Upload folder using huggingface_hub
Browse files- README.md +60 -0
- added_tokens.json +44 -0
- all_results.json +9 -0
- config.json +36 -0
- generation_config.json +6 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +298 -0
- special_tokens_map.json +34 -0
- tokenization_inflm.py +292 -0
- tokenizer.model +3 -0
- tokenizer_config.json +396 -0
- train_results.json +9 -0
- trainer_log.jsonl +35 -0
- trainer_state.json +315 -0
- training_args.bin +3 -0
- training_loss.png +0 -0
README.md
ADDED
|
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: transformers
|
| 3 |
+
license: other
|
| 4 |
+
base_model: infly/OpenCoder-8B-Instruct
|
| 5 |
+
tags:
|
| 6 |
+
- llama-factory
|
| 7 |
+
- freeze
|
| 8 |
+
- generated_from_trainer
|
| 9 |
+
model-index:
|
| 10 |
+
- name: opencoder_under8_nsx
|
| 11 |
+
results: []
|
| 12 |
+
---
|
| 13 |
+
|
| 14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 15 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 16 |
+
|
| 17 |
+
# opencoder_under8_nsx
|
| 18 |
+
|
| 19 |
+
This model is a fine-tuned version of [infly/OpenCoder-8B-Instruct](https://huggingface.co/infly/OpenCoder-8B-Instruct) on the codes_nsx_under8 dataset.
|
| 20 |
+
|
| 21 |
+
## Model description
|
| 22 |
+
|
| 23 |
+
More information needed
|
| 24 |
+
|
| 25 |
+
## Intended uses & limitations
|
| 26 |
+
|
| 27 |
+
More information needed
|
| 28 |
+
|
| 29 |
+
## Training and evaluation data
|
| 30 |
+
|
| 31 |
+
More information needed
|
| 32 |
+
|
| 33 |
+
## Training procedure
|
| 34 |
+
|
| 35 |
+
### Training hyperparameters
|
| 36 |
+
|
| 37 |
+
The following hyperparameters were used during training:
|
| 38 |
+
- learning_rate: 5e-05
|
| 39 |
+
- train_batch_size: 16
|
| 40 |
+
- eval_batch_size: 8
|
| 41 |
+
- seed: 42
|
| 42 |
+
- distributed_type: multi-GPU
|
| 43 |
+
- num_devices: 4
|
| 44 |
+
- gradient_accumulation_steps: 8
|
| 45 |
+
- total_train_batch_size: 512
|
| 46 |
+
- total_eval_batch_size: 32
|
| 47 |
+
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
| 48 |
+
- lr_scheduler_type: cosine
|
| 49 |
+
- num_epochs: 1.0
|
| 50 |
+
|
| 51 |
+
### Training results
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
### Framework versions
|
| 56 |
+
|
| 57 |
+
- Transformers 4.48.2
|
| 58 |
+
- Pytorch 2.5.1+cu124
|
| 59 |
+
- Datasets 3.2.0
|
| 60 |
+
- Tokenizers 0.21.0
|
added_tokens.json
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"<code_to_intermediate>": 96521,
|
| 3 |
+
"<empty_output>": 96520,
|
| 4 |
+
"<file_sep>": 96511,
|
| 5 |
+
"<fim_middle>": 96508,
|
| 6 |
+
"<fim_prefix>": 96507,
|
| 7 |
+
"<fim_suffix>": 96509,
|
| 8 |
+
"<intermediate_to_code>": 96522,
|
| 9 |
+
"<issue_closed>": 96514,
|
| 10 |
+
"<issue_comment>": 96513,
|
| 11 |
+
"<issue_start>": 96512,
|
| 12 |
+
"<jupyter_code>": 96517,
|
| 13 |
+
"<jupyter_output>": 96518,
|
| 14 |
+
"<jupyter_script>": 96519,
|
| 15 |
+
"<jupyter_start>": 96515,
|
| 16 |
+
"<jupyter_text>": 96516,
|
| 17 |
+
"<pr>": 96523,
|
| 18 |
+
"<pr_base>": 96526,
|
| 19 |
+
"<pr_base_code>": 96528,
|
| 20 |
+
"<pr_comment>": 96531,
|
| 21 |
+
"<pr_diff>": 96529,
|
| 22 |
+
"<pr_diff_hunk>": 96530,
|
| 23 |
+
"<pr_diff_hunk_comment_line>": 96538,
|
| 24 |
+
"<pr_event_id>": 96532,
|
| 25 |
+
"<pr_file>": 96527,
|
| 26 |
+
"<pr_in_reply_to_comment_id>": 96537,
|
| 27 |
+
"<pr_in_reply_to_review_id>": 96536,
|
| 28 |
+
"<pr_is_merged>": 96525,
|
| 29 |
+
"<pr_review>": 96533,
|
| 30 |
+
"<pr_review_comment>": 96535,
|
| 31 |
+
"<pr_review_state>": 96534,
|
| 32 |
+
"<pr_status>": 96524,
|
| 33 |
+
"<repo_name>": 96510,
|
| 34 |
+
"<|endoftext|>": 96506,
|
| 35 |
+
"<|end|>": 96500,
|
| 36 |
+
"<|im_end|>": 96539,
|
| 37 |
+
"<|im_start|>": 96540,
|
| 38 |
+
"<|message|>": 96501,
|
| 39 |
+
"<|pad|>": 96505,
|
| 40 |
+
"<|start|>": 96499,
|
| 41 |
+
"<|tool_end|>": 96504,
|
| 42 |
+
"<|tool_excute|>": 96503,
|
| 43 |
+
"<|tool_start|>": 96502
|
| 44 |
+
}
|
all_results.json
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"epoch": 0.9784172661870504,
|
| 3 |
+
"num_input_tokens_seen": 71303168,
|
| 4 |
+
"total_flos": 3.1553472363893883e+18,
|
| 5 |
+
"train_loss": 1.0356257505276625,
|
| 6 |
+
"train_runtime": 5786.0102,
|
| 7 |
+
"train_samples_per_second": 3.069,
|
| 8 |
+
"train_steps_per_second": 0.006
|
| 9 |
+
}
|
config.json
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "infly/OpenCoder-8B-Instruct",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"LlamaForCausalLM"
|
| 5 |
+
],
|
| 6 |
+
"attention_bias": false,
|
| 7 |
+
"attention_dropout": 0.0,
|
| 8 |
+
"bos_token_id": 96540,
|
| 9 |
+
"eos_token_id": 96539,
|
| 10 |
+
"head_dim": 128,
|
| 11 |
+
"hidden_act": "silu",
|
| 12 |
+
"hidden_size": 4096,
|
| 13 |
+
"initializer_range": 0.02,
|
| 14 |
+
"intermediate_size": 14336,
|
| 15 |
+
"max_position_embeddings": 8192,
|
| 16 |
+
"mlp_bias": false,
|
| 17 |
+
"model_type": "llama",
|
| 18 |
+
"num_attention_heads": 32,
|
| 19 |
+
"num_hidden_layers": 32,
|
| 20 |
+
"num_key_value_heads": 8,
|
| 21 |
+
"pretraining_tp": 1,
|
| 22 |
+
"rms_norm_eps": 1e-05,
|
| 23 |
+
"rope_scaling": {
|
| 24 |
+
"factor": 1.0,
|
| 25 |
+
"high_freq_factor": 4.0,
|
| 26 |
+
"low_freq_factor": 1.0,
|
| 27 |
+
"original_max_position_embeddings": 8192,
|
| 28 |
+
"rope_type": "llama3"
|
| 29 |
+
},
|
| 30 |
+
"rope_theta": 500000.0,
|
| 31 |
+
"tie_word_embeddings": false,
|
| 32 |
+
"torch_dtype": "bfloat16",
|
| 33 |
+
"transformers_version": "4.48.2",
|
| 34 |
+
"use_cache": false,
|
| 35 |
+
"vocab_size": 96640
|
| 36 |
+
}
|
generation_config.json
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 96540,
|
| 4 |
+
"eos_token_id": 96539,
|
| 5 |
+
"transformers_version": "4.48.2"
|
| 6 |
+
}
|
model-00001-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:182be20097743536eb8333475d94fdb0eeea45e2d7f20103b65a61c2771ee9bf
|
| 3 |
+
size 4919027568
|
model-00002-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5cc279d881eab0c885854b53c957767d89eb9296b42c8bef03248825ced9a4c7
|
| 3 |
+
size 4915915128
|
model-00003-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dd91320596f749430c9857b81dfac3f73826e5a0ffb0e244a83704a00cdd1ed7
|
| 3 |
+
size 4999819112
|
model-00004-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4020abd4e08bf660f3954d989dc90ec18c3d7bef4895058490659e14b14e3239
|
| 3 |
+
size 1580246000
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 16414973952
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"lm_head.weight": "model-00004-of-00004.safetensors",
|
| 7 |
+
"model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
| 8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 15 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 16 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 17 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 18 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 19 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 20 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 21 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 22 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 23 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 24 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 25 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 26 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 27 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 28 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 29 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 30 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 31 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 32 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 33 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 34 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 35 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 36 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 37 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 38 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 39 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 40 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 41 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 42 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 43 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 44 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 45 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 46 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 47 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 48 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 49 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 50 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 51 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 52 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 53 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 54 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 55 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 56 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 57 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 58 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 59 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 60 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 61 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 62 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 63 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 64 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 65 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 66 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 67 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 68 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 69 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 70 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 71 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 72 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 73 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 74 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 75 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 76 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 77 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 78 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 79 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 80 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 81 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 82 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 83 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 84 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 85 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 86 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 87 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 88 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 89 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 90 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 91 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 92 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 93 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 94 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 95 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 96 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 97 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 98 |
+
"model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 99 |
+
"model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 100 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 101 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 102 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 103 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 104 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 105 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 106 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 107 |
+
"model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 108 |
+
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 109 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 110 |
+
"model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 111 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 112 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 113 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 114 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 115 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 116 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 117 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 118 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 119 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 120 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 121 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 122 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 123 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 124 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 125 |
+
"model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 126 |
+
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 127 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 128 |
+
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 129 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 130 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 131 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 132 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 133 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 134 |
+
"model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 135 |
+
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 136 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 137 |
+
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 138 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 139 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 140 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 141 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 142 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 143 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 144 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 145 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 146 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 147 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 148 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 149 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 150 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 151 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 152 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 153 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 154 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 155 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 156 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 157 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 158 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 159 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 160 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 161 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 162 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 163 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 164 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 165 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 166 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 167 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 168 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 169 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 170 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 171 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 172 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 173 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 174 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 175 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 176 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 177 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 178 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 179 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 180 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 181 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 182 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 183 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 184 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 185 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 186 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 187 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 188 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 189 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 190 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 191 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 192 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 193 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 194 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 195 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 196 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 197 |
+
"model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 198 |
+
"model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 199 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 200 |
+
"model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 201 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 202 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 203 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 204 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 205 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 206 |
+
"model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 207 |
+
"model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 208 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 209 |
+
"model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 210 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 211 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 212 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 213 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 214 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 215 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 216 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 217 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 218 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 219 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 220 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 221 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 222 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 223 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 224 |
+
"model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 225 |
+
"model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 226 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 227 |
+
"model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 228 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 229 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 230 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 231 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 232 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 233 |
+
"model.layers.31.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
| 234 |
+
"model.layers.31.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 235 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 236 |
+
"model.layers.31.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 237 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
| 238 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 239 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
| 240 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 241 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
| 242 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 243 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 244 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 245 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 246 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 247 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 248 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 249 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 250 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 251 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 252 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 253 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 254 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 255 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 256 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 257 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 258 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 259 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 260 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 261 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 262 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 263 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 264 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 265 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 266 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 267 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 268 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 269 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 270 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 271 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 272 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 273 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 274 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 275 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 276 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 277 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 278 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 279 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 280 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 281 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 282 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 283 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 284 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 285 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 286 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 287 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 288 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 289 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 290 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 291 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 292 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 293 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 294 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 295 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 296 |
+
"model.norm.weight": "model-00004-of-00004.safetensors"
|
| 297 |
+
}
|
| 298 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|im_end|>",
|
| 4 |
+
"<|im_start|>"
|
| 5 |
+
],
|
| 6 |
+
"bos_token": {
|
| 7 |
+
"content": "<|im_start|>",
|
| 8 |
+
"lstrip": false,
|
| 9 |
+
"normalized": false,
|
| 10 |
+
"rstrip": false,
|
| 11 |
+
"single_word": false
|
| 12 |
+
},
|
| 13 |
+
"eos_token": {
|
| 14 |
+
"content": "<|im_end|>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false
|
| 19 |
+
},
|
| 20 |
+
"pad_token": {
|
| 21 |
+
"content": "<pad>",
|
| 22 |
+
"lstrip": false,
|
| 23 |
+
"normalized": false,
|
| 24 |
+
"rstrip": false,
|
| 25 |
+
"single_word": false
|
| 26 |
+
},
|
| 27 |
+
"unk_token": {
|
| 28 |
+
"content": "<unk>",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false
|
| 33 |
+
}
|
| 34 |
+
}
|
tokenization_inflm.py
ADDED
|
@@ -0,0 +1,292 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
| 5 |
+
# and OPT implementations in this library. It has been modified from its
|
| 6 |
+
# original forms to accommodate minor architectural differences compared
|
| 7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
| 8 |
+
#
|
| 9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 10 |
+
# you may not use this file except in compliance with the License.
|
| 11 |
+
# You may obtain a copy of the License at
|
| 12 |
+
#
|
| 13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 14 |
+
#
|
| 15 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 18 |
+
# See the License for the specific language governing permissions and
|
| 19 |
+
# limitations under the License.
|
| 20 |
+
|
| 21 |
+
"""Tokenization classes for INFLMTokenizer."""
|
| 22 |
+
import os
|
| 23 |
+
from shutil import copyfile
|
| 24 |
+
from typing import Any, Dict, List, Optional, Tuple
|
| 25 |
+
|
| 26 |
+
import sentencepiece as spm
|
| 27 |
+
|
| 28 |
+
from transformers.tokenization_utils import PreTrainedTokenizer
|
| 29 |
+
from transformers.utils import logging
|
| 30 |
+
|
| 31 |
+
from tokenizers import pre_tokenizers,Regex,decoders
|
| 32 |
+
from tokenizers.pre_tokenizers import Digits, Split, ByteLevel
|
| 33 |
+
import os
|
| 34 |
+
|
| 35 |
+
# same as gpt4 cl-base-100k
|
| 36 |
+
PATTERN = Regex("(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+\s+(\S)+")
|
| 37 |
+
|
| 38 |
+
logger = logging.get_logger(__name__)
|
| 39 |
+
|
| 40 |
+
VOCAB_FILES_NAMES = {"vocab_file": "./tokenizer.model"}
|
| 41 |
+
|
| 42 |
+
PRETRAINED_VOCAB_FILES_MAP = {}
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
class INFLMTokenizer(PreTrainedTokenizer):
|
| 46 |
+
"""
|
| 47 |
+
Construct a INFLMTokenizer tokenizer based on sentence-piece
|
| 48 |
+
|
| 49 |
+
Args:
|
| 50 |
+
vocab_file (`str`):
|
| 51 |
+
Path to the vocabulary file.
|
| 52 |
+
"""
|
| 53 |
+
|
| 54 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
| 55 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
| 56 |
+
model_input_names = ["input_ids", "attention_mask"]
|
| 57 |
+
_auto_class = "AutoTokenizer"
|
| 58 |
+
|
| 59 |
+
def __init__(
|
| 60 |
+
self,
|
| 61 |
+
vocab_file,
|
| 62 |
+
unk_token="<unk>",
|
| 63 |
+
bos_token="<s>",
|
| 64 |
+
eos_token="</s>",
|
| 65 |
+
pad_token="<pad>",
|
| 66 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
| 67 |
+
add_bos_token=False,
|
| 68 |
+
add_eos_token=False,
|
| 69 |
+
decode_with_prefix_space=False,
|
| 70 |
+
clean_up_tokenization_spaces=False,
|
| 71 |
+
spaces_between_special_tokens=False,
|
| 72 |
+
**kwargs,
|
| 73 |
+
):
|
| 74 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
| 75 |
+
self.vocab_file = vocab_file
|
| 76 |
+
self.add_bos_token = add_bos_token
|
| 77 |
+
self.add_eos_token = add_eos_token
|
| 78 |
+
self.decode_with_prefix_space = decode_with_prefix_space
|
| 79 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
| 80 |
+
self.sp_model.Load(vocab_file)
|
| 81 |
+
self._no_prefix_space_tokens = None
|
| 82 |
+
self.pre_tokenizer = pre_tokenizers.Sequence([Split(pattern =PATTERN,behavior = "isolated", invert = False)])
|
| 83 |
+
super().__init__(
|
| 84 |
+
bos_token=bos_token,
|
| 85 |
+
eos_token=eos_token,
|
| 86 |
+
unk_token=unk_token,
|
| 87 |
+
pad_token=pad_token,
|
| 88 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
| 89 |
+
spaces_between_special_tokens=spaces_between_special_tokens,
|
| 90 |
+
**kwargs,
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
""" Initialisation"""
|
| 94 |
+
|
| 95 |
+
@property
|
| 96 |
+
def no_prefix_space_tokens(self):
|
| 97 |
+
if self._no_prefix_space_tokens is None:
|
| 98 |
+
vocab = self.convert_ids_to_tokens(list(range(self.vocab_size)))
|
| 99 |
+
self._no_prefix_space_tokens = {i for i, tok in enumerate(vocab) if not tok.startswith("▁")}
|
| 100 |
+
return self._no_prefix_space_tokens
|
| 101 |
+
|
| 102 |
+
@property
|
| 103 |
+
def vocab_size(self):
|
| 104 |
+
"""Returns vocab size"""
|
| 105 |
+
return self.sp_model.get_piece_size()
|
| 106 |
+
|
| 107 |
+
@property
|
| 108 |
+
def bos_token_id(self) -> Optional[int]:
|
| 109 |
+
return self.sp_model.bos_id()
|
| 110 |
+
|
| 111 |
+
@property
|
| 112 |
+
def eos_token_id(self) -> Optional[int]:
|
| 113 |
+
return self.sp_model.eos_id()
|
| 114 |
+
|
| 115 |
+
def get_vocab(self):
|
| 116 |
+
"""Returns vocab as a dict"""
|
| 117 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
| 118 |
+
vocab.update(self.added_tokens_encoder)
|
| 119 |
+
return vocab
|
| 120 |
+
|
| 121 |
+
def _tokenize(self, text):
|
| 122 |
+
"""Returns a tokenized string."""
|
| 123 |
+
|
| 124 |
+
splits = self.pre_tokenizer.pre_tokenize_str(text)
|
| 125 |
+
texts=[]
|
| 126 |
+
|
| 127 |
+
for split in splits:
|
| 128 |
+
texts.extend(self.sp_model.encode(split[0], out_type=str))
|
| 129 |
+
return texts
|
| 130 |
+
|
| 131 |
+
def _convert_token_to_id(self, token):
|
| 132 |
+
"""Converts a token (str) in an id using the vocab."""
|
| 133 |
+
|
| 134 |
+
return self.sp_model.piece_to_id(token)
|
| 135 |
+
|
| 136 |
+
def _convert_id_to_token(self, index):
|
| 137 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
| 138 |
+
token = self.sp_model.IdToPiece(index)
|
| 139 |
+
return token
|
| 140 |
+
|
| 141 |
+
def _maybe_add_prefix_space(self, tokens, decoded):
|
| 142 |
+
if tokens and tokens[0] not in self.no_prefix_space_tokens:
|
| 143 |
+
return " " + decoded
|
| 144 |
+
else:
|
| 145 |
+
return decoded
|
| 146 |
+
|
| 147 |
+
def convert_tokens_to_string(self, tokens):
|
| 148 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
| 149 |
+
current_sub_tokens = []
|
| 150 |
+
out_string = ""
|
| 151 |
+
prev_is_special = False
|
| 152 |
+
for token in tokens:
|
| 153 |
+
# make sure that special tokens are not decoded using sentencepiece model
|
| 154 |
+
if token in self.all_special_tokens:
|
| 155 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
| 156 |
+
prev_is_special = True
|
| 157 |
+
current_sub_tokens = []
|
| 158 |
+
else:
|
| 159 |
+
current_sub_tokens.append(token)
|
| 160 |
+
prev_is_special = False
|
| 161 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
| 162 |
+
|
| 163 |
+
return out_string
|
| 164 |
+
|
| 165 |
+
def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
| 166 |
+
"""
|
| 167 |
+
Save the vocabulary and special tokens file to a directory.
|
| 168 |
+
|
| 169 |
+
Args:
|
| 170 |
+
save_directory (`str`):
|
| 171 |
+
The directory in which to save the vocabulary.
|
| 172 |
+
|
| 173 |
+
Returns:
|
| 174 |
+
`Tuple(str)`: Paths to the files saved.
|
| 175 |
+
"""
|
| 176 |
+
if not os.path.isdir(save_directory):
|
| 177 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
| 178 |
+
return
|
| 179 |
+
out_vocab_file = os.path.join(
|
| 180 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
| 181 |
+
)
|
| 182 |
+
|
| 183 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
| 184 |
+
copyfile(self.vocab_file, out_vocab_file)
|
| 185 |
+
elif not os.path.isfile(self.vocab_file):
|
| 186 |
+
with open(out_vocab_file, "wb") as fi:
|
| 187 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
| 188 |
+
fi.write(content_spiece_model)
|
| 189 |
+
|
| 190 |
+
return (out_vocab_file,)
|
| 191 |
+
|
| 192 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
| 193 |
+
if self.add_bos_token:
|
| 194 |
+
bos_token_ids = [self.bos_token_id]
|
| 195 |
+
else:
|
| 196 |
+
bos_token_ids = []
|
| 197 |
+
|
| 198 |
+
output = bos_token_ids + token_ids_0
|
| 199 |
+
|
| 200 |
+
if token_ids_1 is not None:
|
| 201 |
+
output = output + token_ids_1
|
| 202 |
+
|
| 203 |
+
if self.add_eos_token:
|
| 204 |
+
output = output + [self.eos_token_id]
|
| 205 |
+
|
| 206 |
+
return output
|
| 207 |
+
|
| 208 |
+
def get_special_tokens_mask(
|
| 209 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
| 210 |
+
) -> List[int]:
|
| 211 |
+
"""
|
| 212 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
| 213 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
| 214 |
+
|
| 215 |
+
Args:
|
| 216 |
+
token_ids_0 (`List[int]`):
|
| 217 |
+
List of IDs.
|
| 218 |
+
token_ids_1 (`List[int]`, *optional*):
|
| 219 |
+
Optional second list of IDs for sequence pairs.
|
| 220 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
| 221 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
| 222 |
+
|
| 223 |
+
Returns:
|
| 224 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
| 225 |
+
"""
|
| 226 |
+
if already_has_special_tokens:
|
| 227 |
+
return super().get_special_tokens_mask(
|
| 228 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
| 229 |
+
)
|
| 230 |
+
|
| 231 |
+
eos_token_id = [1] if self.add_eos_token else []
|
| 232 |
+
if token_ids_1 is None:
|
| 233 |
+
return ([0] * len(token_ids_0)) + eos_token_id
|
| 234 |
+
return ([0] * len(token_ids_0)) + eos_token_id + ([0] * len(token_ids_1)) + eos_token_id
|
| 235 |
+
|
| 236 |
+
|
| 237 |
+
def create_token_type_ids_from_sequences(
|
| 238 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
| 239 |
+
) -> List[int]:
|
| 240 |
+
"""
|
| 241 |
+
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
|
| 242 |
+
sequence pair mask has the following format:
|
| 243 |
+
|
| 244 |
+
```
|
| 245 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
| 246 |
+
| first sequence | second sequence |
|
| 247 |
+
```
|
| 248 |
+
|
| 249 |
+
if token_ids_1 is None, only returns the first portion of the mask (0s).
|
| 250 |
+
|
| 251 |
+
Note this is only used for back compatiblity, thus list of zero is returned.
|
| 252 |
+
|
| 253 |
+
Args:
|
| 254 |
+
token_ids_0 (`List[int]`):
|
| 255 |
+
List of ids.
|
| 256 |
+
token_ids_1 (`List[int]`, *optional*):
|
| 257 |
+
Optional second list of IDs for sequence pairs.
|
| 258 |
+
|
| 259 |
+
Returns:
|
| 260 |
+
`List[int]`: List of zeros.
|
| 261 |
+
"""
|
| 262 |
+
eos = [self.eos_token_id]
|
| 263 |
+
|
| 264 |
+
if token_ids_1 is None:
|
| 265 |
+
return len(token_ids_0 + eos) * [0]
|
| 266 |
+
return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
|
| 267 |
+
|
| 268 |
+
|
| 269 |
+
@property
|
| 270 |
+
def default_chat_template(self):
|
| 271 |
+
return None
|
| 272 |
+
|
| 273 |
+
|
| 274 |
+
def decode(
|
| 275 |
+
self,
|
| 276 |
+
token_ids,
|
| 277 |
+
skip_special_tokens: bool = False,
|
| 278 |
+
clean_up_tokenization_spaces: Optional[bool] = False,
|
| 279 |
+
spaces_between_special_tokens: bool = False,
|
| 280 |
+
**kwargs,
|
| 281 |
+
) -> str:
|
| 282 |
+
# default spaces_between_special_tokens should be false.
|
| 283 |
+
if spaces_between_special_tokens:
|
| 284 |
+
logger.warning_once('spaces_between_special_tokens is set. \
|
| 285 |
+
It has no effect for bos,eos,pad,unk when transformers<=4.38.')
|
| 286 |
+
return super().decode(
|
| 287 |
+
token_ids,
|
| 288 |
+
skip_special_tokens=skip_special_tokens,
|
| 289 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
| 290 |
+
spaces_between_special_tokens=spaces_between_special_tokens,
|
| 291 |
+
**kwargs,
|
| 292 |
+
)
|
tokenizer.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:76d43d618fc0c5a7c79dc4e72579f9f29bb803b36e4a4d709d1233626fd8fe2a
|
| 3 |
+
size 1535725
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,396 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_prefix_space": false,
|
| 3 |
+
"added_tokens_decoder": {
|
| 4 |
+
"0": {
|
| 5 |
+
"content": "<unk>",
|
| 6 |
+
"lstrip": false,
|
| 7 |
+
"normalized": false,
|
| 8 |
+
"rstrip": false,
|
| 9 |
+
"single_word": false,
|
| 10 |
+
"special": true
|
| 11 |
+
},
|
| 12 |
+
"1": {
|
| 13 |
+
"content": "<s>",
|
| 14 |
+
"lstrip": false,
|
| 15 |
+
"normalized": false,
|
| 16 |
+
"rstrip": false,
|
| 17 |
+
"single_word": false,
|
| 18 |
+
"special": true
|
| 19 |
+
},
|
| 20 |
+
"2": {
|
| 21 |
+
"content": "</s>",
|
| 22 |
+
"lstrip": false,
|
| 23 |
+
"normalized": false,
|
| 24 |
+
"rstrip": false,
|
| 25 |
+
"single_word": false,
|
| 26 |
+
"special": true
|
| 27 |
+
},
|
| 28 |
+
"3": {
|
| 29 |
+
"content": "<pad>",
|
| 30 |
+
"lstrip": false,
|
| 31 |
+
"normalized": false,
|
| 32 |
+
"rstrip": false,
|
| 33 |
+
"single_word": false,
|
| 34 |
+
"special": true
|
| 35 |
+
},
|
| 36 |
+
"96499": {
|
| 37 |
+
"content": "<|start|>",
|
| 38 |
+
"lstrip": false,
|
| 39 |
+
"normalized": false,
|
| 40 |
+
"rstrip": false,
|
| 41 |
+
"single_word": false,
|
| 42 |
+
"special": true
|
| 43 |
+
},
|
| 44 |
+
"96500": {
|
| 45 |
+
"content": "<|end|>",
|
| 46 |
+
"lstrip": false,
|
| 47 |
+
"normalized": false,
|
| 48 |
+
"rstrip": false,
|
| 49 |
+
"single_word": false,
|
| 50 |
+
"special": true
|
| 51 |
+
},
|
| 52 |
+
"96501": {
|
| 53 |
+
"content": "<|message|>",
|
| 54 |
+
"lstrip": false,
|
| 55 |
+
"normalized": false,
|
| 56 |
+
"rstrip": false,
|
| 57 |
+
"single_word": false,
|
| 58 |
+
"special": true
|
| 59 |
+
},
|
| 60 |
+
"96502": {
|
| 61 |
+
"content": "<|tool_start|>",
|
| 62 |
+
"lstrip": false,
|
| 63 |
+
"normalized": false,
|
| 64 |
+
"rstrip": false,
|
| 65 |
+
"single_word": false,
|
| 66 |
+
"special": true
|
| 67 |
+
},
|
| 68 |
+
"96503": {
|
| 69 |
+
"content": "<|tool_excute|>",
|
| 70 |
+
"lstrip": false,
|
| 71 |
+
"normalized": false,
|
| 72 |
+
"rstrip": false,
|
| 73 |
+
"single_word": false,
|
| 74 |
+
"special": true
|
| 75 |
+
},
|
| 76 |
+
"96504": {
|
| 77 |
+
"content": "<|tool_end|>",
|
| 78 |
+
"lstrip": false,
|
| 79 |
+
"normalized": false,
|
| 80 |
+
"rstrip": false,
|
| 81 |
+
"single_word": false,
|
| 82 |
+
"special": true
|
| 83 |
+
},
|
| 84 |
+
"96505": {
|
| 85 |
+
"content": "<|pad|>",
|
| 86 |
+
"lstrip": false,
|
| 87 |
+
"normalized": false,
|
| 88 |
+
"rstrip": false,
|
| 89 |
+
"single_word": false,
|
| 90 |
+
"special": true
|
| 91 |
+
},
|
| 92 |
+
"96506": {
|
| 93 |
+
"content": "<|endoftext|>",
|
| 94 |
+
"lstrip": false,
|
| 95 |
+
"normalized": false,
|
| 96 |
+
"rstrip": false,
|
| 97 |
+
"single_word": false,
|
| 98 |
+
"special": true
|
| 99 |
+
},
|
| 100 |
+
"96507": {
|
| 101 |
+
"content": "<fim_prefix>",
|
| 102 |
+
"lstrip": false,
|
| 103 |
+
"normalized": false,
|
| 104 |
+
"rstrip": false,
|
| 105 |
+
"single_word": false,
|
| 106 |
+
"special": true
|
| 107 |
+
},
|
| 108 |
+
"96508": {
|
| 109 |
+
"content": "<fim_middle>",
|
| 110 |
+
"lstrip": false,
|
| 111 |
+
"normalized": false,
|
| 112 |
+
"rstrip": false,
|
| 113 |
+
"single_word": false,
|
| 114 |
+
"special": true
|
| 115 |
+
},
|
| 116 |
+
"96509": {
|
| 117 |
+
"content": "<fim_suffix>",
|
| 118 |
+
"lstrip": false,
|
| 119 |
+
"normalized": false,
|
| 120 |
+
"rstrip": false,
|
| 121 |
+
"single_word": false,
|
| 122 |
+
"special": true
|
| 123 |
+
},
|
| 124 |
+
"96510": {
|
| 125 |
+
"content": "<repo_name>",
|
| 126 |
+
"lstrip": false,
|
| 127 |
+
"normalized": false,
|
| 128 |
+
"rstrip": false,
|
| 129 |
+
"single_word": false,
|
| 130 |
+
"special": true
|
| 131 |
+
},
|
| 132 |
+
"96511": {
|
| 133 |
+
"content": "<file_sep>",
|
| 134 |
+
"lstrip": false,
|
| 135 |
+
"normalized": false,
|
| 136 |
+
"rstrip": false,
|
| 137 |
+
"single_word": false,
|
| 138 |
+
"special": true
|
| 139 |
+
},
|
| 140 |
+
"96512": {
|
| 141 |
+
"content": "<issue_start>",
|
| 142 |
+
"lstrip": false,
|
| 143 |
+
"normalized": false,
|
| 144 |
+
"rstrip": false,
|
| 145 |
+
"single_word": false,
|
| 146 |
+
"special": true
|
| 147 |
+
},
|
| 148 |
+
"96513": {
|
| 149 |
+
"content": "<issue_comment>",
|
| 150 |
+
"lstrip": false,
|
| 151 |
+
"normalized": false,
|
| 152 |
+
"rstrip": false,
|
| 153 |
+
"single_word": false,
|
| 154 |
+
"special": true
|
| 155 |
+
},
|
| 156 |
+
"96514": {
|
| 157 |
+
"content": "<issue_closed>",
|
| 158 |
+
"lstrip": false,
|
| 159 |
+
"normalized": false,
|
| 160 |
+
"rstrip": false,
|
| 161 |
+
"single_word": false,
|
| 162 |
+
"special": true
|
| 163 |
+
},
|
| 164 |
+
"96515": {
|
| 165 |
+
"content": "<jupyter_start>",
|
| 166 |
+
"lstrip": false,
|
| 167 |
+
"normalized": false,
|
| 168 |
+
"rstrip": false,
|
| 169 |
+
"single_word": false,
|
| 170 |
+
"special": true
|
| 171 |
+
},
|
| 172 |
+
"96516": {
|
| 173 |
+
"content": "<jupyter_text>",
|
| 174 |
+
"lstrip": false,
|
| 175 |
+
"normalized": false,
|
| 176 |
+
"rstrip": false,
|
| 177 |
+
"single_word": false,
|
| 178 |
+
"special": true
|
| 179 |
+
},
|
| 180 |
+
"96517": {
|
| 181 |
+
"content": "<jupyter_code>",
|
| 182 |
+
"lstrip": false,
|
| 183 |
+
"normalized": false,
|
| 184 |
+
"rstrip": false,
|
| 185 |
+
"single_word": false,
|
| 186 |
+
"special": true
|
| 187 |
+
},
|
| 188 |
+
"96518": {
|
| 189 |
+
"content": "<jupyter_output>",
|
| 190 |
+
"lstrip": false,
|
| 191 |
+
"normalized": false,
|
| 192 |
+
"rstrip": false,
|
| 193 |
+
"single_word": false,
|
| 194 |
+
"special": true
|
| 195 |
+
},
|
| 196 |
+
"96519": {
|
| 197 |
+
"content": "<jupyter_script>",
|
| 198 |
+
"lstrip": false,
|
| 199 |
+
"normalized": false,
|
| 200 |
+
"rstrip": false,
|
| 201 |
+
"single_word": false,
|
| 202 |
+
"special": true
|
| 203 |
+
},
|
| 204 |
+
"96520": {
|
| 205 |
+
"content": "<empty_output>",
|
| 206 |
+
"lstrip": false,
|
| 207 |
+
"normalized": false,
|
| 208 |
+
"rstrip": false,
|
| 209 |
+
"single_word": false,
|
| 210 |
+
"special": true
|
| 211 |
+
},
|
| 212 |
+
"96521": {
|
| 213 |
+
"content": "<code_to_intermediate>",
|
| 214 |
+
"lstrip": false,
|
| 215 |
+
"normalized": false,
|
| 216 |
+
"rstrip": false,
|
| 217 |
+
"single_word": false,
|
| 218 |
+
"special": true
|
| 219 |
+
},
|
| 220 |
+
"96522": {
|
| 221 |
+
"content": "<intermediate_to_code>",
|
| 222 |
+
"lstrip": false,
|
| 223 |
+
"normalized": false,
|
| 224 |
+
"rstrip": false,
|
| 225 |
+
"single_word": false,
|
| 226 |
+
"special": true
|
| 227 |
+
},
|
| 228 |
+
"96523": {
|
| 229 |
+
"content": "<pr>",
|
| 230 |
+
"lstrip": false,
|
| 231 |
+
"normalized": false,
|
| 232 |
+
"rstrip": false,
|
| 233 |
+
"single_word": false,
|
| 234 |
+
"special": true
|
| 235 |
+
},
|
| 236 |
+
"96524": {
|
| 237 |
+
"content": "<pr_status>",
|
| 238 |
+
"lstrip": false,
|
| 239 |
+
"normalized": false,
|
| 240 |
+
"rstrip": false,
|
| 241 |
+
"single_word": false,
|
| 242 |
+
"special": true
|
| 243 |
+
},
|
| 244 |
+
"96525": {
|
| 245 |
+
"content": "<pr_is_merged>",
|
| 246 |
+
"lstrip": false,
|
| 247 |
+
"normalized": false,
|
| 248 |
+
"rstrip": false,
|
| 249 |
+
"single_word": false,
|
| 250 |
+
"special": true
|
| 251 |
+
},
|
| 252 |
+
"96526": {
|
| 253 |
+
"content": "<pr_base>",
|
| 254 |
+
"lstrip": false,
|
| 255 |
+
"normalized": false,
|
| 256 |
+
"rstrip": false,
|
| 257 |
+
"single_word": false,
|
| 258 |
+
"special": true
|
| 259 |
+
},
|
| 260 |
+
"96527": {
|
| 261 |
+
"content": "<pr_file>",
|
| 262 |
+
"lstrip": false,
|
| 263 |
+
"normalized": false,
|
| 264 |
+
"rstrip": false,
|
| 265 |
+
"single_word": false,
|
| 266 |
+
"special": true
|
| 267 |
+
},
|
| 268 |
+
"96528": {
|
| 269 |
+
"content": "<pr_base_code>",
|
| 270 |
+
"lstrip": false,
|
| 271 |
+
"normalized": false,
|
| 272 |
+
"rstrip": false,
|
| 273 |
+
"single_word": false,
|
| 274 |
+
"special": true
|
| 275 |
+
},
|
| 276 |
+
"96529": {
|
| 277 |
+
"content": "<pr_diff>",
|
| 278 |
+
"lstrip": false,
|
| 279 |
+
"normalized": false,
|
| 280 |
+
"rstrip": false,
|
| 281 |
+
"single_word": false,
|
| 282 |
+
"special": true
|
| 283 |
+
},
|
| 284 |
+
"96530": {
|
| 285 |
+
"content": "<pr_diff_hunk>",
|
| 286 |
+
"lstrip": false,
|
| 287 |
+
"normalized": false,
|
| 288 |
+
"rstrip": false,
|
| 289 |
+
"single_word": false,
|
| 290 |
+
"special": true
|
| 291 |
+
},
|
| 292 |
+
"96531": {
|
| 293 |
+
"content": "<pr_comment>",
|
| 294 |
+
"lstrip": false,
|
| 295 |
+
"normalized": false,
|
| 296 |
+
"rstrip": false,
|
| 297 |
+
"single_word": false,
|
| 298 |
+
"special": true
|
| 299 |
+
},
|
| 300 |
+
"96532": {
|
| 301 |
+
"content": "<pr_event_id>",
|
| 302 |
+
"lstrip": false,
|
| 303 |
+
"normalized": false,
|
| 304 |
+
"rstrip": false,
|
| 305 |
+
"single_word": false,
|
| 306 |
+
"special": true
|
| 307 |
+
},
|
| 308 |
+
"96533": {
|
| 309 |
+
"content": "<pr_review>",
|
| 310 |
+
"lstrip": false,
|
| 311 |
+
"normalized": false,
|
| 312 |
+
"rstrip": false,
|
| 313 |
+
"single_word": false,
|
| 314 |
+
"special": true
|
| 315 |
+
},
|
| 316 |
+
"96534": {
|
| 317 |
+
"content": "<pr_review_state>",
|
| 318 |
+
"lstrip": false,
|
| 319 |
+
"normalized": false,
|
| 320 |
+
"rstrip": false,
|
| 321 |
+
"single_word": false,
|
| 322 |
+
"special": true
|
| 323 |
+
},
|
| 324 |
+
"96535": {
|
| 325 |
+
"content": "<pr_review_comment>",
|
| 326 |
+
"lstrip": false,
|
| 327 |
+
"normalized": false,
|
| 328 |
+
"rstrip": false,
|
| 329 |
+
"single_word": false,
|
| 330 |
+
"special": true
|
| 331 |
+
},
|
| 332 |
+
"96536": {
|
| 333 |
+
"content": "<pr_in_reply_to_review_id>",
|
| 334 |
+
"lstrip": false,
|
| 335 |
+
"normalized": false,
|
| 336 |
+
"rstrip": false,
|
| 337 |
+
"single_word": false,
|
| 338 |
+
"special": true
|
| 339 |
+
},
|
| 340 |
+
"96537": {
|
| 341 |
+
"content": "<pr_in_reply_to_comment_id>",
|
| 342 |
+
"lstrip": false,
|
| 343 |
+
"normalized": false,
|
| 344 |
+
"rstrip": false,
|
| 345 |
+
"single_word": false,
|
| 346 |
+
"special": true
|
| 347 |
+
},
|
| 348 |
+
"96538": {
|
| 349 |
+
"content": "<pr_diff_hunk_comment_line>",
|
| 350 |
+
"lstrip": false,
|
| 351 |
+
"normalized": false,
|
| 352 |
+
"rstrip": false,
|
| 353 |
+
"single_word": false,
|
| 354 |
+
"special": true
|
| 355 |
+
},
|
| 356 |
+
"96539": {
|
| 357 |
+
"content": "<|im_end|>",
|
| 358 |
+
"lstrip": false,
|
| 359 |
+
"normalized": false,
|
| 360 |
+
"rstrip": false,
|
| 361 |
+
"single_word": false,
|
| 362 |
+
"special": true
|
| 363 |
+
},
|
| 364 |
+
"96540": {
|
| 365 |
+
"content": "<|im_start|>",
|
| 366 |
+
"lstrip": false,
|
| 367 |
+
"normalized": false,
|
| 368 |
+
"rstrip": false,
|
| 369 |
+
"single_word": false,
|
| 370 |
+
"special": true
|
| 371 |
+
}
|
| 372 |
+
},
|
| 373 |
+
"additional_special_tokens": [
|
| 374 |
+
"<|im_end|>",
|
| 375 |
+
"<|im_start|>"
|
| 376 |
+
],
|
| 377 |
+
"auto_map": {
|
| 378 |
+
"AutoTokenizer": [
|
| 379 |
+
"tokenization_inflm.INFLMTokenizer",
|
| 380 |
+
null
|
| 381 |
+
]
|
| 382 |
+
},
|
| 383 |
+
"bos_token": "<|im_start|>",
|
| 384 |
+
"chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are OpenCoder, created by OpenCoder Team.<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
|
| 385 |
+
"clean_up_tokenization_spaces": false,
|
| 386 |
+
"eos_token": "<|im_end|>",
|
| 387 |
+
"extra_special_tokens": {},
|
| 388 |
+
"model_max_length": 4096,
|
| 389 |
+
"pad_token": "<pad>",
|
| 390 |
+
"padding_side": "right",
|
| 391 |
+
"return_tensors": true,
|
| 392 |
+
"spaces_between_special_tokens": false,
|
| 393 |
+
"split_special_tokens": false,
|
| 394 |
+
"tokenizer_class": "INFLMTokenizer",
|
| 395 |
+
"unk_token": "<unk>"
|
| 396 |
+
}
|
train_results.json
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"epoch": 0.9784172661870504,
|
| 3 |
+
"num_input_tokens_seen": 71303168,
|
| 4 |
+
"total_flos": 3.1553472363893883e+18,
|
| 5 |
+
"train_loss": 1.0356257505276625,
|
| 6 |
+
"train_runtime": 5786.0102,
|
| 7 |
+
"train_samples_per_second": 3.069,
|
| 8 |
+
"train_steps_per_second": 0.006
|
| 9 |
+
}
|
trainer_log.jsonl
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{"current_steps": 1, "total_steps": 34, "loss": 1.4719, "lr": 4.989335440737586e-05, "epoch": 0.02877697841726619, "percentage": 2.94, "elapsed_time": "0:02:58", "remaining_time": "1:38:02", "throughput": 11764.63, "total_tokens": 2097152}
|
| 2 |
+
{"current_steps": 2, "total_steps": 34, "loss": 1.4237, "lr": 4.957432749209755e-05, "epoch": 0.05755395683453238, "percentage": 5.88, "elapsed_time": "0:05:48", "remaining_time": "1:32:57", "throughput": 12031.95, "total_tokens": 4194304}
|
| 3 |
+
{"current_steps": 3, "total_steps": 34, "loss": 1.3171, "lr": 4.9045641079320484e-05, "epoch": 0.08633093525179857, "percentage": 8.82, "elapsed_time": "0:08:38", "remaining_time": "1:29:22", "throughput": 12123.74, "total_tokens": 6291456}
|
| 4 |
+
{"current_steps": 4, "total_steps": 34, "loss": 1.262, "lr": 4.8311805735108894e-05, "epoch": 0.11510791366906475, "percentage": 11.76, "elapsed_time": "0:11:29", "remaining_time": "1:26:09", "throughput": 12169.2, "total_tokens": 8388608}
|
| 5 |
+
{"current_steps": 5, "total_steps": 34, "loss": 1.2216, "lr": 4.7379082283876566e-05, "epoch": 0.14388489208633093, "percentage": 14.71, "elapsed_time": "0:14:19", "remaining_time": "1:23:03", "throughput": 12203.19, "total_tokens": 10485760}
|
| 6 |
+
{"current_steps": 6, "total_steps": 34, "loss": 1.1564, "lr": 4.625542839324036e-05, "epoch": 0.17266187050359713, "percentage": 17.65, "elapsed_time": "0:17:09", "remaining_time": "1:20:05", "throughput": 12218.23, "total_tokens": 12582912}
|
| 7 |
+
{"current_steps": 7, "total_steps": 34, "loss": 1.1289, "lr": 4.4950430682006e-05, "epoch": 0.2014388489208633, "percentage": 20.59, "elapsed_time": "0:20:00", "remaining_time": "1:17:09", "throughput": 12231.27, "total_tokens": 14680064}
|
| 8 |
+
{"current_steps": 8, "total_steps": 34, "loss": 1.0862, "lr": 4.347522293051648e-05, "epoch": 0.2302158273381295, "percentage": 23.53, "elapsed_time": "0:22:50", "remaining_time": "1:14:14", "throughput": 12241.38, "total_tokens": 16777216}
|
| 9 |
+
{"current_steps": 9, "total_steps": 34, "loss": 1.0842, "lr": 4.184239109116393e-05, "epoch": 0.2589928057553957, "percentage": 26.47, "elapsed_time": "0:25:40", "remaining_time": "1:11:19", "throughput": 12249.91, "total_tokens": 18874368}
|
| 10 |
+
{"current_steps": 10, "total_steps": 34, "loss": 1.0345, "lr": 4.0065865909481417e-05, "epoch": 0.28776978417266186, "percentage": 29.41, "elapsed_time": "0:28:31", "remaining_time": "1:08:26", "throughput": 12256.81, "total_tokens": 20971520}
|
| 11 |
+
{"current_steps": 11, "total_steps": 34, "loss": 1.0473, "lr": 3.81608040719339e-05, "epoch": 0.31654676258992803, "percentage": 32.35, "elapsed_time": "0:31:21", "remaining_time": "1:05:33", "throughput": 12261.69, "total_tokens": 23068672}
|
| 12 |
+
{"current_steps": 12, "total_steps": 34, "loss": 1.0355, "lr": 3.6143458894413465e-05, "epoch": 0.34532374100719426, "percentage": 35.29, "elapsed_time": "0:34:11", "remaining_time": "1:02:41", "throughput": 12266.49, "total_tokens": 25165824}
|
| 13 |
+
{"current_steps": 13, "total_steps": 34, "loss": 1.0341, "lr": 3.403104165467883e-05, "epoch": 0.37410071942446044, "percentage": 38.24, "elapsed_time": "0:37:01", "remaining_time": "0:59:49", "throughput": 12270.2, "total_tokens": 27262976}
|
| 14 |
+
{"current_steps": 14, "total_steps": 34, "loss": 0.9967, "lr": 3.1841574751802076e-05, "epoch": 0.4028776978417266, "percentage": 41.18, "elapsed_time": "0:39:52", "remaining_time": "0:56:57", "throughput": 12272.56, "total_tokens": 29360128}
|
| 15 |
+
{"current_steps": 15, "total_steps": 34, "loss": 0.9901, "lr": 2.9593737945414264e-05, "epoch": 0.4316546762589928, "percentage": 44.12, "elapsed_time": "0:42:42", "remaining_time": "0:54:06", "throughput": 12275.23, "total_tokens": 31457280}
|
| 16 |
+
{"current_steps": 16, "total_steps": 34, "loss": 0.9894, "lr": 2.7306708986582553e-05, "epoch": 0.460431654676259, "percentage": 47.06, "elapsed_time": "0:45:33", "remaining_time": "0:51:14", "throughput": 12277.3, "total_tokens": 33554432}
|
| 17 |
+
{"current_steps": 17, "total_steps": 34, "loss": 0.9596, "lr": 2.5e-05, "epoch": 0.4892086330935252, "percentage": 50.0, "elapsed_time": "0:48:23", "remaining_time": "0:48:23", "throughput": 12279.41, "total_tokens": 35651584}
|
| 18 |
+
{"current_steps": 18, "total_steps": 34, "loss": 0.9862, "lr": 2.2693291013417453e-05, "epoch": 0.5179856115107914, "percentage": 52.94, "elapsed_time": "0:51:13", "remaining_time": "0:45:32", "throughput": 12280.58, "total_tokens": 37748736}
|
| 19 |
+
{"current_steps": 19, "total_steps": 34, "loss": 0.9911, "lr": 2.0406262054585738e-05, "epoch": 0.5467625899280576, "percentage": 55.88, "elapsed_time": "0:54:04", "remaining_time": "0:42:41", "throughput": 12282.58, "total_tokens": 39845888}
|
| 20 |
+
{"current_steps": 20, "total_steps": 34, "loss": 0.95, "lr": 1.815842524819793e-05, "epoch": 0.5755395683453237, "percentage": 58.82, "elapsed_time": "0:56:54", "remaining_time": "0:39:49", "throughput": 12284.7, "total_tokens": 41943040}
|
| 21 |
+
{"current_steps": 21, "total_steps": 34, "loss": 0.9235, "lr": 1.5968958345321178e-05, "epoch": 0.60431654676259, "percentage": 61.76, "elapsed_time": "0:59:44", "remaining_time": "0:36:59", "throughput": 12286.03, "total_tokens": 44040192}
|
| 22 |
+
{"current_steps": 22, "total_steps": 34, "loss": 0.952, "lr": 1.3856541105586545e-05, "epoch": 0.6330935251798561, "percentage": 64.71, "elapsed_time": "1:02:34", "remaining_time": "0:34:08", "throughput": 12286.99, "total_tokens": 46137344}
|
| 23 |
+
{"current_steps": 23, "total_steps": 34, "loss": 0.9199, "lr": 1.1839195928066102e-05, "epoch": 0.6618705035971223, "percentage": 67.65, "elapsed_time": "1:05:22", "remaining_time": "0:31:15", "throughput": 12297.96, "total_tokens": 48234496}
|
| 24 |
+
{"current_steps": 24, "total_steps": 34, "loss": 0.9399, "lr": 9.934134090518593e-06, "epoch": 0.6906474820143885, "percentage": 70.59, "elapsed_time": "1:08:09", "remaining_time": "0:28:24", "throughput": 12307.13, "total_tokens": 50331648}
|
| 25 |
+
{"current_steps": 25, "total_steps": 34, "loss": 0.9307, "lr": 8.15760890883607e-06, "epoch": 0.7194244604316546, "percentage": 73.53, "elapsed_time": "1:10:56", "remaining_time": "0:25:32", "throughput": 12316.17, "total_tokens": 52428800}
|
| 26 |
+
{"current_steps": 26, "total_steps": 34, "loss": 0.9579, "lr": 6.524777069483526e-06, "epoch": 0.7482014388489209, "percentage": 76.47, "elapsed_time": "1:13:44", "remaining_time": "0:22:41", "throughput": 12324.45, "total_tokens": 54525952}
|
| 27 |
+
{"current_steps": 27, "total_steps": 34, "loss": 0.9388, "lr": 5.049569317994013e-06, "epoch": 0.7769784172661871, "percentage": 79.41, "elapsed_time": "1:16:31", "remaining_time": "0:19:50", "throughput": 12332.52, "total_tokens": 56623104}
|
| 28 |
+
{"current_steps": 28, "total_steps": 34, "loss": 0.9241, "lr": 3.7445716067596503e-06, "epoch": 0.8057553956834532, "percentage": 82.35, "elapsed_time": "1:19:18", "remaining_time": "0:16:59", "throughput": 12339.87, "total_tokens": 58720256}
|
| 29 |
+
{"current_steps": 29, "total_steps": 34, "loss": 0.9275, "lr": 2.6209177161234445e-06, "epoch": 0.8345323741007195, "percentage": 85.29, "elapsed_time": "1:22:05", "remaining_time": "0:14:09", "throughput": 12347.61, "total_tokens": 60817408}
|
| 30 |
+
{"current_steps": 30, "total_steps": 34, "loss": 0.9295, "lr": 1.6881942648911076e-06, "epoch": 0.8633093525179856, "percentage": 88.24, "elapsed_time": "1:24:52", "remaining_time": "0:11:19", "throughput": 12353.74, "total_tokens": 62914560}
|
| 31 |
+
{"current_steps": 31, "total_steps": 34, "loss": 0.9255, "lr": 9.54358920679524e-07, "epoch": 0.8920863309352518, "percentage": 91.18, "elapsed_time": "1:27:39", "remaining_time": "0:08:29", "throughput": 12359.89, "total_tokens": 65011712}
|
| 32 |
+
{"current_steps": 32, "total_steps": 34, "loss": 0.9277, "lr": 4.256725079024554e-07, "epoch": 0.920863309352518, "percentage": 94.12, "elapsed_time": "1:30:27", "remaining_time": "0:05:39", "throughput": 12365.08, "total_tokens": 67108864}
|
| 33 |
+
{"current_steps": 33, "total_steps": 34, "loss": 0.9263, "lr": 1.0664559262413831e-07, "epoch": 0.9496402877697842, "percentage": 97.06, "elapsed_time": "1:33:14", "remaining_time": "0:02:49", "throughput": 12371.42, "total_tokens": 69206016}
|
| 34 |
+
{"current_steps": 34, "total_steps": 34, "loss": 0.9213, "lr": 0.0, "epoch": 0.9784172661870504, "percentage": 100.0, "elapsed_time": "1:36:00", "remaining_time": "0:00:00", "throughput": 12377.65, "total_tokens": 71303168}
|
| 35 |
+
{"current_steps": 34, "total_steps": 34, "epoch": 0.9784172661870504, "percentage": 100.0, "elapsed_time": "1:36:24", "remaining_time": "0:00:00", "throughput": 12325.82, "total_tokens": 71303168}
|
trainer_state.json
ADDED
|
@@ -0,0 +1,315 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_metric": null,
|
| 3 |
+
"best_model_checkpoint": null,
|
| 4 |
+
"epoch": 0.9784172661870504,
|
| 5 |
+
"eval_steps": 500,
|
| 6 |
+
"global_step": 34,
|
| 7 |
+
"is_hyper_param_search": false,
|
| 8 |
+
"is_local_process_zero": true,
|
| 9 |
+
"is_world_process_zero": true,
|
| 10 |
+
"log_history": [
|
| 11 |
+
{
|
| 12 |
+
"epoch": 0.02877697841726619,
|
| 13 |
+
"grad_norm": 1.6665316820144653,
|
| 14 |
+
"learning_rate": 4.989335440737586e-05,
|
| 15 |
+
"loss": 1.4719,
|
| 16 |
+
"num_input_tokens_seen": 2097152,
|
| 17 |
+
"step": 1
|
| 18 |
+
},
|
| 19 |
+
{
|
| 20 |
+
"epoch": 0.05755395683453238,
|
| 21 |
+
"grad_norm": 1.6307742595672607,
|
| 22 |
+
"learning_rate": 4.957432749209755e-05,
|
| 23 |
+
"loss": 1.4237,
|
| 24 |
+
"num_input_tokens_seen": 4194304,
|
| 25 |
+
"step": 2
|
| 26 |
+
},
|
| 27 |
+
{
|
| 28 |
+
"epoch": 0.08633093525179857,
|
| 29 |
+
"grad_norm": 1.2694746255874634,
|
| 30 |
+
"learning_rate": 4.9045641079320484e-05,
|
| 31 |
+
"loss": 1.3171,
|
| 32 |
+
"num_input_tokens_seen": 6291456,
|
| 33 |
+
"step": 3
|
| 34 |
+
},
|
| 35 |
+
{
|
| 36 |
+
"epoch": 0.11510791366906475,
|
| 37 |
+
"grad_norm": 1.123619794845581,
|
| 38 |
+
"learning_rate": 4.8311805735108894e-05,
|
| 39 |
+
"loss": 1.262,
|
| 40 |
+
"num_input_tokens_seen": 8388608,
|
| 41 |
+
"step": 4
|
| 42 |
+
},
|
| 43 |
+
{
|
| 44 |
+
"epoch": 0.14388489208633093,
|
| 45 |
+
"grad_norm": 0.9699582457542419,
|
| 46 |
+
"learning_rate": 4.7379082283876566e-05,
|
| 47 |
+
"loss": 1.2216,
|
| 48 |
+
"num_input_tokens_seen": 10485760,
|
| 49 |
+
"step": 5
|
| 50 |
+
},
|
| 51 |
+
{
|
| 52 |
+
"epoch": 0.17266187050359713,
|
| 53 |
+
"grad_norm": 0.7419703602790833,
|
| 54 |
+
"learning_rate": 4.625542839324036e-05,
|
| 55 |
+
"loss": 1.1564,
|
| 56 |
+
"num_input_tokens_seen": 12582912,
|
| 57 |
+
"step": 6
|
| 58 |
+
},
|
| 59 |
+
{
|
| 60 |
+
"epoch": 0.2014388489208633,
|
| 61 |
+
"grad_norm": 0.6002612113952637,
|
| 62 |
+
"learning_rate": 4.4950430682006e-05,
|
| 63 |
+
"loss": 1.1289,
|
| 64 |
+
"num_input_tokens_seen": 14680064,
|
| 65 |
+
"step": 7
|
| 66 |
+
},
|
| 67 |
+
{
|
| 68 |
+
"epoch": 0.2302158273381295,
|
| 69 |
+
"grad_norm": 0.4983214735984802,
|
| 70 |
+
"learning_rate": 4.347522293051648e-05,
|
| 71 |
+
"loss": 1.0862,
|
| 72 |
+
"num_input_tokens_seen": 16777216,
|
| 73 |
+
"step": 8
|
| 74 |
+
},
|
| 75 |
+
{
|
| 76 |
+
"epoch": 0.2589928057553957,
|
| 77 |
+
"grad_norm": 0.4308398962020874,
|
| 78 |
+
"learning_rate": 4.184239109116393e-05,
|
| 79 |
+
"loss": 1.0842,
|
| 80 |
+
"num_input_tokens_seen": 18874368,
|
| 81 |
+
"step": 9
|
| 82 |
+
},
|
| 83 |
+
{
|
| 84 |
+
"epoch": 0.28776978417266186,
|
| 85 |
+
"grad_norm": 0.35480186343193054,
|
| 86 |
+
"learning_rate": 4.0065865909481417e-05,
|
| 87 |
+
"loss": 1.0345,
|
| 88 |
+
"num_input_tokens_seen": 20971520,
|
| 89 |
+
"step": 10
|
| 90 |
+
},
|
| 91 |
+
{
|
| 92 |
+
"epoch": 0.31654676258992803,
|
| 93 |
+
"grad_norm": 0.3167465627193451,
|
| 94 |
+
"learning_rate": 3.81608040719339e-05,
|
| 95 |
+
"loss": 1.0473,
|
| 96 |
+
"num_input_tokens_seen": 23068672,
|
| 97 |
+
"step": 11
|
| 98 |
+
},
|
| 99 |
+
{
|
| 100 |
+
"epoch": 0.34532374100719426,
|
| 101 |
+
"grad_norm": 0.2900119423866272,
|
| 102 |
+
"learning_rate": 3.6143458894413465e-05,
|
| 103 |
+
"loss": 1.0355,
|
| 104 |
+
"num_input_tokens_seen": 25165824,
|
| 105 |
+
"step": 12
|
| 106 |
+
},
|
| 107 |
+
{
|
| 108 |
+
"epoch": 0.37410071942446044,
|
| 109 |
+
"grad_norm": 0.2785671651363373,
|
| 110 |
+
"learning_rate": 3.403104165467883e-05,
|
| 111 |
+
"loss": 1.0341,
|
| 112 |
+
"num_input_tokens_seen": 27262976,
|
| 113 |
+
"step": 13
|
| 114 |
+
},
|
| 115 |
+
{
|
| 116 |
+
"epoch": 0.4028776978417266,
|
| 117 |
+
"grad_norm": 0.24713565409183502,
|
| 118 |
+
"learning_rate": 3.1841574751802076e-05,
|
| 119 |
+
"loss": 0.9967,
|
| 120 |
+
"num_input_tokens_seen": 29360128,
|
| 121 |
+
"step": 14
|
| 122 |
+
},
|
| 123 |
+
{
|
| 124 |
+
"epoch": 0.4316546762589928,
|
| 125 |
+
"grad_norm": 0.2206040620803833,
|
| 126 |
+
"learning_rate": 2.9593737945414264e-05,
|
| 127 |
+
"loss": 0.9901,
|
| 128 |
+
"num_input_tokens_seen": 31457280,
|
| 129 |
+
"step": 15
|
| 130 |
+
},
|
| 131 |
+
{
|
| 132 |
+
"epoch": 0.460431654676259,
|
| 133 |
+
"grad_norm": 0.2218572199344635,
|
| 134 |
+
"learning_rate": 2.7306708986582553e-05,
|
| 135 |
+
"loss": 0.9894,
|
| 136 |
+
"num_input_tokens_seen": 33554432,
|
| 137 |
+
"step": 16
|
| 138 |
+
},
|
| 139 |
+
{
|
| 140 |
+
"epoch": 0.4892086330935252,
|
| 141 |
+
"grad_norm": 0.1956264078617096,
|
| 142 |
+
"learning_rate": 2.5e-05,
|
| 143 |
+
"loss": 0.9596,
|
| 144 |
+
"num_input_tokens_seen": 35651584,
|
| 145 |
+
"step": 17
|
| 146 |
+
},
|
| 147 |
+
{
|
| 148 |
+
"epoch": 0.5179856115107914,
|
| 149 |
+
"grad_norm": 0.2028598040342331,
|
| 150 |
+
"learning_rate": 2.2693291013417453e-05,
|
| 151 |
+
"loss": 0.9862,
|
| 152 |
+
"num_input_tokens_seen": 37748736,
|
| 153 |
+
"step": 18
|
| 154 |
+
},
|
| 155 |
+
{
|
| 156 |
+
"epoch": 0.5467625899280576,
|
| 157 |
+
"grad_norm": 0.19911186397075653,
|
| 158 |
+
"learning_rate": 2.0406262054585738e-05,
|
| 159 |
+
"loss": 0.9911,
|
| 160 |
+
"num_input_tokens_seen": 39845888,
|
| 161 |
+
"step": 19
|
| 162 |
+
},
|
| 163 |
+
{
|
| 164 |
+
"epoch": 0.5755395683453237,
|
| 165 |
+
"grad_norm": 0.17156538367271423,
|
| 166 |
+
"learning_rate": 1.815842524819793e-05,
|
| 167 |
+
"loss": 0.95,
|
| 168 |
+
"num_input_tokens_seen": 41943040,
|
| 169 |
+
"step": 20
|
| 170 |
+
},
|
| 171 |
+
{
|
| 172 |
+
"epoch": 0.60431654676259,
|
| 173 |
+
"grad_norm": 0.1637849360704422,
|
| 174 |
+
"learning_rate": 1.5968958345321178e-05,
|
| 175 |
+
"loss": 0.9235,
|
| 176 |
+
"num_input_tokens_seen": 44040192,
|
| 177 |
+
"step": 21
|
| 178 |
+
},
|
| 179 |
+
{
|
| 180 |
+
"epoch": 0.6330935251798561,
|
| 181 |
+
"grad_norm": 0.1640578806400299,
|
| 182 |
+
"learning_rate": 1.3856541105586545e-05,
|
| 183 |
+
"loss": 0.952,
|
| 184 |
+
"num_input_tokens_seen": 46137344,
|
| 185 |
+
"step": 22
|
| 186 |
+
},
|
| 187 |
+
{
|
| 188 |
+
"epoch": 0.6618705035971223,
|
| 189 |
+
"grad_norm": 0.15264524519443512,
|
| 190 |
+
"learning_rate": 1.1839195928066102e-05,
|
| 191 |
+
"loss": 0.9199,
|
| 192 |
+
"num_input_tokens_seen": 48234496,
|
| 193 |
+
"step": 23
|
| 194 |
+
},
|
| 195 |
+
{
|
| 196 |
+
"epoch": 0.6906474820143885,
|
| 197 |
+
"grad_norm": 0.15897633135318756,
|
| 198 |
+
"learning_rate": 9.934134090518593e-06,
|
| 199 |
+
"loss": 0.9399,
|
| 200 |
+
"num_input_tokens_seen": 50331648,
|
| 201 |
+
"step": 24
|
| 202 |
+
},
|
| 203 |
+
{
|
| 204 |
+
"epoch": 0.7194244604316546,
|
| 205 |
+
"grad_norm": 0.1521052122116089,
|
| 206 |
+
"learning_rate": 8.15760890883607e-06,
|
| 207 |
+
"loss": 0.9307,
|
| 208 |
+
"num_input_tokens_seen": 52428800,
|
| 209 |
+
"step": 25
|
| 210 |
+
},
|
| 211 |
+
{
|
| 212 |
+
"epoch": 0.7482014388489209,
|
| 213 |
+
"grad_norm": 0.15674357116222382,
|
| 214 |
+
"learning_rate": 6.524777069483526e-06,
|
| 215 |
+
"loss": 0.9579,
|
| 216 |
+
"num_input_tokens_seen": 54525952,
|
| 217 |
+
"step": 26
|
| 218 |
+
},
|
| 219 |
+
{
|
| 220 |
+
"epoch": 0.7769784172661871,
|
| 221 |
+
"grad_norm": 0.1539985090494156,
|
| 222 |
+
"learning_rate": 5.049569317994013e-06,
|
| 223 |
+
"loss": 0.9388,
|
| 224 |
+
"num_input_tokens_seen": 56623104,
|
| 225 |
+
"step": 27
|
| 226 |
+
},
|
| 227 |
+
{
|
| 228 |
+
"epoch": 0.8057553956834532,
|
| 229 |
+
"grad_norm": 0.14510491490364075,
|
| 230 |
+
"learning_rate": 3.7445716067596503e-06,
|
| 231 |
+
"loss": 0.9241,
|
| 232 |
+
"num_input_tokens_seen": 58720256,
|
| 233 |
+
"step": 28
|
| 234 |
+
},
|
| 235 |
+
{
|
| 236 |
+
"epoch": 0.8345323741007195,
|
| 237 |
+
"grad_norm": 0.15253807604312897,
|
| 238 |
+
"learning_rate": 2.6209177161234445e-06,
|
| 239 |
+
"loss": 0.9275,
|
| 240 |
+
"num_input_tokens_seen": 60817408,
|
| 241 |
+
"step": 29
|
| 242 |
+
},
|
| 243 |
+
{
|
| 244 |
+
"epoch": 0.8633093525179856,
|
| 245 |
+
"grad_norm": 0.15724140405654907,
|
| 246 |
+
"learning_rate": 1.6881942648911076e-06,
|
| 247 |
+
"loss": 0.9295,
|
| 248 |
+
"num_input_tokens_seen": 62914560,
|
| 249 |
+
"step": 30
|
| 250 |
+
},
|
| 251 |
+
{
|
| 252 |
+
"epoch": 0.8920863309352518,
|
| 253 |
+
"grad_norm": 0.14930537343025208,
|
| 254 |
+
"learning_rate": 9.54358920679524e-07,
|
| 255 |
+
"loss": 0.9255,
|
| 256 |
+
"num_input_tokens_seen": 65011712,
|
| 257 |
+
"step": 31
|
| 258 |
+
},
|
| 259 |
+
{
|
| 260 |
+
"epoch": 0.920863309352518,
|
| 261 |
+
"grad_norm": 0.14510829746723175,
|
| 262 |
+
"learning_rate": 4.256725079024554e-07,
|
| 263 |
+
"loss": 0.9277,
|
| 264 |
+
"num_input_tokens_seen": 67108864,
|
| 265 |
+
"step": 32
|
| 266 |
+
},
|
| 267 |
+
{
|
| 268 |
+
"epoch": 0.9496402877697842,
|
| 269 |
+
"grad_norm": 0.14531178772449493,
|
| 270 |
+
"learning_rate": 1.0664559262413831e-07,
|
| 271 |
+
"loss": 0.9263,
|
| 272 |
+
"num_input_tokens_seen": 69206016,
|
| 273 |
+
"step": 33
|
| 274 |
+
},
|
| 275 |
+
{
|
| 276 |
+
"epoch": 0.9784172661870504,
|
| 277 |
+
"grad_norm": 0.1455848217010498,
|
| 278 |
+
"learning_rate": 0.0,
|
| 279 |
+
"loss": 0.9213,
|
| 280 |
+
"num_input_tokens_seen": 71303168,
|
| 281 |
+
"step": 34
|
| 282 |
+
},
|
| 283 |
+
{
|
| 284 |
+
"epoch": 0.9784172661870504,
|
| 285 |
+
"num_input_tokens_seen": 71303168,
|
| 286 |
+
"step": 34,
|
| 287 |
+
"total_flos": 3.1553472363893883e+18,
|
| 288 |
+
"train_loss": 1.0356257505276625,
|
| 289 |
+
"train_runtime": 5786.0102,
|
| 290 |
+
"train_samples_per_second": 3.069,
|
| 291 |
+
"train_steps_per_second": 0.006
|
| 292 |
+
}
|
| 293 |
+
],
|
| 294 |
+
"logging_steps": 1.0,
|
| 295 |
+
"max_steps": 34,
|
| 296 |
+
"num_input_tokens_seen": 71303168,
|
| 297 |
+
"num_train_epochs": 1,
|
| 298 |
+
"save_steps": 1000,
|
| 299 |
+
"stateful_callbacks": {
|
| 300 |
+
"TrainerControl": {
|
| 301 |
+
"args": {
|
| 302 |
+
"should_epoch_stop": false,
|
| 303 |
+
"should_evaluate": false,
|
| 304 |
+
"should_log": false,
|
| 305 |
+
"should_save": true,
|
| 306 |
+
"should_training_stop": true
|
| 307 |
+
},
|
| 308 |
+
"attributes": {}
|
| 309 |
+
}
|
| 310 |
+
},
|
| 311 |
+
"total_flos": 3.1553472363893883e+18,
|
| 312 |
+
"train_batch_size": 16,
|
| 313 |
+
"trial_name": null,
|
| 314 |
+
"trial_params": null
|
| 315 |
+
}
|
training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3afcb9810f441841b5da8d2b6040795d5d7544925598c4163d8bbd86d8dd5923
|
| 3 |
+
size 5688
|
training_loss.png
ADDED
|