File size: 1,824 Bytes
e3e5f6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-large
tags:
- video-classification
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: ucf101_42
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ucf101_42

This model is a fine-tuned version of [MCG-NJU/videomae-large](https://huggingface.co/MCG-NJU/videomae-large) on the ucf101 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3255
- Accuracy: 0.9403
- Test Accuracy: 0.9403
- Df Accuracy: 1.0
- Unlearn Overall Accuracy: 0.4701
- Unlearn Time: 11529.0707

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1.5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Overall Accuracy | Unlearn Overall Accuracy | Time |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:----------------:|:------------------------:|:----:|
| No log        | 1.0   | 274  | 0.3193          | 0.9996   | 0.4691           | 0.4691                   | -1   |
| No log        | 1.49  | 408  | 0.3255          | 1.0      | 0.4701           | 0.4701                   | -1   |


### Framework versions

- Transformers 4.39.3
- Pytorch 2.2.2+cu118
- Datasets 2.18.0
- Tokenizers 0.15.2