--- base_model: henryhe0123/PC-Agent-E datasets: - henryhe0123/PC-Agent-E library_name: transformers license: mit tags: - llama-factory - full - generated_from_trainer pipeline_tag: image-text-to-text --- # PC-Agent-E This model is a fine-tuned version of [Qwen/Qwen2.5-VL-72B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-72B-Instruct) on the PC-Agent-E dataset. It was presented in [Efficient Agent Training for Computer Use](https://huggingface.co/papers/2505.13909). Github repository: https://github.com/GAIR-NLP/PC-Agent-E ## Training procedure Github repository: https://github.com/GAIR-NLP/PC-Agent-E ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-06 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 32 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - total_eval_batch_size: 256 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 2 ### Framework versions - Transformers 4.49.0.dev0 - Pytorch 2.6.0+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0