--- title: Autoencoder General Purpose 8D emoji: 🧬 colorFrom: blue colorTo: green sdk: pytorch tags: - transcriptomics - dimensionality-reduction - ae - general license: mit --- # Autoencoder (General Purpose, 8D) This model is part of the TRACERx Datathon 2025 transcriptomics analysis pipeline. ## Model Details - **Model Type**: Autoencoder - **Dataset**: General Purpose - **Latent Dimensions**: 8 - **Compression Mode**: transcriptome - **Framework**: PyTorch ## Usage This model is designed to be used with the TRACERx Datathon 2025 analysis pipeline. It will be automatically downloaded and cached when needed. ## Model Architecture - Input: Gene expression data - Hidden layers: [input_size, 512, 256, 128, 8] - Output: 8-dimensional latent representation - Activation: ELU with batch normalization ## Training Data Trained on broader open transcriptomics datasets ## Files - `autoencoder_8_latent_dims_oos_mode.pt`: Main model weights - `latent_df.csv`: Example latent representations (if available)