--- title: Autoencoder TRACERx-focused 16D emoji: 🧬 colorFrom: blue colorTo: green sdk: pytorch tags: - transcriptomics - dimensionality-reduction - ae - tracerx license: mit --- # Autoencoder (TRACERx-focused, 16D) This model is part of the TRACERx Datathon 2025 transcriptomics analysis pipeline. ## Model Details - **Model Type**: Autoencoder - **Dataset**: TRACERx-focused - **Latent Dimensions**: 16 - **Compression Mode**: samples - **Framework**: PyTorch ## Usage This model is designed to be used with the TRACERx Datathon 2025 analysis pipeline. It will be automatically downloaded and cached when needed. ## Model Architecture - Input: Gene expression data - Hidden layers: [input_size, 512, 256, 128, 16] - Output: 16-dimensional latent representation - Activation: ELU with batch normalization ## Training Data Trained exclusively on TRACERx open dataset ## Files - `autoencoder_16_latent_dims_oos_mode.pt`: Main model weights - `latent_df.csv`: Example latent representations (if available)