Update README.md
Browse files
README.md
CHANGED
|
@@ -1,6 +1,12 @@
|
|
| 1 |
---
|
| 2 |
library_name: transformers
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
---
|
| 5 |
|
| 6 |
# Model Card for Model ID
|
|
@@ -11,189 +17,98 @@ tags: []
|
|
| 11 |
|
| 12 |
## Model Details
|
| 13 |
|
| 14 |
-
### Model Description
|
| 15 |
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
[
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
### Recommendations
|
| 65 |
-
|
| 66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 67 |
-
|
| 68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 69 |
-
|
| 70 |
-
## How to Get Started with the Model
|
| 71 |
-
|
| 72 |
-
Use the code below to get started with the model.
|
| 73 |
-
|
| 74 |
-
[More Information Needed]
|
| 75 |
-
|
| 76 |
-
## Training Details
|
| 77 |
-
|
| 78 |
-
### Training Data
|
| 79 |
-
|
| 80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 81 |
-
|
| 82 |
-
[More Information Needed]
|
| 83 |
-
|
| 84 |
-
### Training Procedure
|
| 85 |
-
|
| 86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 87 |
-
|
| 88 |
-
#### Preprocessing [optional]
|
| 89 |
-
|
| 90 |
-
[More Information Needed]
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
#### Training Hyperparameters
|
| 94 |
-
|
| 95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 96 |
-
|
| 97 |
-
#### Speeds, Sizes, Times [optional]
|
| 98 |
-
|
| 99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
-
|
| 101 |
-
[More Information Needed]
|
| 102 |
|
| 103 |
## Evaluation
|
| 104 |
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
-
|
| 113 |
-
[More Information Needed]
|
| 114 |
-
|
| 115 |
-
#### Factors
|
| 116 |
-
|
| 117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
-
|
| 119 |
-
[More Information Needed]
|
| 120 |
-
|
| 121 |
-
#### Metrics
|
| 122 |
-
|
| 123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
-
|
| 125 |
-
[More Information Needed]
|
| 126 |
-
|
| 127 |
-
### Results
|
| 128 |
-
|
| 129 |
-
[More Information Needed]
|
| 130 |
-
|
| 131 |
-
#### Summary
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
## Model Examination [optional]
|
| 136 |
-
|
| 137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
-
|
| 139 |
-
[More Information Needed]
|
| 140 |
-
|
| 141 |
-
## Environmental Impact
|
| 142 |
-
|
| 143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
-
|
| 145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
-
|
| 147 |
-
- **Hardware Type:** [More Information Needed]
|
| 148 |
-
- **Hours used:** [More Information Needed]
|
| 149 |
-
- **Cloud Provider:** [More Information Needed]
|
| 150 |
-
- **Compute Region:** [More Information Needed]
|
| 151 |
-
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
-
|
| 153 |
-
## Technical Specifications [optional]
|
| 154 |
-
|
| 155 |
-
### Model Architecture and Objective
|
| 156 |
-
|
| 157 |
-
[More Information Needed]
|
| 158 |
-
|
| 159 |
-
### Compute Infrastructure
|
| 160 |
-
|
| 161 |
-
[More Information Needed]
|
| 162 |
-
|
| 163 |
-
#### Hardware
|
| 164 |
-
|
| 165 |
-
[More Information Needed]
|
| 166 |
-
|
| 167 |
-
#### Software
|
| 168 |
-
|
| 169 |
-
[More Information Needed]
|
| 170 |
-
|
| 171 |
-
## Citation [optional]
|
| 172 |
-
|
| 173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
-
|
| 175 |
-
**BibTeX:**
|
| 176 |
|
| 177 |
-
[More Information Needed]
|
| 178 |
|
| 179 |
-
|
|
|
|
| 180 |
|
| 181 |
-
|
| 182 |
|
| 183 |
-
|
|
|
|
| 184 |
|
| 185 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 186 |
|
| 187 |
-
|
|
|
|
|
|
|
| 188 |
|
| 189 |
-
|
|
|
|
| 190 |
|
| 191 |
-
|
|
|
|
| 192 |
|
| 193 |
-
|
|
|
|
|
|
|
| 194 |
|
| 195 |
-
|
|
|
|
|
|
|
| 196 |
|
| 197 |
-
## Model Card Contact
|
| 198 |
|
| 199 |
-
|
|
|
|
|
|
| 1 |
---
|
| 2 |
library_name: transformers
|
| 3 |
+
license: apache-2.0
|
| 4 |
+
datasets:
|
| 5 |
+
- jaeyong2/Ja-emb-PreView
|
| 6 |
+
language:
|
| 7 |
+
- ja
|
| 8 |
+
base_model:
|
| 9 |
+
- Alibaba-NLP/gte-multilingual-base
|
| 10 |
---
|
| 11 |
|
| 12 |
# Model Card for Model ID
|
|
|
|
| 17 |
|
| 18 |
## Model Details
|
| 19 |
|
|
|
|
| 20 |
|
| 21 |
+
## Train
|
| 22 |
+
|
| 23 |
+
- H/W : colab A100 40GB
|
| 24 |
+
- Data : jaeyong2/Ja-emb-PreView
|
| 25 |
+
|
| 26 |
+
```
|
| 27 |
+
model_name = "Alibaba-NLP/gte-multilingual-base"
|
| 28 |
+
dataset = datasets.load_dataset("jaeyong2/Ja-emb-PreView")
|
| 29 |
+
train_dataloader = DataLoader(dataset['train'], batch_size=8, shuffle=True)
|
| 30 |
+
|
| 31 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 32 |
+
model = AutoModel.from_pretrained(model_name).to(torch.bfloat16)
|
| 33 |
+
triplet_loss = TripletLoss(margin=1.0)
|
| 34 |
+
|
| 35 |
+
optimizer = AdamW(model.parameters(), lr=5e-5)
|
| 36 |
+
|
| 37 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 38 |
+
model.to(device)
|
| 39 |
+
|
| 40 |
+
for epoch in range(3): # 에포크 반복
|
| 41 |
+
model.train()
|
| 42 |
+
total_loss = 0
|
| 43 |
+
count = 0
|
| 44 |
+
for batch in tqdm(train_dataloader):
|
| 45 |
+
optimizer.zero_grad()
|
| 46 |
+
loss = None
|
| 47 |
+
for index in range(len(batch["context"])):
|
| 48 |
+
anchor_encodings = tokenizer([batch["context"][index]], truncation=True, padding="max_length", max_length=4096, return_tensors="pt")
|
| 49 |
+
positive_encodings = tokenizer([batch["Title"][index]], truncation=True, padding="max_length", max_length=256, return_tensors="pt")
|
| 50 |
+
negative_encodings = tokenizer([batch["Fake Title"][index]], truncation=True, padding="max_length", max_length=256, return_tensors="pt")
|
| 51 |
+
|
| 52 |
+
anchor_encodings = batch_to_device(anchor_encodings, device)
|
| 53 |
+
positive_encodings = batch_to_device(positive_encodings, device)
|
| 54 |
+
negative_encodings = batch_to_device(negative_encodings, device)
|
| 55 |
+
|
| 56 |
+
# 모델 출력 (임베딩 벡터 생성)
|
| 57 |
+
anchor_output = model(**anchor_encodings)[0][:, 0, :] # [CLS] 토큰의 벡터
|
| 58 |
+
positive_output = model(**positive_encodings)[0][:, 0, :]
|
| 59 |
+
negative_output = model(**negative_encodings)[0][:, 0, :]
|
| 60 |
+
# 삼중항 손실 계산
|
| 61 |
+
if loss==None:
|
| 62 |
+
loss = triplet_loss(anchor_output, positive_output, negative_output)
|
| 63 |
+
else:
|
| 64 |
+
loss += triplet_loss(anchor_output, positive_output, negative_output)
|
| 65 |
+
loss /= len(batch["context"])
|
| 66 |
+
loss.backward()
|
| 67 |
+
optimizer.step()
|
| 68 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
|
| 70 |
## Evaluation
|
| 71 |
|
| 72 |
+
Code :
|
| 73 |
+
```
|
| 74 |
+
import torch
|
| 75 |
+
import numpy as np
|
| 76 |
+
from sklearn.metrics import pairwise_distances
|
| 77 |
+
from tqdm import tqdm
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
|
|
|
| 79 |
|
| 80 |
+
dataset = datasets.load_dataset("jaeyong2/Ja-emb-PreView")
|
| 81 |
+
validation_dataset = dataset["test"].select(range((1000)))
|
| 82 |
|
| 83 |
+
model.eval()
|
| 84 |
|
| 85 |
+
def evaluate(validation_dataset):
|
| 86 |
+
correct_count = 0
|
| 87 |
|
| 88 |
+
for item in tqdm(validation_dataset):
|
| 89 |
+
query_embedding = get_embedding(item["context"], model, tokenizer)
|
| 90 |
+
document_embedding = get_embedding(item["Title"], model, tokenizer)
|
| 91 |
+
negative_embedding = get_embedding(item["Fake Title"], model, tokenizer)
|
| 92 |
+
|
| 93 |
|
| 94 |
+
# 쿼리와 모든 문서 간의 유사도 계산 (코사인 거리 사용)
|
| 95 |
+
positive_distances = pairwise_distances(query_embedding.detach().cpu().float().numpy(), document_embedding.detach().cpu().float().numpy(), metric="cosine")
|
| 96 |
+
negative_distances = pairwise_distances(query_embedding.detach().cpu().float().numpy(), negative_embedding.detach().cpu().float().numpy(), metric="cosine")
|
| 97 |
|
| 98 |
+
if positive_distances < negative_distances:
|
| 99 |
+
correct_count += 1
|
| 100 |
|
| 101 |
+
accuracy = correct_count / len(validation_dataset)
|
| 102 |
+
return accuracy
|
| 103 |
|
| 104 |
+
results = evaluate(validation_dataset)
|
| 105 |
+
print(f"Validation Results: {results}")
|
| 106 |
+
```
|
| 107 |
|
| 108 |
+
Accuracy
|
| 109 |
+
- Alibaba-NLP/gte-multilingual-base : 0.979
|
| 110 |
+
- jaeyong2/gte-multilingual-base-Ja-embedding : 0.995
|
| 111 |
|
|
|
|
| 112 |
|
| 113 |
+
### License
|
| 114 |
+
- Alibaba-NLP/gte-multilingual-base : https://choosealicense.com/licenses/apache-2.0/
|