add models
Browse files- README.md +1320 -1
- config.json +34 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +13 -0
- vocab.txt +0 -0
README.md
CHANGED
|
@@ -1,3 +1,1322 @@
|
|
| 1 |
---
|
| 2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
pipeline_tag: sentence-similarity
|
| 3 |
+
tags:
|
| 4 |
+
- sentence-transformers
|
| 5 |
+
- feature-extraction
|
| 6 |
+
- sentence-similarity
|
| 7 |
+
- mteb
|
| 8 |
+
model-index:
|
| 9 |
+
- name: stella-large-zh-v2
|
| 10 |
+
results:
|
| 11 |
+
- task:
|
| 12 |
+
type: STS
|
| 13 |
+
dataset:
|
| 14 |
+
type: C-MTEB/AFQMC
|
| 15 |
+
name: MTEB AFQMC
|
| 16 |
+
config: default
|
| 17 |
+
split: validation
|
| 18 |
+
revision: None
|
| 19 |
+
metrics:
|
| 20 |
+
- type: cos_sim_pearson
|
| 21 |
+
value: 47.34436411023816
|
| 22 |
+
- type: cos_sim_spearman
|
| 23 |
+
value: 49.947084806624545
|
| 24 |
+
- type: euclidean_pearson
|
| 25 |
+
value: 48.128834319004824
|
| 26 |
+
- type: euclidean_spearman
|
| 27 |
+
value: 49.947064694876815
|
| 28 |
+
- type: manhattan_pearson
|
| 29 |
+
value: 48.083561270166484
|
| 30 |
+
- type: manhattan_spearman
|
| 31 |
+
value: 49.90207128584442
|
| 32 |
+
- task:
|
| 33 |
+
type: STS
|
| 34 |
+
dataset:
|
| 35 |
+
type: C-MTEB/ATEC
|
| 36 |
+
name: MTEB ATEC
|
| 37 |
+
config: default
|
| 38 |
+
split: test
|
| 39 |
+
revision: None
|
| 40 |
+
metrics:
|
| 41 |
+
- type: cos_sim_pearson
|
| 42 |
+
value: 50.97998570817664
|
| 43 |
+
- type: cos_sim_spearman
|
| 44 |
+
value: 53.11852606980578
|
| 45 |
+
- type: euclidean_pearson
|
| 46 |
+
value: 55.12610520736481
|
| 47 |
+
- type: euclidean_spearman
|
| 48 |
+
value: 53.11852832108405
|
| 49 |
+
- type: manhattan_pearson
|
| 50 |
+
value: 55.10299116717361
|
| 51 |
+
- type: manhattan_spearman
|
| 52 |
+
value: 53.11304196536268
|
| 53 |
+
- task:
|
| 54 |
+
type: Classification
|
| 55 |
+
dataset:
|
| 56 |
+
type: mteb/amazon_reviews_multi
|
| 57 |
+
name: MTEB AmazonReviewsClassification (zh)
|
| 58 |
+
config: zh
|
| 59 |
+
split: test
|
| 60 |
+
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
| 61 |
+
metrics:
|
| 62 |
+
- type: accuracy
|
| 63 |
+
value: 40.81799999999999
|
| 64 |
+
- type: f1
|
| 65 |
+
value: 39.022194031906444
|
| 66 |
+
- task:
|
| 67 |
+
type: STS
|
| 68 |
+
dataset:
|
| 69 |
+
type: C-MTEB/BQ
|
| 70 |
+
name: MTEB BQ
|
| 71 |
+
config: default
|
| 72 |
+
split: test
|
| 73 |
+
revision: None
|
| 74 |
+
metrics:
|
| 75 |
+
- type: cos_sim_pearson
|
| 76 |
+
value: 62.83544115057508
|
| 77 |
+
- type: cos_sim_spearman
|
| 78 |
+
value: 65.53509404838948
|
| 79 |
+
- type: euclidean_pearson
|
| 80 |
+
value: 64.08198144850084
|
| 81 |
+
- type: euclidean_spearman
|
| 82 |
+
value: 65.53509404760305
|
| 83 |
+
- type: manhattan_pearson
|
| 84 |
+
value: 64.08808420747272
|
| 85 |
+
- type: manhattan_spearman
|
| 86 |
+
value: 65.54907862648346
|
| 87 |
+
- task:
|
| 88 |
+
type: Clustering
|
| 89 |
+
dataset:
|
| 90 |
+
type: C-MTEB/CLSClusteringP2P
|
| 91 |
+
name: MTEB CLSClusteringP2P
|
| 92 |
+
config: default
|
| 93 |
+
split: test
|
| 94 |
+
revision: None
|
| 95 |
+
metrics:
|
| 96 |
+
- type: v_measure
|
| 97 |
+
value: 39.95428546140963
|
| 98 |
+
- task:
|
| 99 |
+
type: Clustering
|
| 100 |
+
dataset:
|
| 101 |
+
type: C-MTEB/CLSClusteringS2S
|
| 102 |
+
name: MTEB CLSClusteringS2S
|
| 103 |
+
config: default
|
| 104 |
+
split: test
|
| 105 |
+
revision: None
|
| 106 |
+
metrics:
|
| 107 |
+
- type: v_measure
|
| 108 |
+
value: 38.18454393512963
|
| 109 |
+
- task:
|
| 110 |
+
type: Reranking
|
| 111 |
+
dataset:
|
| 112 |
+
type: C-MTEB/CMedQAv1-reranking
|
| 113 |
+
name: MTEB CMedQAv1
|
| 114 |
+
config: default
|
| 115 |
+
split: test
|
| 116 |
+
revision: None
|
| 117 |
+
metrics:
|
| 118 |
+
- type: map
|
| 119 |
+
value: 85.4453602559479
|
| 120 |
+
- type: mrr
|
| 121 |
+
value: 88.1418253968254
|
| 122 |
+
- task:
|
| 123 |
+
type: Reranking
|
| 124 |
+
dataset:
|
| 125 |
+
type: C-MTEB/CMedQAv2-reranking
|
| 126 |
+
name: MTEB CMedQAv2
|
| 127 |
+
config: default
|
| 128 |
+
split: test
|
| 129 |
+
revision: None
|
| 130 |
+
metrics:
|
| 131 |
+
- type: map
|
| 132 |
+
value: 85.82731720256984
|
| 133 |
+
- type: mrr
|
| 134 |
+
value: 88.53230158730159
|
| 135 |
+
- task:
|
| 136 |
+
type: Retrieval
|
| 137 |
+
dataset:
|
| 138 |
+
type: C-MTEB/CmedqaRetrieval
|
| 139 |
+
name: MTEB CmedqaRetrieval
|
| 140 |
+
config: default
|
| 141 |
+
split: dev
|
| 142 |
+
revision: None
|
| 143 |
+
metrics:
|
| 144 |
+
- type: map_at_1
|
| 145 |
+
value: 24.459
|
| 146 |
+
- type: map_at_10
|
| 147 |
+
value: 36.274
|
| 148 |
+
- type: map_at_100
|
| 149 |
+
value: 38.168
|
| 150 |
+
- type: map_at_1000
|
| 151 |
+
value: 38.292
|
| 152 |
+
- type: map_at_3
|
| 153 |
+
value: 32.356
|
| 154 |
+
- type: map_at_5
|
| 155 |
+
value: 34.499
|
| 156 |
+
- type: mrr_at_1
|
| 157 |
+
value: 37.584
|
| 158 |
+
- type: mrr_at_10
|
| 159 |
+
value: 45.323
|
| 160 |
+
- type: mrr_at_100
|
| 161 |
+
value: 46.361999999999995
|
| 162 |
+
- type: mrr_at_1000
|
| 163 |
+
value: 46.412
|
| 164 |
+
- type: mrr_at_3
|
| 165 |
+
value: 42.919000000000004
|
| 166 |
+
- type: mrr_at_5
|
| 167 |
+
value: 44.283
|
| 168 |
+
- type: ndcg_at_1
|
| 169 |
+
value: 37.584
|
| 170 |
+
- type: ndcg_at_10
|
| 171 |
+
value: 42.63
|
| 172 |
+
- type: ndcg_at_100
|
| 173 |
+
value: 50.114000000000004
|
| 174 |
+
- type: ndcg_at_1000
|
| 175 |
+
value: 52.312000000000005
|
| 176 |
+
- type: ndcg_at_3
|
| 177 |
+
value: 37.808
|
| 178 |
+
- type: ndcg_at_5
|
| 179 |
+
value: 39.711999999999996
|
| 180 |
+
- type: precision_at_1
|
| 181 |
+
value: 37.584
|
| 182 |
+
- type: precision_at_10
|
| 183 |
+
value: 9.51
|
| 184 |
+
- type: precision_at_100
|
| 185 |
+
value: 1.554
|
| 186 |
+
- type: precision_at_1000
|
| 187 |
+
value: 0.183
|
| 188 |
+
- type: precision_at_3
|
| 189 |
+
value: 21.505
|
| 190 |
+
- type: precision_at_5
|
| 191 |
+
value: 15.514
|
| 192 |
+
- type: recall_at_1
|
| 193 |
+
value: 24.459
|
| 194 |
+
- type: recall_at_10
|
| 195 |
+
value: 52.32
|
| 196 |
+
- type: recall_at_100
|
| 197 |
+
value: 83.423
|
| 198 |
+
- type: recall_at_1000
|
| 199 |
+
value: 98.247
|
| 200 |
+
- type: recall_at_3
|
| 201 |
+
value: 37.553
|
| 202 |
+
- type: recall_at_5
|
| 203 |
+
value: 43.712
|
| 204 |
+
- task:
|
| 205 |
+
type: PairClassification
|
| 206 |
+
dataset:
|
| 207 |
+
type: C-MTEB/CMNLI
|
| 208 |
+
name: MTEB Cmnli
|
| 209 |
+
config: default
|
| 210 |
+
split: validation
|
| 211 |
+
revision: None
|
| 212 |
+
metrics:
|
| 213 |
+
- type: cos_sim_accuracy
|
| 214 |
+
value: 77.7269993986771
|
| 215 |
+
- type: cos_sim_ap
|
| 216 |
+
value: 86.8488070512359
|
| 217 |
+
- type: cos_sim_f1
|
| 218 |
+
value: 79.32095490716179
|
| 219 |
+
- type: cos_sim_precision
|
| 220 |
+
value: 72.6107226107226
|
| 221 |
+
- type: cos_sim_recall
|
| 222 |
+
value: 87.39770867430443
|
| 223 |
+
- type: dot_accuracy
|
| 224 |
+
value: 77.7269993986771
|
| 225 |
+
- type: dot_ap
|
| 226 |
+
value: 86.84218333157476
|
| 227 |
+
- type: dot_f1
|
| 228 |
+
value: 79.32095490716179
|
| 229 |
+
- type: dot_precision
|
| 230 |
+
value: 72.6107226107226
|
| 231 |
+
- type: dot_recall
|
| 232 |
+
value: 87.39770867430443
|
| 233 |
+
- type: euclidean_accuracy
|
| 234 |
+
value: 77.7269993986771
|
| 235 |
+
- type: euclidean_ap
|
| 236 |
+
value: 86.84880910178296
|
| 237 |
+
- type: euclidean_f1
|
| 238 |
+
value: 79.32095490716179
|
| 239 |
+
- type: euclidean_precision
|
| 240 |
+
value: 72.6107226107226
|
| 241 |
+
- type: euclidean_recall
|
| 242 |
+
value: 87.39770867430443
|
| 243 |
+
- type: manhattan_accuracy
|
| 244 |
+
value: 77.82321106434155
|
| 245 |
+
- type: manhattan_ap
|
| 246 |
+
value: 86.8152244713786
|
| 247 |
+
- type: manhattan_f1
|
| 248 |
+
value: 79.43262411347519
|
| 249 |
+
- type: manhattan_precision
|
| 250 |
+
value: 72.5725338491296
|
| 251 |
+
- type: manhattan_recall
|
| 252 |
+
value: 87.72504091653029
|
| 253 |
+
- type: max_accuracy
|
| 254 |
+
value: 77.82321106434155
|
| 255 |
+
- type: max_ap
|
| 256 |
+
value: 86.84880910178296
|
| 257 |
+
- type: max_f1
|
| 258 |
+
value: 79.43262411347519
|
| 259 |
+
- task:
|
| 260 |
+
type: Retrieval
|
| 261 |
+
dataset:
|
| 262 |
+
type: C-MTEB/CovidRetrieval
|
| 263 |
+
name: MTEB CovidRetrieval
|
| 264 |
+
config: default
|
| 265 |
+
split: dev
|
| 266 |
+
revision: None
|
| 267 |
+
metrics:
|
| 268 |
+
- type: map_at_1
|
| 269 |
+
value: 68.862
|
| 270 |
+
- type: map_at_10
|
| 271 |
+
value: 77.106
|
| 272 |
+
- type: map_at_100
|
| 273 |
+
value: 77.455
|
| 274 |
+
- type: map_at_1000
|
| 275 |
+
value: 77.459
|
| 276 |
+
- type: map_at_3
|
| 277 |
+
value: 75.457
|
| 278 |
+
- type: map_at_5
|
| 279 |
+
value: 76.254
|
| 280 |
+
- type: mrr_at_1
|
| 281 |
+
value: 69.125
|
| 282 |
+
- type: mrr_at_10
|
| 283 |
+
value: 77.13799999999999
|
| 284 |
+
- type: mrr_at_100
|
| 285 |
+
value: 77.488
|
| 286 |
+
- type: mrr_at_1000
|
| 287 |
+
value: 77.492
|
| 288 |
+
- type: mrr_at_3
|
| 289 |
+
value: 75.606
|
| 290 |
+
- type: mrr_at_5
|
| 291 |
+
value: 76.29599999999999
|
| 292 |
+
- type: ndcg_at_1
|
| 293 |
+
value: 69.02000000000001
|
| 294 |
+
- type: ndcg_at_10
|
| 295 |
+
value: 80.81099999999999
|
| 296 |
+
- type: ndcg_at_100
|
| 297 |
+
value: 82.298
|
| 298 |
+
- type: ndcg_at_1000
|
| 299 |
+
value: 82.403
|
| 300 |
+
- type: ndcg_at_3
|
| 301 |
+
value: 77.472
|
| 302 |
+
- type: ndcg_at_5
|
| 303 |
+
value: 78.892
|
| 304 |
+
- type: precision_at_1
|
| 305 |
+
value: 69.02000000000001
|
| 306 |
+
- type: precision_at_10
|
| 307 |
+
value: 9.336
|
| 308 |
+
- type: precision_at_100
|
| 309 |
+
value: 0.9990000000000001
|
| 310 |
+
- type: precision_at_1000
|
| 311 |
+
value: 0.101
|
| 312 |
+
- type: precision_at_3
|
| 313 |
+
value: 27.924
|
| 314 |
+
- type: precision_at_5
|
| 315 |
+
value: 17.492
|
| 316 |
+
- type: recall_at_1
|
| 317 |
+
value: 68.862
|
| 318 |
+
- type: recall_at_10
|
| 319 |
+
value: 92.308
|
| 320 |
+
- type: recall_at_100
|
| 321 |
+
value: 98.84100000000001
|
| 322 |
+
- type: recall_at_1000
|
| 323 |
+
value: 99.684
|
| 324 |
+
- type: recall_at_3
|
| 325 |
+
value: 83.193
|
| 326 |
+
- type: recall_at_5
|
| 327 |
+
value: 86.617
|
| 328 |
+
- task:
|
| 329 |
+
type: Retrieval
|
| 330 |
+
dataset:
|
| 331 |
+
type: C-MTEB/DuRetrieval
|
| 332 |
+
name: MTEB DuRetrieval
|
| 333 |
+
config: default
|
| 334 |
+
split: dev
|
| 335 |
+
revision: None
|
| 336 |
+
metrics:
|
| 337 |
+
- type: map_at_1
|
| 338 |
+
value: 25.063999999999997
|
| 339 |
+
- type: map_at_10
|
| 340 |
+
value: 78.02
|
| 341 |
+
- type: map_at_100
|
| 342 |
+
value: 81.022
|
| 343 |
+
- type: map_at_1000
|
| 344 |
+
value: 81.06
|
| 345 |
+
- type: map_at_3
|
| 346 |
+
value: 53.613
|
| 347 |
+
- type: map_at_5
|
| 348 |
+
value: 68.008
|
| 349 |
+
- type: mrr_at_1
|
| 350 |
+
value: 87.8
|
| 351 |
+
- type: mrr_at_10
|
| 352 |
+
value: 91.827
|
| 353 |
+
- type: mrr_at_100
|
| 354 |
+
value: 91.913
|
| 355 |
+
- type: mrr_at_1000
|
| 356 |
+
value: 91.915
|
| 357 |
+
- type: mrr_at_3
|
| 358 |
+
value: 91.508
|
| 359 |
+
- type: mrr_at_5
|
| 360 |
+
value: 91.758
|
| 361 |
+
- type: ndcg_at_1
|
| 362 |
+
value: 87.8
|
| 363 |
+
- type: ndcg_at_10
|
| 364 |
+
value: 85.753
|
| 365 |
+
- type: ndcg_at_100
|
| 366 |
+
value: 88.82900000000001
|
| 367 |
+
- type: ndcg_at_1000
|
| 368 |
+
value: 89.208
|
| 369 |
+
- type: ndcg_at_3
|
| 370 |
+
value: 84.191
|
| 371 |
+
- type: ndcg_at_5
|
| 372 |
+
value: 83.433
|
| 373 |
+
- type: precision_at_1
|
| 374 |
+
value: 87.8
|
| 375 |
+
- type: precision_at_10
|
| 376 |
+
value: 41.33
|
| 377 |
+
- type: precision_at_100
|
| 378 |
+
value: 4.8
|
| 379 |
+
- type: precision_at_1000
|
| 380 |
+
value: 0.48900000000000005
|
| 381 |
+
- type: precision_at_3
|
| 382 |
+
value: 75.767
|
| 383 |
+
- type: precision_at_5
|
| 384 |
+
value: 64.25999999999999
|
| 385 |
+
- type: recall_at_1
|
| 386 |
+
value: 25.063999999999997
|
| 387 |
+
- type: recall_at_10
|
| 388 |
+
value: 87.357
|
| 389 |
+
- type: recall_at_100
|
| 390 |
+
value: 97.261
|
| 391 |
+
- type: recall_at_1000
|
| 392 |
+
value: 99.309
|
| 393 |
+
- type: recall_at_3
|
| 394 |
+
value: 56.259
|
| 395 |
+
- type: recall_at_5
|
| 396 |
+
value: 73.505
|
| 397 |
+
- task:
|
| 398 |
+
type: Retrieval
|
| 399 |
+
dataset:
|
| 400 |
+
type: C-MTEB/EcomRetrieval
|
| 401 |
+
name: MTEB EcomRetrieval
|
| 402 |
+
config: default
|
| 403 |
+
split: dev
|
| 404 |
+
revision: None
|
| 405 |
+
metrics:
|
| 406 |
+
- type: map_at_1
|
| 407 |
+
value: 46.800000000000004
|
| 408 |
+
- type: map_at_10
|
| 409 |
+
value: 56.898
|
| 410 |
+
- type: map_at_100
|
| 411 |
+
value: 57.567
|
| 412 |
+
- type: map_at_1000
|
| 413 |
+
value: 57.593
|
| 414 |
+
- type: map_at_3
|
| 415 |
+
value: 54.167
|
| 416 |
+
- type: map_at_5
|
| 417 |
+
value: 55.822
|
| 418 |
+
- type: mrr_at_1
|
| 419 |
+
value: 46.800000000000004
|
| 420 |
+
- type: mrr_at_10
|
| 421 |
+
value: 56.898
|
| 422 |
+
- type: mrr_at_100
|
| 423 |
+
value: 57.567
|
| 424 |
+
- type: mrr_at_1000
|
| 425 |
+
value: 57.593
|
| 426 |
+
- type: mrr_at_3
|
| 427 |
+
value: 54.167
|
| 428 |
+
- type: mrr_at_5
|
| 429 |
+
value: 55.822
|
| 430 |
+
- type: ndcg_at_1
|
| 431 |
+
value: 46.800000000000004
|
| 432 |
+
- type: ndcg_at_10
|
| 433 |
+
value: 62.07
|
| 434 |
+
- type: ndcg_at_100
|
| 435 |
+
value: 65.049
|
| 436 |
+
- type: ndcg_at_1000
|
| 437 |
+
value: 65.666
|
| 438 |
+
- type: ndcg_at_3
|
| 439 |
+
value: 56.54
|
| 440 |
+
- type: ndcg_at_5
|
| 441 |
+
value: 59.492999999999995
|
| 442 |
+
- type: precision_at_1
|
| 443 |
+
value: 46.800000000000004
|
| 444 |
+
- type: precision_at_10
|
| 445 |
+
value: 7.84
|
| 446 |
+
- type: precision_at_100
|
| 447 |
+
value: 0.9169999999999999
|
| 448 |
+
- type: precision_at_1000
|
| 449 |
+
value: 0.096
|
| 450 |
+
- type: precision_at_3
|
| 451 |
+
value: 21.133
|
| 452 |
+
- type: precision_at_5
|
| 453 |
+
value: 14.099999999999998
|
| 454 |
+
- type: recall_at_1
|
| 455 |
+
value: 46.800000000000004
|
| 456 |
+
- type: recall_at_10
|
| 457 |
+
value: 78.4
|
| 458 |
+
- type: recall_at_100
|
| 459 |
+
value: 91.7
|
| 460 |
+
- type: recall_at_1000
|
| 461 |
+
value: 96.39999999999999
|
| 462 |
+
- type: recall_at_3
|
| 463 |
+
value: 63.4
|
| 464 |
+
- type: recall_at_5
|
| 465 |
+
value: 70.5
|
| 466 |
+
- task:
|
| 467 |
+
type: Classification
|
| 468 |
+
dataset:
|
| 469 |
+
type: C-MTEB/IFlyTek-classification
|
| 470 |
+
name: MTEB IFlyTek
|
| 471 |
+
config: default
|
| 472 |
+
split: validation
|
| 473 |
+
revision: None
|
| 474 |
+
metrics:
|
| 475 |
+
- type: accuracy
|
| 476 |
+
value: 47.98768757214313
|
| 477 |
+
- type: f1
|
| 478 |
+
value: 35.23884426992269
|
| 479 |
+
- task:
|
| 480 |
+
type: Classification
|
| 481 |
+
dataset:
|
| 482 |
+
type: C-MTEB/JDReview-classification
|
| 483 |
+
name: MTEB JDReview
|
| 484 |
+
config: default
|
| 485 |
+
split: test
|
| 486 |
+
revision: None
|
| 487 |
+
metrics:
|
| 488 |
+
- type: accuracy
|
| 489 |
+
value: 86.97936210131333
|
| 490 |
+
- type: ap
|
| 491 |
+
value: 56.292679530375736
|
| 492 |
+
- type: f1
|
| 493 |
+
value: 81.87001614762136
|
| 494 |
+
- task:
|
| 495 |
+
type: STS
|
| 496 |
+
dataset:
|
| 497 |
+
type: C-MTEB/LCQMC
|
| 498 |
+
name: MTEB LCQMC
|
| 499 |
+
config: default
|
| 500 |
+
split: test
|
| 501 |
+
revision: None
|
| 502 |
+
metrics:
|
| 503 |
+
- type: cos_sim_pearson
|
| 504 |
+
value: 71.17149643620844
|
| 505 |
+
- type: cos_sim_spearman
|
| 506 |
+
value: 77.48040046337948
|
| 507 |
+
- type: euclidean_pearson
|
| 508 |
+
value: 76.32337539923347
|
| 509 |
+
- type: euclidean_spearman
|
| 510 |
+
value: 77.4804004621894
|
| 511 |
+
- type: manhattan_pearson
|
| 512 |
+
value: 76.33275226275444
|
| 513 |
+
- type: manhattan_spearman
|
| 514 |
+
value: 77.48979843086128
|
| 515 |
+
- task:
|
| 516 |
+
type: Reranking
|
| 517 |
+
dataset:
|
| 518 |
+
type: C-MTEB/Mmarco-reranking
|
| 519 |
+
name: MTEB MMarcoReranking
|
| 520 |
+
config: default
|
| 521 |
+
split: dev
|
| 522 |
+
revision: None
|
| 523 |
+
metrics:
|
| 524 |
+
- type: map
|
| 525 |
+
value: 27.966807589556826
|
| 526 |
+
- type: mrr
|
| 527 |
+
value: 26.92023809523809
|
| 528 |
+
- task:
|
| 529 |
+
type: Retrieval
|
| 530 |
+
dataset:
|
| 531 |
+
type: C-MTEB/MMarcoRetrieval
|
| 532 |
+
name: MTEB MMarcoRetrieval
|
| 533 |
+
config: default
|
| 534 |
+
split: dev
|
| 535 |
+
revision: None
|
| 536 |
+
metrics:
|
| 537 |
+
- type: map_at_1
|
| 538 |
+
value: 66.15100000000001
|
| 539 |
+
- type: map_at_10
|
| 540 |
+
value: 75.048
|
| 541 |
+
- type: map_at_100
|
| 542 |
+
value: 75.374
|
| 543 |
+
- type: map_at_1000
|
| 544 |
+
value: 75.386
|
| 545 |
+
- type: map_at_3
|
| 546 |
+
value: 73.26700000000001
|
| 547 |
+
- type: map_at_5
|
| 548 |
+
value: 74.39
|
| 549 |
+
- type: mrr_at_1
|
| 550 |
+
value: 68.381
|
| 551 |
+
- type: mrr_at_10
|
| 552 |
+
value: 75.644
|
| 553 |
+
- type: mrr_at_100
|
| 554 |
+
value: 75.929
|
| 555 |
+
- type: mrr_at_1000
|
| 556 |
+
value: 75.93900000000001
|
| 557 |
+
- type: mrr_at_3
|
| 558 |
+
value: 74.1
|
| 559 |
+
- type: mrr_at_5
|
| 560 |
+
value: 75.053
|
| 561 |
+
- type: ndcg_at_1
|
| 562 |
+
value: 68.381
|
| 563 |
+
- type: ndcg_at_10
|
| 564 |
+
value: 78.669
|
| 565 |
+
- type: ndcg_at_100
|
| 566 |
+
value: 80.161
|
| 567 |
+
- type: ndcg_at_1000
|
| 568 |
+
value: 80.46799999999999
|
| 569 |
+
- type: ndcg_at_3
|
| 570 |
+
value: 75.3
|
| 571 |
+
- type: ndcg_at_5
|
| 572 |
+
value: 77.172
|
| 573 |
+
- type: precision_at_1
|
| 574 |
+
value: 68.381
|
| 575 |
+
- type: precision_at_10
|
| 576 |
+
value: 9.48
|
| 577 |
+
- type: precision_at_100
|
| 578 |
+
value: 1.023
|
| 579 |
+
- type: precision_at_1000
|
| 580 |
+
value: 0.105
|
| 581 |
+
- type: precision_at_3
|
| 582 |
+
value: 28.299999999999997
|
| 583 |
+
- type: precision_at_5
|
| 584 |
+
value: 17.98
|
| 585 |
+
- type: recall_at_1
|
| 586 |
+
value: 66.15100000000001
|
| 587 |
+
- type: recall_at_10
|
| 588 |
+
value: 89.238
|
| 589 |
+
- type: recall_at_100
|
| 590 |
+
value: 96.032
|
| 591 |
+
- type: recall_at_1000
|
| 592 |
+
value: 98.437
|
| 593 |
+
- type: recall_at_3
|
| 594 |
+
value: 80.318
|
| 595 |
+
- type: recall_at_5
|
| 596 |
+
value: 84.761
|
| 597 |
+
- task:
|
| 598 |
+
type: Classification
|
| 599 |
+
dataset:
|
| 600 |
+
type: mteb/amazon_massive_intent
|
| 601 |
+
name: MTEB MassiveIntentClassification (zh-CN)
|
| 602 |
+
config: zh-CN
|
| 603 |
+
split: test
|
| 604 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
| 605 |
+
metrics:
|
| 606 |
+
- type: accuracy
|
| 607 |
+
value: 68.26160053799597
|
| 608 |
+
- type: f1
|
| 609 |
+
value: 65.96949453305112
|
| 610 |
+
- task:
|
| 611 |
+
type: Classification
|
| 612 |
+
dataset:
|
| 613 |
+
type: mteb/amazon_massive_scenario
|
| 614 |
+
name: MTEB MassiveScenarioClassification (zh-CN)
|
| 615 |
+
config: zh-CN
|
| 616 |
+
split: test
|
| 617 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
| 618 |
+
metrics:
|
| 619 |
+
- type: accuracy
|
| 620 |
+
value: 73.12037659717554
|
| 621 |
+
- type: f1
|
| 622 |
+
value: 72.69052407105445
|
| 623 |
+
- task:
|
| 624 |
+
type: Retrieval
|
| 625 |
+
dataset:
|
| 626 |
+
type: C-MTEB/MedicalRetrieval
|
| 627 |
+
name: MTEB MedicalRetrieval
|
| 628 |
+
config: default
|
| 629 |
+
split: dev
|
| 630 |
+
revision: None
|
| 631 |
+
metrics:
|
| 632 |
+
- type: map_at_1
|
| 633 |
+
value: 50.1
|
| 634 |
+
- type: map_at_10
|
| 635 |
+
value: 56.489999999999995
|
| 636 |
+
- type: map_at_100
|
| 637 |
+
value: 57.007
|
| 638 |
+
- type: map_at_1000
|
| 639 |
+
value: 57.06400000000001
|
| 640 |
+
- type: map_at_3
|
| 641 |
+
value: 55.25
|
| 642 |
+
- type: map_at_5
|
| 643 |
+
value: 55.93
|
| 644 |
+
- type: mrr_at_1
|
| 645 |
+
value: 50.3
|
| 646 |
+
- type: mrr_at_10
|
| 647 |
+
value: 56.591
|
| 648 |
+
- type: mrr_at_100
|
| 649 |
+
value: 57.108000000000004
|
| 650 |
+
- type: mrr_at_1000
|
| 651 |
+
value: 57.165
|
| 652 |
+
- type: mrr_at_3
|
| 653 |
+
value: 55.35
|
| 654 |
+
- type: mrr_at_5
|
| 655 |
+
value: 56.03
|
| 656 |
+
- type: ndcg_at_1
|
| 657 |
+
value: 50.1
|
| 658 |
+
- type: ndcg_at_10
|
| 659 |
+
value: 59.419999999999995
|
| 660 |
+
- type: ndcg_at_100
|
| 661 |
+
value: 62.28900000000001
|
| 662 |
+
- type: ndcg_at_1000
|
| 663 |
+
value: 63.9
|
| 664 |
+
- type: ndcg_at_3
|
| 665 |
+
value: 56.813
|
| 666 |
+
- type: ndcg_at_5
|
| 667 |
+
value: 58.044
|
| 668 |
+
- type: precision_at_1
|
| 669 |
+
value: 50.1
|
| 670 |
+
- type: precision_at_10
|
| 671 |
+
value: 6.859999999999999
|
| 672 |
+
- type: precision_at_100
|
| 673 |
+
value: 0.828
|
| 674 |
+
- type: precision_at_1000
|
| 675 |
+
value: 0.096
|
| 676 |
+
- type: precision_at_3
|
| 677 |
+
value: 20.433
|
| 678 |
+
- type: precision_at_5
|
| 679 |
+
value: 12.86
|
| 680 |
+
- type: recall_at_1
|
| 681 |
+
value: 50.1
|
| 682 |
+
- type: recall_at_10
|
| 683 |
+
value: 68.60000000000001
|
| 684 |
+
- type: recall_at_100
|
| 685 |
+
value: 82.8
|
| 686 |
+
- type: recall_at_1000
|
| 687 |
+
value: 95.7
|
| 688 |
+
- type: recall_at_3
|
| 689 |
+
value: 61.3
|
| 690 |
+
- type: recall_at_5
|
| 691 |
+
value: 64.3
|
| 692 |
+
- task:
|
| 693 |
+
type: Classification
|
| 694 |
+
dataset:
|
| 695 |
+
type: C-MTEB/MultilingualSentiment-classification
|
| 696 |
+
name: MTEB MultilingualSentiment
|
| 697 |
+
config: default
|
| 698 |
+
split: validation
|
| 699 |
+
revision: None
|
| 700 |
+
metrics:
|
| 701 |
+
- type: accuracy
|
| 702 |
+
value: 73.41000000000001
|
| 703 |
+
- type: f1
|
| 704 |
+
value: 72.87768282499509
|
| 705 |
+
- task:
|
| 706 |
+
type: PairClassification
|
| 707 |
+
dataset:
|
| 708 |
+
type: C-MTEB/OCNLI
|
| 709 |
+
name: MTEB Ocnli
|
| 710 |
+
config: default
|
| 711 |
+
split: validation
|
| 712 |
+
revision: None
|
| 713 |
+
metrics:
|
| 714 |
+
- type: cos_sim_accuracy
|
| 715 |
+
value: 73.4163508391987
|
| 716 |
+
- type: cos_sim_ap
|
| 717 |
+
value: 78.51058998215277
|
| 718 |
+
- type: cos_sim_f1
|
| 719 |
+
value: 75.3875968992248
|
| 720 |
+
- type: cos_sim_precision
|
| 721 |
+
value: 69.65085049239033
|
| 722 |
+
- type: cos_sim_recall
|
| 723 |
+
value: 82.15417106652588
|
| 724 |
+
- type: dot_accuracy
|
| 725 |
+
value: 73.4163508391987
|
| 726 |
+
- type: dot_ap
|
| 727 |
+
value: 78.51058998215277
|
| 728 |
+
- type: dot_f1
|
| 729 |
+
value: 75.3875968992248
|
| 730 |
+
- type: dot_precision
|
| 731 |
+
value: 69.65085049239033
|
| 732 |
+
- type: dot_recall
|
| 733 |
+
value: 82.15417106652588
|
| 734 |
+
- type: euclidean_accuracy
|
| 735 |
+
value: 73.4163508391987
|
| 736 |
+
- type: euclidean_ap
|
| 737 |
+
value: 78.51058998215277
|
| 738 |
+
- type: euclidean_f1
|
| 739 |
+
value: 75.3875968992248
|
| 740 |
+
- type: euclidean_precision
|
| 741 |
+
value: 69.65085049239033
|
| 742 |
+
- type: euclidean_recall
|
| 743 |
+
value: 82.15417106652588
|
| 744 |
+
- type: manhattan_accuracy
|
| 745 |
+
value: 73.03735787763942
|
| 746 |
+
- type: manhattan_ap
|
| 747 |
+
value: 78.4190891700083
|
| 748 |
+
- type: manhattan_f1
|
| 749 |
+
value: 75.32592950265573
|
| 750 |
+
- type: manhattan_precision
|
| 751 |
+
value: 69.3950177935943
|
| 752 |
+
- type: manhattan_recall
|
| 753 |
+
value: 82.36536430834214
|
| 754 |
+
- type: max_accuracy
|
| 755 |
+
value: 73.4163508391987
|
| 756 |
+
- type: max_ap
|
| 757 |
+
value: 78.51058998215277
|
| 758 |
+
- type: max_f1
|
| 759 |
+
value: 75.3875968992248
|
| 760 |
+
- task:
|
| 761 |
+
type: Classification
|
| 762 |
+
dataset:
|
| 763 |
+
type: C-MTEB/OnlineShopping-classification
|
| 764 |
+
name: MTEB OnlineShopping
|
| 765 |
+
config: default
|
| 766 |
+
split: test
|
| 767 |
+
revision: None
|
| 768 |
+
metrics:
|
| 769 |
+
- type: accuracy
|
| 770 |
+
value: 91.81000000000002
|
| 771 |
+
- type: ap
|
| 772 |
+
value: 89.35809579688139
|
| 773 |
+
- type: f1
|
| 774 |
+
value: 91.79220350456818
|
| 775 |
+
- task:
|
| 776 |
+
type: STS
|
| 777 |
+
dataset:
|
| 778 |
+
type: C-MTEB/PAWSX
|
| 779 |
+
name: MTEB PAWSX
|
| 780 |
+
config: default
|
| 781 |
+
split: test
|
| 782 |
+
revision: None
|
| 783 |
+
metrics:
|
| 784 |
+
- type: cos_sim_pearson
|
| 785 |
+
value: 30.10755999973859
|
| 786 |
+
- type: cos_sim_spearman
|
| 787 |
+
value: 36.221732138848864
|
| 788 |
+
- type: euclidean_pearson
|
| 789 |
+
value: 36.41120179336658
|
| 790 |
+
- type: euclidean_spearman
|
| 791 |
+
value: 36.221731188009436
|
| 792 |
+
- type: manhattan_pearson
|
| 793 |
+
value: 36.34865300346968
|
| 794 |
+
- type: manhattan_spearman
|
| 795 |
+
value: 36.17696483080459
|
| 796 |
+
- task:
|
| 797 |
+
type: STS
|
| 798 |
+
dataset:
|
| 799 |
+
type: C-MTEB/QBQTC
|
| 800 |
+
name: MTEB QBQTC
|
| 801 |
+
config: default
|
| 802 |
+
split: test
|
| 803 |
+
revision: None
|
| 804 |
+
metrics:
|
| 805 |
+
- type: cos_sim_pearson
|
| 806 |
+
value: 36.778975708100226
|
| 807 |
+
- type: cos_sim_spearman
|
| 808 |
+
value: 38.733929926753724
|
| 809 |
+
- type: euclidean_pearson
|
| 810 |
+
value: 37.13383498228113
|
| 811 |
+
- type: euclidean_spearman
|
| 812 |
+
value: 38.73374886550868
|
| 813 |
+
- type: manhattan_pearson
|
| 814 |
+
value: 37.175732896552404
|
| 815 |
+
- type: manhattan_spearman
|
| 816 |
+
value: 38.74120541657908
|
| 817 |
+
- task:
|
| 818 |
+
type: STS
|
| 819 |
+
dataset:
|
| 820 |
+
type: mteb/sts22-crosslingual-sts
|
| 821 |
+
name: MTEB STS22 (zh)
|
| 822 |
+
config: zh
|
| 823 |
+
split: test
|
| 824 |
+
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
| 825 |
+
metrics:
|
| 826 |
+
- type: cos_sim_pearson
|
| 827 |
+
value: 65.97095922825076
|
| 828 |
+
- type: cos_sim_spearman
|
| 829 |
+
value: 68.87452938308421
|
| 830 |
+
- type: euclidean_pearson
|
| 831 |
+
value: 67.23101642424429
|
| 832 |
+
- type: euclidean_spearman
|
| 833 |
+
value: 68.87452938308421
|
| 834 |
+
- type: manhattan_pearson
|
| 835 |
+
value: 67.29909334410189
|
| 836 |
+
- type: manhattan_spearman
|
| 837 |
+
value: 68.89807985930508
|
| 838 |
+
- task:
|
| 839 |
+
type: STS
|
| 840 |
+
dataset:
|
| 841 |
+
type: C-MTEB/STSB
|
| 842 |
+
name: MTEB STSB
|
| 843 |
+
config: default
|
| 844 |
+
split: test
|
| 845 |
+
revision: None
|
| 846 |
+
metrics:
|
| 847 |
+
- type: cos_sim_pearson
|
| 848 |
+
value: 78.98860630733722
|
| 849 |
+
- type: cos_sim_spearman
|
| 850 |
+
value: 79.36601601355665
|
| 851 |
+
- type: euclidean_pearson
|
| 852 |
+
value: 78.77295944956447
|
| 853 |
+
- type: euclidean_spearman
|
| 854 |
+
value: 79.36585127278974
|
| 855 |
+
- type: manhattan_pearson
|
| 856 |
+
value: 78.82060736131619
|
| 857 |
+
- type: manhattan_spearman
|
| 858 |
+
value: 79.4395526421926
|
| 859 |
+
- task:
|
| 860 |
+
type: Reranking
|
| 861 |
+
dataset:
|
| 862 |
+
type: C-MTEB/T2Reranking
|
| 863 |
+
name: MTEB T2Reranking
|
| 864 |
+
config: default
|
| 865 |
+
split: dev
|
| 866 |
+
revision: None
|
| 867 |
+
metrics:
|
| 868 |
+
- type: map
|
| 869 |
+
value: 66.40501824507894
|
| 870 |
+
- type: mrr
|
| 871 |
+
value: 76.18463933756757
|
| 872 |
+
- task:
|
| 873 |
+
type: Retrieval
|
| 874 |
+
dataset:
|
| 875 |
+
type: C-MTEB/T2Retrieval
|
| 876 |
+
name: MTEB T2Retrieval
|
| 877 |
+
config: default
|
| 878 |
+
split: dev
|
| 879 |
+
revision: None
|
| 880 |
+
metrics:
|
| 881 |
+
- type: map_at_1
|
| 882 |
+
value: 27.095000000000002
|
| 883 |
+
- type: map_at_10
|
| 884 |
+
value: 76.228
|
| 885 |
+
- type: map_at_100
|
| 886 |
+
value: 79.865
|
| 887 |
+
- type: map_at_1000
|
| 888 |
+
value: 79.935
|
| 889 |
+
- type: map_at_3
|
| 890 |
+
value: 53.491
|
| 891 |
+
- type: map_at_5
|
| 892 |
+
value: 65.815
|
| 893 |
+
- type: mrr_at_1
|
| 894 |
+
value: 89.554
|
| 895 |
+
- type: mrr_at_10
|
| 896 |
+
value: 92.037
|
| 897 |
+
- type: mrr_at_100
|
| 898 |
+
value: 92.133
|
| 899 |
+
- type: mrr_at_1000
|
| 900 |
+
value: 92.137
|
| 901 |
+
- type: mrr_at_3
|
| 902 |
+
value: 91.605
|
| 903 |
+
- type: mrr_at_5
|
| 904 |
+
value: 91.88
|
| 905 |
+
- type: ndcg_at_1
|
| 906 |
+
value: 89.554
|
| 907 |
+
- type: ndcg_at_10
|
| 908 |
+
value: 83.866
|
| 909 |
+
- type: ndcg_at_100
|
| 910 |
+
value: 87.566
|
| 911 |
+
- type: ndcg_at_1000
|
| 912 |
+
value: 88.249
|
| 913 |
+
- type: ndcg_at_3
|
| 914 |
+
value: 85.396
|
| 915 |
+
- type: ndcg_at_5
|
| 916 |
+
value: 83.919
|
| 917 |
+
- type: precision_at_1
|
| 918 |
+
value: 89.554
|
| 919 |
+
- type: precision_at_10
|
| 920 |
+
value: 41.792
|
| 921 |
+
- type: precision_at_100
|
| 922 |
+
value: 4.997
|
| 923 |
+
- type: precision_at_1000
|
| 924 |
+
value: 0.515
|
| 925 |
+
- type: precision_at_3
|
| 926 |
+
value: 74.795
|
| 927 |
+
- type: precision_at_5
|
| 928 |
+
value: 62.675000000000004
|
| 929 |
+
- type: recall_at_1
|
| 930 |
+
value: 27.095000000000002
|
| 931 |
+
- type: recall_at_10
|
| 932 |
+
value: 82.694
|
| 933 |
+
- type: recall_at_100
|
| 934 |
+
value: 94.808
|
| 935 |
+
- type: recall_at_1000
|
| 936 |
+
value: 98.30600000000001
|
| 937 |
+
- type: recall_at_3
|
| 938 |
+
value: 55.156000000000006
|
| 939 |
+
- type: recall_at_5
|
| 940 |
+
value: 69.19
|
| 941 |
+
- task:
|
| 942 |
+
type: Classification
|
| 943 |
+
dataset:
|
| 944 |
+
type: C-MTEB/TNews-classification
|
| 945 |
+
name: MTEB TNews
|
| 946 |
+
config: default
|
| 947 |
+
split: validation
|
| 948 |
+
revision: None
|
| 949 |
+
metrics:
|
| 950 |
+
- type: accuracy
|
| 951 |
+
value: 51.929
|
| 952 |
+
- type: f1
|
| 953 |
+
value: 50.16876489927282
|
| 954 |
+
- task:
|
| 955 |
+
type: Clustering
|
| 956 |
+
dataset:
|
| 957 |
+
type: C-MTEB/ThuNewsClusteringP2P
|
| 958 |
+
name: MTEB ThuNewsClusteringP2P
|
| 959 |
+
config: default
|
| 960 |
+
split: test
|
| 961 |
+
revision: None
|
| 962 |
+
metrics:
|
| 963 |
+
- type: v_measure
|
| 964 |
+
value: 61.404157724658894
|
| 965 |
+
- task:
|
| 966 |
+
type: Clustering
|
| 967 |
+
dataset:
|
| 968 |
+
type: C-MTEB/ThuNewsClusteringS2S
|
| 969 |
+
name: MTEB ThuNewsClusteringS2S
|
| 970 |
+
config: default
|
| 971 |
+
split: test
|
| 972 |
+
revision: None
|
| 973 |
+
metrics:
|
| 974 |
+
- type: v_measure
|
| 975 |
+
value: 57.11418384351802
|
| 976 |
+
- task:
|
| 977 |
+
type: Retrieval
|
| 978 |
+
dataset:
|
| 979 |
+
type: C-MTEB/VideoRetrieval
|
| 980 |
+
name: MTEB VideoRetrieval
|
| 981 |
+
config: default
|
| 982 |
+
split: dev
|
| 983 |
+
revision: None
|
| 984 |
+
metrics:
|
| 985 |
+
- type: map_at_1
|
| 986 |
+
value: 52.1
|
| 987 |
+
- type: map_at_10
|
| 988 |
+
value: 62.956999999999994
|
| 989 |
+
- type: map_at_100
|
| 990 |
+
value: 63.502
|
| 991 |
+
- type: map_at_1000
|
| 992 |
+
value: 63.51599999999999
|
| 993 |
+
- type: map_at_3
|
| 994 |
+
value: 60.75000000000001
|
| 995 |
+
- type: map_at_5
|
| 996 |
+
value: 62.195
|
| 997 |
+
- type: mrr_at_1
|
| 998 |
+
value: 52.0
|
| 999 |
+
- type: mrr_at_10
|
| 1000 |
+
value: 62.907000000000004
|
| 1001 |
+
- type: mrr_at_100
|
| 1002 |
+
value: 63.452
|
| 1003 |
+
- type: mrr_at_1000
|
| 1004 |
+
value: 63.466
|
| 1005 |
+
- type: mrr_at_3
|
| 1006 |
+
value: 60.699999999999996
|
| 1007 |
+
- type: mrr_at_5
|
| 1008 |
+
value: 62.144999999999996
|
| 1009 |
+
- type: ndcg_at_1
|
| 1010 |
+
value: 52.1
|
| 1011 |
+
- type: ndcg_at_10
|
| 1012 |
+
value: 67.93299999999999
|
| 1013 |
+
- type: ndcg_at_100
|
| 1014 |
+
value: 70.541
|
| 1015 |
+
- type: ndcg_at_1000
|
| 1016 |
+
value: 70.91300000000001
|
| 1017 |
+
- type: ndcg_at_3
|
| 1018 |
+
value: 63.468
|
| 1019 |
+
- type: ndcg_at_5
|
| 1020 |
+
value: 66.08800000000001
|
| 1021 |
+
- type: precision_at_1
|
| 1022 |
+
value: 52.1
|
| 1023 |
+
- type: precision_at_10
|
| 1024 |
+
value: 8.34
|
| 1025 |
+
- type: precision_at_100
|
| 1026 |
+
value: 0.955
|
| 1027 |
+
- type: precision_at_1000
|
| 1028 |
+
value: 0.098
|
| 1029 |
+
- type: precision_at_3
|
| 1030 |
+
value: 23.767
|
| 1031 |
+
- type: precision_at_5
|
| 1032 |
+
value: 15.540000000000001
|
| 1033 |
+
- type: recall_at_1
|
| 1034 |
+
value: 52.1
|
| 1035 |
+
- type: recall_at_10
|
| 1036 |
+
value: 83.39999999999999
|
| 1037 |
+
- type: recall_at_100
|
| 1038 |
+
value: 95.5
|
| 1039 |
+
- type: recall_at_1000
|
| 1040 |
+
value: 98.4
|
| 1041 |
+
- type: recall_at_3
|
| 1042 |
+
value: 71.3
|
| 1043 |
+
- type: recall_at_5
|
| 1044 |
+
value: 77.7
|
| 1045 |
+
- task:
|
| 1046 |
+
type: Classification
|
| 1047 |
+
dataset:
|
| 1048 |
+
type: C-MTEB/waimai-classification
|
| 1049 |
+
name: MTEB Waimai
|
| 1050 |
+
config: default
|
| 1051 |
+
split: test
|
| 1052 |
+
revision: None
|
| 1053 |
+
metrics:
|
| 1054 |
+
- type: accuracy
|
| 1055 |
+
value: 87.12
|
| 1056 |
+
- type: ap
|
| 1057 |
+
value: 70.85284793227382
|
| 1058 |
+
- type: f1
|
| 1059 |
+
value: 85.55420883566512
|
| 1060 |
---
|
| 1061 |
+
|
| 1062 |
+
## stella model
|
| 1063 |
+
|
| 1064 |
+
**新闻 | News**
|
| 1065 |
+
|
| 1066 |
+
**[2023-10-12]** 开源stella-base-zh-v2和stella-large-zh-v2, 效果更好且使用简单,**不需要任何前缀文本**。
|
| 1067 |
+
Release stella-base-zh-v2 and stella-large-zh-v2. The 2 models have better performance
|
| 1068 |
+
and **do not need any prefix text**.\
|
| 1069 |
+
**[2023-09-11]** 开源stella-base-zh和stella-large-zh
|
| 1070 |
+
|
| 1071 |
+
stella是一个通用的文本编码模型,主要有以下模型:
|
| 1072 |
+
|
| 1073 |
+
| Model Name | Model Size (GB) | Dimension | Sequence Length | Language | Need instruction for retrieval? |
|
| 1074 |
+
|:------------------:|:---------------:|:---------:|:---------------:|:--------:|:-------------------------------:|
|
| 1075 |
+
| stella-large-zh-v2 | 0.65 | 1024 | 1024 | Chinese | No |
|
| 1076 |
+
| stella-base-zh-v2 | 0.2 | 768 | 1024 | Chinese | No |
|
| 1077 |
+
| stella-large-zh | 0.65 | 1024 | 1024 | Chinese | Yes |
|
| 1078 |
+
| stella-base-zh | 0.2 | 768 | 1024 | Chinese | Yes |
|
| 1079 |
+
|
| 1080 |
+
完整的训练思路和训练过程已记录在[博客](https://zhuanlan.zhihu.com/p/655322183),欢迎阅读讨论。
|
| 1081 |
+
|
| 1082 |
+
**训练数据:**
|
| 1083 |
+
|
| 1084 |
+
1. 开源数据(wudao_base_200GB[1]、m3e[2]和simclue[3]),着重挑选了长度大于512的文本
|
| 1085 |
+
2. 在通用语料库上使用LLM构造一批(question, paragraph)和(sentence, paragraph)数据
|
| 1086 |
+
|
| 1087 |
+
**训练方法:**
|
| 1088 |
+
|
| 1089 |
+
1. 对比学习损失函数
|
| 1090 |
+
2. 带有难负例的对比学习损失函数(分别基于bm25和vector构造了难负例)
|
| 1091 |
+
3. EWC(Elastic Weights Consolidation)[4]
|
| 1092 |
+
4. cosent loss[5]
|
| 1093 |
+
5. 每一种类型的数据一个迭代器,分别计算loss进行更新
|
| 1094 |
+
|
| 1095 |
+
stella-v2在stella模型的基础上,使用了更多的训练数据,同时知识蒸馏等方法去除了前置的instruction(
|
| 1096 |
+
比如piccolo的`查询:`, `结果:`, e5的`query:`和`passage:`)。
|
| 1097 |
+
|
| 1098 |
+
**初始权重:**\
|
| 1099 |
+
stella-base-zh和stella-large-zh分别以piccolo-base-zh[6]和piccolo-large-zh作为基础模型,512-1024的position
|
| 1100 |
+
embedding使用层次分解位置编码[7]进行初始化。\
|
| 1101 |
+
感谢商汤科技研究院开源的[piccolo系列模型](https://huggingface.co/sensenova)。
|
| 1102 |
+
|
| 1103 |
+
stella is a general-purpose text encoder, which mainly includes the following models:
|
| 1104 |
+
|
| 1105 |
+
| Model Name | Model Size (GB) | Dimension | Sequence Length | Language | Need instruction for retrieval? |
|
| 1106 |
+
|:------------------:|:---------------:|:---------:|:---------------:|:--------:|:-------------------------------:|
|
| 1107 |
+
| stella-large-zh-v2 | 0.65 | 1024 | 1024 | Chinese | No |
|
| 1108 |
+
| stella-base-zh-v2 | 0.2 | 768 | 1024 | Chinese | No |
|
| 1109 |
+
| stella-large-zh | 0.65 | 1024 | 1024 | Chinese | Yes |
|
| 1110 |
+
| stella-base-zh | 0.2 | 768 | 1024 | Chinese | Yes |
|
| 1111 |
+
|
| 1112 |
+
The training data mainly includes:
|
| 1113 |
+
|
| 1114 |
+
1. Open-source training data (wudao_base_200GB, m3e, and simclue), with a focus on selecting texts with lengths greater
|
| 1115 |
+
than 512.
|
| 1116 |
+
2. A batch of (question, paragraph) and (sentence, paragraph) data constructed on a general corpus using LLM.
|
| 1117 |
+
|
| 1118 |
+
The loss functions mainly include:
|
| 1119 |
+
|
| 1120 |
+
1. Contrastive learning loss function
|
| 1121 |
+
2. Contrastive learning loss function with hard negative examples (based on bm25 and vector hard negatives)
|
| 1122 |
+
3. EWC (Elastic Weights Consolidation)
|
| 1123 |
+
4. cosent loss
|
| 1124 |
+
|
| 1125 |
+
Model weight initialization:\
|
| 1126 |
+
stella-base-zh and stella-large-zh use piccolo-base-zh and piccolo-large-zh as the base models, respectively, and the
|
| 1127 |
+
512-1024 position embedding uses the initialization strategy of hierarchical decomposed position encoding.
|
| 1128 |
+
|
| 1129 |
+
Training strategy:\
|
| 1130 |
+
One iterator for each type of data, separately calculating the loss.
|
| 1131 |
+
|
| 1132 |
+
Based on stella models, stella-v2 use more training data and remove instruction by Knowledge Distillation.
|
| 1133 |
+
|
| 1134 |
+
## Metric
|
| 1135 |
+
|
| 1136 |
+
#### C-MTEB leaderboard (Chinese)
|
| 1137 |
+
|
| 1138 |
+
| Model Name | Model Size (GB) | Dimension | Sequence Length | Average (35) | Classification (9) | Clustering (4) | Pair Classification (2) | Reranking (4) | Retrieval (8) | STS (8) |
|
| 1139 |
+
|:------------------:|:---------------:|:---------:|:---------------:|:------------:|:------------------:|:--------------:|:-----------------------:|:-------------:|:-------------:|:-------:|
|
| 1140 |
+
| stella-large-zh-v2 | 0.65 | 1024 | 1024 | 65.13 | 69.05 | 49.16 | 82.68 | 66.41 | 70.14 | 58.66 |
|
| 1141 |
+
| stella-base-zh-v2 | 0.2 | 768 | 1024 | 64.36 | 68.29 | 49.4 | 79.95 | 66.1 | 70.08 | 56.92 |
|
| 1142 |
+
| stella-large-zh | 0.65 | 1024 | 1024 | 64.54 | 67.62 | 48.65 | 78.72 | 65.98 | 71.02 | 58.3 |
|
| 1143 |
+
| stella-base-zh | 0.2 | 768 | 1024 | 64.16 | 67.77 | 48.7 | 76.09 | 66.95 | 71.07 | 56.54 |
|
| 1144 |
+
|
| 1145 |
+
#### Reproduce our results
|
| 1146 |
+
|
| 1147 |
+
Codes:
|
| 1148 |
+
|
| 1149 |
+
```python
|
| 1150 |
+
import torch
|
| 1151 |
+
import numpy as np
|
| 1152 |
+
from typing import List
|
| 1153 |
+
from mteb import MTEB
|
| 1154 |
+
from sentence_transformers import SentenceTransformer
|
| 1155 |
+
|
| 1156 |
+
|
| 1157 |
+
class FastTextEncoder():
|
| 1158 |
+
def __init__(self, model_name):
|
| 1159 |
+
self.model = SentenceTransformer(model_name).cuda().half().eval()
|
| 1160 |
+
self.model.max_seq_length = 512
|
| 1161 |
+
|
| 1162 |
+
def encode(
|
| 1163 |
+
self,
|
| 1164 |
+
input_texts: List[str],
|
| 1165 |
+
*args,
|
| 1166 |
+
**kwargs
|
| 1167 |
+
):
|
| 1168 |
+
new_sens = list(set(input_texts))
|
| 1169 |
+
new_sens.sort(key=lambda x: len(x), reverse=True)
|
| 1170 |
+
vecs = self.model.encode(
|
| 1171 |
+
new_sens, normalize_embeddings=True, convert_to_numpy=True, batch_size=256
|
| 1172 |
+
).astype(np.float32)
|
| 1173 |
+
sen2arrid = {sen: idx for idx, sen in enumerate(new_sens)}
|
| 1174 |
+
vecs = vecs[[sen2arrid[sen] for sen in input_texts]]
|
| 1175 |
+
torch.cuda.empty_cache()
|
| 1176 |
+
return vecs
|
| 1177 |
+
|
| 1178 |
+
|
| 1179 |
+
if __name__ == '__main__':
|
| 1180 |
+
model_name = "infgrad/stella-base-zh-v2"
|
| 1181 |
+
output_folder = "zh_mteb_results/stella-base-zh-v2"
|
| 1182 |
+
task_names = [t.description["name"] for t in MTEB(task_langs=['zh', 'zh-CN']).tasks]
|
| 1183 |
+
model = FastTextEncoder(model_name)
|
| 1184 |
+
for task in task_names:
|
| 1185 |
+
MTEB(tasks=[task], task_langs=['zh', 'zh-CN']).run(model, output_folder=output_folder)
|
| 1186 |
+
|
| 1187 |
+
```
|
| 1188 |
+
|
| 1189 |
+
#### Evaluation for long text
|
| 1190 |
+
|
| 1191 |
+
经过实际观察发现,C-MTEB的评测数据长度基本都是小于512的,
|
| 1192 |
+
更致命的是那些长度大于512的文本,其重点都在前半部分
|
| 1193 |
+
这里以CMRC2018的数据为例说明这个问题:
|
| 1194 |
+
|
| 1195 |
+
```
|
| 1196 |
+
question: 《无双大蛇z》是谁旗下ω-force开发的动作游戏?
|
| 1197 |
+
|
| 1198 |
+
passage:《无双大蛇z》是光荣旗下ω-force开发的动作游戏,于2009年3月12日登陆索尼playstation3,并于2009年11月27日推......
|
| 1199 |
+
```
|
| 1200 |
+
|
| 1201 |
+
passage长度为800多,大于512,但是对于这个question而言只需要前面40个字就足以检索,多的内容对于模型而言是一种噪声,反而降低了效果。\
|
| 1202 |
+
简言之,现有数据集的2个问题:\
|
| 1203 |
+
1)长度大于512的过少\
|
| 1204 |
+
2)即便大于512,对于检索而言也只需要前512的文本内容\
|
| 1205 |
+
导致**无法准确评估模型的长文本编码能力。**
|
| 1206 |
+
|
| 1207 |
+
为了解决这个问题,搜集了相关开源数据并使用规则进行过滤,最终整理了6份长文本测试集,他们分别是:
|
| 1208 |
+
|
| 1209 |
+
- CMRC2018,通用百科
|
| 1210 |
+
- CAIL,法律阅读理解
|
| 1211 |
+
- DRCD,繁体百科,已转简体
|
| 1212 |
+
- Military,军工问答
|
| 1213 |
+
- Squad,英文阅读理解,已转中文
|
| 1214 |
+
- Multifieldqa_zh,清华的大模型长文本理解能力评测数据[9]
|
| 1215 |
+
|
| 1216 |
+
处理规则是选取答案在512长度之后的文本,短的测试数据会欠采样一下,长短文本占比约为1:2,所以模型既得理解短文本也得理解长文本。
|
| 1217 |
+
除了Military数据集,我们提供了其他5个测试数据的下载地址:https://drive.google.com/file/d/1WC6EWaCbVgz-vPMDFH4TwAMkLyh5WNcN/view?usp=sharing
|
| 1218 |
+
|
| 1219 |
+
评测指标为Recall@5, 结果如下:
|
| 1220 |
+
|
| 1221 |
+
| Dataset | piccolo-base-zh | piccolo-large-zh | bge-base-zh | bge-large-zh | stella-base-zh | stella-large-zh |
|
| 1222 |
+
|:---------------:|:---------------:|:----------------:|:-----------:|:------------:|:--------------:|:---------------:|
|
| 1223 |
+
| CMRC2018 | 94.34 | 93.82 | 91.56 | 93.12 | 96.08 | 95.56 |
|
| 1224 |
+
| CAIL | 28.04 | 33.64 | 31.22 | 33.94 | 34.62 | 37.18 |
|
| 1225 |
+
| DRCD | 78.25 | 77.9 | 78.34 | 80.26 | 86.14 | 84.58 |
|
| 1226 |
+
| Military | 76.61 | 73.06 | 75.65 | 75.81 | 83.71 | 80.48 |
|
| 1227 |
+
| Squad | 91.21 | 86.61 | 87.87 | 90.38 | 93.31 | 91.21 |
|
| 1228 |
+
| Multifieldqa_zh | 81.41 | 83.92 | 83.92 | 83.42 | 79.9 | 80.4 |
|
| 1229 |
+
| **Average** | 74.98 | 74.83 | 74.76 | 76.15 | **78.96** | **78.24** |
|
| 1230 |
+
|
| 1231 |
+
**注意:** 因为长文本评测数据数量稀少,所以构造时也使用了train部分,如果自行评测,请注意模型的训练数据以免数据泄露。
|
| 1232 |
+
|
| 1233 |
+
## Usage
|
| 1234 |
+
|
| 1235 |
+
#### stella 中文系列模型
|
| 1236 |
+
|
| 1237 |
+
stella-base-zh 和 stella-large-zh: 本模型是在piccolo基础上训练的,因此**用法和piccolo完全一致**
|
| 1238 |
+
,即在检索重排任务上给query和passage加上`查询: `和`结果: `。对于短短匹配不需要做任何操作。
|
| 1239 |
+
|
| 1240 |
+
stella-base-zh-v2 和 stella-large-zh-v2: 本模型使用简单,**任何使用场景中都不需要加前缀文本**。
|
| 1241 |
+
|
| 1242 |
+
stella中文系列模型均使用mean pooling做为文本向量。
|
| 1243 |
+
|
| 1244 |
+
在sentence-transformer库中的使用方法:
|
| 1245 |
+
|
| 1246 |
+
```python
|
| 1247 |
+
# 对于短对短数据集,下面是通用的使用方式
|
| 1248 |
+
from sentence_transformers import SentenceTransformer
|
| 1249 |
+
|
| 1250 |
+
sentences = ["数据1", "数据2"]
|
| 1251 |
+
model = SentenceTransformer('infgrad/stella-base-zh-v2')
|
| 1252 |
+
print(model.max_seq_length)
|
| 1253 |
+
embeddings_1 = model.encode(sentences, normalize_embeddings=True)
|
| 1254 |
+
embeddings_2 = model.encode(sentences, normalize_embeddings=True)
|
| 1255 |
+
similarity = embeddings_1 @ embeddings_2.T
|
| 1256 |
+
print(similarity)
|
| 1257 |
+
```
|
| 1258 |
+
|
| 1259 |
+
直接使用transformers库:
|
| 1260 |
+
|
| 1261 |
+
```python
|
| 1262 |
+
from transformers import AutoModel, AutoTokenizer
|
| 1263 |
+
from sklearn.preprocessing import normalize
|
| 1264 |
+
|
| 1265 |
+
model = AutoModel.from_pretrained('infgrad/stella-base-zh-v2')
|
| 1266 |
+
tokenizer = AutoTokenizer.from_pretrained('infgrad/stella-base-zh-v2')
|
| 1267 |
+
sentences = ["数据1", "数据ABCDEFGH"]
|
| 1268 |
+
batch_data = tokenizer(
|
| 1269 |
+
batch_text_or_text_pairs=sentences,
|
| 1270 |
+
padding="longest",
|
| 1271 |
+
return_tensors="pt",
|
| 1272 |
+
max_length=1024,
|
| 1273 |
+
truncation=True,
|
| 1274 |
+
)
|
| 1275 |
+
attention_mask = batch_data["attention_mask"]
|
| 1276 |
+
model_output = model(**batch_data)
|
| 1277 |
+
last_hidden = model_output.last_hidden_state.masked_fill(~attention_mask[..., None].bool(), 0.0)
|
| 1278 |
+
vectors = last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
|
| 1279 |
+
vectors = normalize(vectors, norm="l2", axis=1, )
|
| 1280 |
+
print(vectors.shape) # 2,768
|
| 1281 |
+
```
|
| 1282 |
+
|
| 1283 |
+
#### stella models for English
|
| 1284 |
+
|
| 1285 |
+
developing...
|
| 1286 |
+
|
| 1287 |
+
## Training Detail
|
| 1288 |
+
|
| 1289 |
+
**硬件:** 单卡A100-80GB
|
| 1290 |
+
|
| 1291 |
+
**环境:** torch1.13.*; transformers-trainer + deepspeed + gradient-checkpointing
|
| 1292 |
+
|
| 1293 |
+
**学习率:** 1e-6
|
| 1294 |
+
|
| 1295 |
+
**batch_size:** base模型为1024,额外增加20%的难负例;large模型为768,额外增加20%的难负例
|
| 1296 |
+
|
| 1297 |
+
**数据量:** 第一版模型约100万,其中用LLM构造的数据约有200K. LLM模型大小为13b。v2系列模型到了2000万训练数据。
|
| 1298 |
+
|
| 1299 |
+
## ToDoList
|
| 1300 |
+
|
| 1301 |
+
**评测的稳定性:**
|
| 1302 |
+
评测过程中发现Clustering任务会和官方的结果不一致,大约有±0.0x的小差距,原因是聚类代码没有设置random_seed,差距可以忽略不计,不影响评测结论。
|
| 1303 |
+
|
| 1304 |
+
**更高质量的长文本训练和测试数据:** 训练数据多是用13b模型构造的,肯定会存在噪声。
|
| 1305 |
+
测试数据基本都是从mrc数据整理来的,所以问题都是factoid类型,不符合真实分布。
|
| 1306 |
+
|
| 1307 |
+
**OOD的性能:** 虽然近期出现了很多向量编码模型,但是对于不是那么通用的domain,这一众模型包括stella、openai和cohere,
|
| 1308 |
+
它们的效果均比不上BM25。
|
| 1309 |
+
|
| 1310 |
+
## Reference
|
| 1311 |
+
|
| 1312 |
+
1. https://www.scidb.cn/en/detail?dataSetId=c6a3fe684227415a9db8e21bac4a15ab
|
| 1313 |
+
2. https://github.com/wangyuxinwhy/uniem
|
| 1314 |
+
3. https://github.com/CLUEbenchmark/SimCLUE
|
| 1315 |
+
4. https://arxiv.org/abs/1612.00796
|
| 1316 |
+
5. https://kexue.fm/archives/8847
|
| 1317 |
+
6. https://huggingface.co/sensenova/piccolo-base-zh
|
| 1318 |
+
7. https://kexue.fm/archives/7947
|
| 1319 |
+
8. https://github.com/FlagOpen/FlagEmbedding
|
| 1320 |
+
9. https://github.com/THUDM/LongBench
|
| 1321 |
+
|
| 1322 |
+
|
config.json
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"BertModel"
|
| 4 |
+
],
|
| 5 |
+
"attention_probs_dropout_prob": 0.1,
|
| 6 |
+
"bos_token_id": 0,
|
| 7 |
+
"classifier_dropout": null,
|
| 8 |
+
"directionality": "bidi",
|
| 9 |
+
"eos_token_id": 2,
|
| 10 |
+
"hidden_act": "gelu",
|
| 11 |
+
"hidden_dropout_prob": 0.1,
|
| 12 |
+
"hidden_size": 1024,
|
| 13 |
+
"initializer_range": 0.02,
|
| 14 |
+
"intermediate_size": 4096,
|
| 15 |
+
"layer_norm_eps": 1e-12,
|
| 16 |
+
"max_position_embeddings": 1024,
|
| 17 |
+
"model_type": "bert",
|
| 18 |
+
"num_attention_heads": 16,
|
| 19 |
+
"num_hidden_layers": 24,
|
| 20 |
+
"output_past": true,
|
| 21 |
+
"pad_token_id": 0,
|
| 22 |
+
"pooler_fc_size": 768,
|
| 23 |
+
"pooler_num_attention_heads": 12,
|
| 24 |
+
"pooler_num_fc_layers": 3,
|
| 25 |
+
"pooler_size_per_head": 128,
|
| 26 |
+
"pooler_type": "first_token_transform",
|
| 27 |
+
"position_embedding_type": "absolute",
|
| 28 |
+
"torch_dtype": "float16",
|
| 29 |
+
"transformers_version": "4.30.2",
|
| 30 |
+
"type_vocab_size": 2,
|
| 31 |
+
"uniem_pooling_strategy": "last_mean",
|
| 32 |
+
"use_cache": true,
|
| 33 |
+
"vocab_size": 21128
|
| 34 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": "[CLS]",
|
| 3 |
+
"mask_token": "[MASK]",
|
| 4 |
+
"pad_token": "[PAD]",
|
| 5 |
+
"sep_token": "[SEP]",
|
| 6 |
+
"unk_token": "[UNK]"
|
| 7 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"clean_up_tokenization_spaces": true,
|
| 3 |
+
"cls_token": "[CLS]",
|
| 4 |
+
"do_lower_case": true,
|
| 5 |
+
"mask_token": "[MASK]",
|
| 6 |
+
"model_max_length": 1024,
|
| 7 |
+
"pad_token": "[PAD]",
|
| 8 |
+
"sep_token": "[SEP]",
|
| 9 |
+
"strip_accents": null,
|
| 10 |
+
"tokenize_chinese_chars": true,
|
| 11 |
+
"tokenizer_class": "BertTokenizer",
|
| 12 |
+
"unk_token": "[UNK]"
|
| 13 |
+
}
|
vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|