText/small-hybrid0.1-block-1024-4096-block_causal-full-match_inference-efficient-hybrid_sigma_embedding-scale_by_sigma-with_transformer_sigma_conditioning/checkpoints-meta/checkpoint.pth
|
| 50 |
-
data:
|
| 51 |
-
train: openwebtext-train
|
| 52 |
-
valid: wikitext103
|
| 53 |
-
cache_dir: /home/toolkit/research-diffcodegen/data
|
| 54 |
-
debug: false
|
| 55 |
-
graph:
|
| 56 |
-
type: absorb
|
| 57 |
-
alpha: 1.0
|
| 58 |
-
file: /home/toolkit/research-diffcodegen/data
|
| 59 |
-
report_all: false
|
| 60 |
-
expanded_sigma: true
|
| 61 |
-
noise:
|
| 62 |
-
type: loglinear
|
| 63 |
-
sigma_min: 0.0001
|
| 64 |
-
sigma_max: 2.0
|
| 65 |
-
ar_diffusion: false
|
| 66 |
-
expanded_sigma: ${graph.expanded_sigma}
|
| 67 |
-
sampling:
|
| 68 |
-
predictor: analytic
|
| 69 |
-
steps_per_level: 1
|
| 70 |
-
noise_removal: true
|
| 71 |
-
strategy: direct
|
| 72 |
-
strategy_param: 0.9
|
| 73 |
-
annealing:
|
| 74 |
-
type: none
|
| 75 |
-
efficient: false
|
| 76 |
-
width: 512
|
| 77 |
-
tau: 2048
|
| 78 |
-
eval_tau: 512
|
| 79 |
-
steps_per_level: ${sampling.steps_per_level}
|
| 80 |
-
sampling_method: sdlm
|
| 81 |
-
diffusion_loss_weight: 1.0
|
| 82 |
-
ce_loss_weight: 1.0
|
| 83 |
-
sampling_eps: 0.0001
|
| 84 |
-
attention:
|
| 85 |
-
context_type: causal
|
| 86 |
-
block_type: full
|
| 87 |
-
match_inference: false
|
| 88 |
-
eval:
|
| 89 |
-
batch_size: 8
|
| 90 |
-
perplexity: true
|
| 91 |
-
perplexity_batch_size: 4
|
| 92 |
-
optim:
|
| 93 |
-
weight_decay: 0.1
|
| 94 |
-
optimizer: AdamW
|
| 95 |
-
lr: 0.0004
|
| 96 |
-
beta1: 0.9
|
| 97 |
-
beta2: 0.95
|
| 98 |
-
eps: 1.0e-08
|
| 99 |
-
warmup: 10000
|
| 100 |
-
grad_clip: 1.0
|
| 101 |
-
scheduler: cosine
|
| 102 |
-
experiment:
|
| 103 |
-
name: base_epsilon_0.0
|
| 104 |
-
wandb_project: Hybrid-SDLM-ALIGNED
|
| 105 |
-
model:
|
| 106 |
-
name: sdlm-AR
|
| 107 |
-
type: ddit
|
| 108 |
-
hidden_size: 768
|
| 109 |
-
cond_dim: 128
|
| 110 |
-
length: 1024
|
| 111 |
-
n_blocks: 12
|
| 112 |
-
n_heads: 12
|
| 113 |
-
dropout: 0.1
|
| 114 |
-
scale_by_sigma: false
|
| 115 |
-
transformer_sigma_conditioning: false
|
| 116 |
-
hybrid_sigma_embedding: false
|
| 117 |
-
post_process_logits: false
|
| 118 |
-
use_timestep_embedding: false
|
| 119 |
|
| 120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
|
| 122 |
## Usage
|
| 123 |
|
|
|
|
|
|
|
| 124 |
```python
|
| 125 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
|
| 127 |
-
# Load
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
)
|
| 132 |
|
| 133 |
-
#
|
| 134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
```
|
| 136 |
|
| 137 |
## Training Details
|
| 138 |
|
| 139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
|
| 141 |
## Citation
|
| 142 |
|
| 143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
|
| 145 |
## License
|
| 146 |
|
| 147 |
-
This model is released under the
|
|
|
|
| 2 |
language:
|
| 3 |
- en
|
| 4 |
tags:
|
| 5 |
+
- dllm
|
| 6 |
+
- diffusion-language-model
|
| 7 |
- text-generation
|
| 8 |
- diffusion
|
| 9 |
- language-model
|
| 10 |
+
license: apache-2.0
|
| 11 |
---
|
| 12 |
|
| 13 |
+
# HDLM-Epsilon: Hybrid Diffusion Language Model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
+
[](https://arxiv.org/abs/2504.06416)
|
| 16 |
+
[](https://github.com/ServiceNow/hdlm)
|
| 17 |
+
|
| 18 |
+
This model card is for the **hdlm-base model with epsilon=0.0**
|
| 19 |
+
|
| 20 |
+
## Model Description
|
| 21 |
+
|
| 22 |
+
HDLM-Epsilon is a hybrid diffusion language model that unifies autoregressive and diffusion-based sequence generation through epsilon-hybrid noising. This model interpolates evolution operators between absorbing and uniform processes, making it conceptually closer to MDLM (Sahoo et al. 2024) while maintaining the benefits of both paradigms.
|
| 23 |
+
|
| 24 |
+
The epsilon parameter (蔚) controls the blend between absorbing and uniform processes during training, where smaller values emphasize the absorbing process and larger values incorporate more uniform noise.
|
| 25 |
+
|
| 26 |
+
## Model Architecture
|
| 27 |
+
|
| 28 |
+
- **Base Model**: Transformer architecture with custom conditioning layers
|
| 29 |
+
- **Vocabulary Size**: 50,258 tokens (GPT-2 vocabulary + absorbing token)
|
| 30 |
+
- **Context Length**: 1024 tokens
|
| 31 |
+
- **Training**: Hybrid loss combining token masking with random token corruption
|
| 32 |
+
- **Inference**: Supports multiple sampling algorithms including ACS (Adaptive Correction Sampler)
|
| 33 |
|
| 34 |
## Usage
|
| 35 |
|
| 36 |
+
### Quick Start
|
| 37 |
+
|
| 38 |
```python
|
| 39 |
+
from hdlm.hf_utils import smart_model_loader
|
| 40 |
+
from hdlm.epsilon_hybrid.sample import full_diff
|
| 41 |
+
from transformers import GPT2TokenizerFast
|
| 42 |
+
import torch
|
| 43 |
+
|
| 44 |
+
# Load model using smart loader (automatically detects model type)
|
| 45 |
+
model, cfg, device, accelerator, metaschedule = smart_model_loader(
|
| 46 |
+
model_path="hdlm-group/hdlm-base-epsilon-0.0",
|
| 47 |
+
model_type="auto", # automatically detects epsilon_hybrid
|
| 48 |
+
device="cuda"
|
| 49 |
+
)
|
| 50 |
|
| 51 |
+
# Load tokenizer
|
| 52 |
+
tokenizer = GPT2TokenizerFast.from_pretrained('gpt2')
|
| 53 |
+
|
| 54 |
+
# Generate text
|
| 55 |
+
prompt = "The future of artificial intelligence"
|
| 56 |
+
prompt_ids = tokenizer.encode(prompt, return_tensors='pt').to(device)
|
| 57 |
+
|
| 58 |
+
# Full diffusion sampling
|
| 59 |
+
generated = full_diff(
|
| 60 |
+
model=model,
|
| 61 |
+
prompt=prompt_ids,
|
| 62 |
+
batch_size=1,
|
| 63 |
+
alg='acs', # or 'original', 'remask', 'remdm'
|
| 64 |
+
steps=512,
|
| 65 |
+
temperature=1.0,
|
| 66 |
+
context_length=1024,
|
| 67 |
+
device=device
|
| 68 |
)
|
| 69 |
|
| 70 |
+
# Decode generated text
|
| 71 |
+
generated_text = tokenizer.decode(generated[0], skip_special_tokens=True)
|
| 72 |
+
print(generated_text)
|
| 73 |
+
```
|
| 74 |
+
|
| 75 |
+
### Evaluation
|
| 76 |
+
|
| 77 |
+
```bash
|
| 78 |
+
# Text generation evaluation
|
| 79 |
+
python hdlm/eval_generation.py \
|
| 80 |
+
--checkpoint_path hdlm-group/hdlm-base-epsilon-0.0 \
|
| 81 |
+
--sampling_method full_diff \
|
| 82 |
+
--algorithm acs \
|
| 83 |
+
--save_samples
|
| 84 |
+
|
| 85 |
+
# Perplexity evaluation
|
| 86 |
+
python hdlm/eval_modeling.py \
|
| 87 |
+
--checkpoint_path hdlm-group/hdlm-base-epsilon-0.0 \
|
| 88 |
+
--work_dir "./logs/eval_modeling_epsilon" \
|
| 89 |
+
--dataset ptb
|
| 90 |
```
|
| 91 |
|
| 92 |
## Training Details
|
| 93 |
|
| 94 |
+
- **Dataset**: OpenWebText
|
| 95 |
+
- **Batch Size**: 512
|
| 96 |
+
- **Learning Rate**: 3e-4 with cosine scheduling
|
| 97 |
+
- **Epsilon (蔚)**: 0.01 (controls hybrid noising blend)
|
| 98 |
+
- **Lambda (位)**: 1.0 (weighting factor for unmasked tokens)
|
| 99 |
+
- **Loss Type**: Hybrid loss combining masking and random token corruption
|
| 100 |
+
- **Training Steps**: 1M iterations
|
| 101 |
+
- **Warmup**: 50K steps
|
| 102 |
+
|
| 103 |
+
## Sampling Algorithms
|
| 104 |
+
|
| 105 |
+
The model supports several sampling algorithms:
|
| 106 |
+
|
| 107 |
+
- **`original`**: Standard diffusion sampling
|
| 108 |
+
- **`acs`**: Adaptive Correction Sampler with error correction
|
| 109 |
+
- **`remask`**: Remasking strategy for improved quality
|
| 110 |
+
- **`remdm`**: ReMDM-style sampling with probability mixing
|
| 111 |
+
|
| 112 |
+
## Model Variants
|
| 113 |
+
|
| 114 |
+
Available epsilon values and their characteristics:
|
| 115 |
+
|
| 116 |
+
- **蔚 = 0.01**: Minimal uniform noise, closest to pure absorbing process
|
| 117 |
+
- **蔚 = 0.1**: Moderate hybrid behavior
|
| 118 |
+
- **蔚 = 0.5**: Balanced absorbing-uniform blend
|
| 119 |
|
| 120 |
## Citation
|
| 121 |
|
| 122 |
+
```bibtex
|
| 123 |
+
@article{fathi2025unifying,
|
| 124 |
+
title={Unifying autoregressive and diffusion-based sequence generation},
|
| 125 |
+
author={Fathi, Nima and Scholak, Torsten and No{\"e}l, Pierre-Andr{\'e}},
|
| 126 |
+
journal={arXiv preprint arXiv:2504.06416},
|
| 127 |
+
year={2025}
|
| 128 |
+
}
|
| 129 |
+
```
|
| 130 |
|
| 131 |
## License
|
| 132 |
|
| 133 |
+
This model is released under the same license as the original HDLM codebase. Please refer to the [GitHub repository](https://github.com/ServiceNow/hdlm) for license details.
|