Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,53 @@
|
|
| 1 |
-
---
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
---
|
| 3 |
+
language: en
|
| 4 |
+
tags:
|
| 5 |
+
- t5
|
| 6 |
+
- text-to-text
|
| 7 |
+
- nlp
|
| 8 |
+
- sharded
|
| 9 |
+
- large-model
|
| 10 |
+
license: apache-2.0
|
| 11 |
+
model_name: T5-11B-SSM-NQ Sharded
|
| 12 |
+
model_id: iarroyof/t5-11b-ssm-nq-sharded
|
| 13 |
+
base_model: google/t5-11b-ssm-nq
|
| 14 |
+
size: 11B
|
| 15 |
+
downloads: null
|
| 16 |
+
datasets:
|
| 17 |
+
- natural_questions
|
| 18 |
+
pipeline_tag: text2text-generation
|
| 19 |
+
library_name: transformers
|
| 20 |
+
widget:
|
| 21 |
+
- text: "What is the capital of France?"
|
| 22 |
+
- text: "Translate English to French: How are you?"
|
| 23 |
+
metrics:
|
| 24 |
+
- rouge
|
| 25 |
+
- bleu
|
| 26 |
+
|
| 27 |
+
---
|
| 28 |
+
|
| 29 |
+
## Model Description
|
| 30 |
+
|
| 31 |
+
This is a sharded version of the [T5-11B-SSM-NQ](https://huggingface.co/google/t5-11b-ssm-nq) model, fine-tuned on the **Natural Questions** dataset for text-to-text generation tasks. The model is stored and processed in multiple shards to facilitate easier handling of its large size (11 billion parameters).
|
| 32 |
+
|
| 33 |
+
## Usage
|
| 34 |
+
|
| 35 |
+
This model can be used for text-to-text generation tasks like question answering and text summarization.
|
| 36 |
+
|
| 37 |
+
```python
|
| 38 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
| 39 |
+
|
| 40 |
+
tokenizer = AutoTokenizer.from_pretrained("iarroyof/t5-11b-ssm-nq-sharded")
|
| 41 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(
|
| 42 |
+
"iarroyof/t5-11b-ssm-nq-sharded",
|
| 43 |
+
device_map="auto",
|
| 44 |
+
max_memory={0: "40GB", 1: "40GB", "cpu": "30GB"},
|
| 45 |
+
low_cpu_mem_usage=True,
|
| 46 |
+
torch_dtype=torch.float16,
|
| 47 |
+
trust_remote_code=True
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
inputs = tokenizer("Translate English to French: How are you?", return_tensors="pt").input_ids
|
| 51 |
+
outputs = model.generate(inputs)
|
| 52 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
| 53 |
+
---
|