Kernels
File size: 37,540 Bytes
364f72d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
import torch
import pytest
import sdpa_flash


def create_cu_seqlens(seq_lengths):
    """Create cumulative sequence lengths tensor."""
    cu_seqlens = [0]
    for length in seq_lengths:
        cu_seqlens.append(cu_seqlens[-1] + length)
    return torch.tensor(cu_seqlens, dtype=torch.int32, device="mps")


@pytest.mark.parametrize("dtype", [torch.float32, torch.float16, torch.bfloat16])
@pytest.mark.parametrize("head_dim", [32, 64, 72, 80, 96, 128, 256])
def test_flash_attention_single_sequence(dtype, head_dim):
    """Test Flash Attention with a single sequence."""
    torch.manual_seed(42)
    
    # Single sequence
    seq_len = 32
    num_heads = 4
    
    # Create cumulative sequence lengths
    cu_seqlens = create_cu_seqlens([seq_len])
    
    # Create input tensors in Flash Attention format
    query = torch.randn(seq_len, num_heads, head_dim, dtype=dtype, device="mps")
    key = torch.randn(seq_len, num_heads, head_dim, dtype=dtype, device="mps")
    value = torch.randn(seq_len, num_heads, head_dim, dtype=dtype, device="mps")
    
    # Scale factor
    scale = 1.0 / (head_dim ** 0.5)
    
    # Call Flash Attention
    out = torch.empty_like(query)
    sdpa_flash.flash_attention_varlen(
        out=out,
        query=query,
        key=key,
        value=value,
        cu_seqlens_q=cu_seqlens,
        cu_seqlens_k=cu_seqlens,
        max_seqlen_q=seq_len,
        max_seqlen_k=seq_len,
        do_causal=False,
        scale=scale,
        softcapping=1.0,
    )
    
    # Compute ground truth
    # Flash Attention computes attention separately for each head
    expected = torch.zeros_like(out)
    for h in range(num_heads):
        q_h = query[:, h, :]  # [seq_len, head_dim]
        k_h = key[:, h, :]
        v_h = value[:, h, :]
        
        scores = torch.matmul(q_h, k_h.transpose(-1, -2)) * scale
        attn_weights = torch.softmax(scores, dim=-1)
        expected[:, h, :] = torch.matmul(attn_weights, v_h)
    
    # Check results (higher tolerance for bfloat16 and float16)
    if dtype == torch.bfloat16:
        # Higher tolerance for head_dim=128 with bfloat16
        rtol, atol = (2e-2, 2e-2) if head_dim >= 96 else (1e-2, 1e-2)
    elif dtype == torch.float16:
        rtol, atol = 2e-3, 2e-3
    else:
        rtol, atol = 1e-3, 1e-3
    torch.testing.assert_close(out, expected, rtol=rtol, atol=atol)


@pytest.mark.parametrize("dtype", [torch.float32, torch.float16, torch.bfloat16])
@pytest.mark.parametrize("head_dim", [32, 64, 72, 80, 96, 128, 256])
def test_flash_attention_variable_lengths(dtype, head_dim):
    """Test Flash Attention with variable-length sequences."""
    torch.manual_seed(42)
    
    # Variable sequence lengths
    seq_lengths_q = [8, 16, 12]
    seq_lengths_k = [10, 20, 15]
    batch_size = len(seq_lengths_q)
    num_heads = 4
    
    # Create cumulative sequence lengths
    cu_seqlens_q = create_cu_seqlens(seq_lengths_q)
    cu_seqlens_k = create_cu_seqlens(seq_lengths_k)
    
    total_q = sum(seq_lengths_q)
    total_k = sum(seq_lengths_k)
    max_seqlen_q = max(seq_lengths_q)
    max_seqlen_k = max(seq_lengths_k)
    
    # Create input tensors
    query = torch.randn(total_q, num_heads, head_dim, dtype=dtype, device="mps")
    key = torch.randn(total_k, num_heads, head_dim, dtype=dtype, device="mps")
    value = torch.randn(total_k, num_heads, head_dim, dtype=dtype, device="mps")
    
    # Scale factor
    scale = 1.0 / (head_dim ** 0.5)
    
    # Call Flash Attention
    out = torch.empty_like(query)
    sdpa_flash.flash_attention_varlen(
        out=out,
        query=query,
        key=key,
        value=value,
        cu_seqlens_q=cu_seqlens_q,
        cu_seqlens_k=cu_seqlens_k,
        max_seqlen_q=max_seqlen_q,
        max_seqlen_k=max_seqlen_k,
        do_causal=False,
        scale=scale,
        softcapping=1.0,
    )
    
    # Compute ground truth for each sequence
    expected = torch.zeros_like(out)
    for i in range(batch_size):
        q_start, q_end = cu_seqlens_q[i].item(), cu_seqlens_q[i+1].item()
        k_start, k_end = cu_seqlens_k[i].item(), cu_seqlens_k[i+1].item()
        
        q_i = query[q_start:q_end]
        k_i = key[k_start:k_end]
        v_i = value[k_start:k_end]
        
        # Compute attention for each head separately
        for h in range(num_heads):
            q_h = q_i[:, h, :]  # [seq_len, head_dim]
            k_h = k_i[:, h, :]
            v_h = v_i[:, h, :]
            
            scores = torch.matmul(q_h, k_h.transpose(-1, -2)) * scale
            attn_weights = torch.softmax(scores, dim=-1)
            expected[q_start:q_end, h, :] = torch.matmul(attn_weights, v_h)
    
    # Check results (higher tolerance for bfloat16 and float16)
    if dtype == torch.bfloat16:
        # Higher tolerance for bfloat16 with variable length sequences
        rtol, atol = 2e-2, 2e-2
    elif dtype == torch.float16:
        rtol, atol = 2e-3, 2e-3
    else:
        rtol, atol = 1e-3, 1e-3
    torch.testing.assert_close(out, expected, rtol=rtol, atol=atol)


@pytest.mark.parametrize("dtype", [torch.float32, torch.float16, torch.bfloat16])
@pytest.mark.parametrize("head_dim", [32, 64, 72, 80, 96, 128, 256])
def test_flash_attention_causal(dtype, head_dim):
    """Test Flash Attention with causal masking."""
    torch.manual_seed(42)
    
    # Test dimensions
    seq_lengths = [16, 24]
    batch_size = len(seq_lengths)
    num_heads = 4
    
    # Create cumulative sequence lengths
    cu_seqlens = create_cu_seqlens(seq_lengths)
    total_tokens = sum(seq_lengths)
    max_seqlen = max(seq_lengths)
    
    # Create input tensors
    query = torch.randn(total_tokens, num_heads, head_dim, dtype=dtype, device="mps")
    key = torch.randn(total_tokens, num_heads, head_dim, dtype=dtype, device="mps")
    value = torch.randn(total_tokens, num_heads, head_dim, dtype=dtype, device="mps")
    
    # Scale factor
    scale = 1.0 / (head_dim ** 0.5)
    
    # Call Flash Attention with causal mask
    out = torch.empty_like(query)
    sdpa_flash.flash_attention_varlen(
        out=out,
        query=query,
        key=key,
        value=value,
        cu_seqlens_q=cu_seqlens,
        cu_seqlens_k=cu_seqlens,
        max_seqlen_q=max_seqlen,
        max_seqlen_k=max_seqlen,
        do_causal=True,
        scale=scale,
        softcapping=1.0,
    )
    
    # Compute ground truth with causal mask
    expected = torch.zeros_like(out)
    for i in range(batch_size):
        start, end = cu_seqlens[i].item(), cu_seqlens[i+1].item()
        seq_len = end - start
        
        q_i = query[start:end]
        k_i = key[start:end]
        v_i = value[start:end]
        
        # Compute attention for each head separately
        for h in range(num_heads):
            q_h = q_i[:, h, :]  # [seq_len, head_dim]
            k_h = k_i[:, h, :]
            v_h = v_i[:, h, :]
            
            scores = torch.matmul(q_h, k_h.transpose(-1, -2)) * scale
            
            # Apply causal mask
            causal_mask = torch.triu(torch.ones(seq_len, seq_len, device="mps"), diagonal=1).bool()
            scores.masked_fill_(causal_mask, float("-inf"))
            
            attn_weights = torch.softmax(scores, dim=-1)
            expected[start:end, h, :] = torch.matmul(attn_weights, v_h)
    
    # Check results (higher tolerance for bfloat16 and float16)
    if dtype == torch.bfloat16:
        # Higher tolerance for head_dim=128 with bfloat16
        rtol, atol = (2e-2, 2e-2) if head_dim >= 96 else (1e-2, 1e-2)
    elif dtype == torch.float16:
        rtol, atol = 2e-3, 2e-3
    else:
        rtol, atol = 1e-3, 1e-3
    torch.testing.assert_close(out, expected, rtol=rtol, atol=atol)


@pytest.mark.parametrize("dtype", [torch.float32, torch.float16, torch.bfloat16])
@pytest.mark.parametrize("head_dim", [32, 64, 72, 80, 96, 128, 256])
def test_flash_attention_gqa(dtype, head_dim):
    """Test Flash Attention with Grouped Query Attention."""
    torch.manual_seed(42)
    
    # Test dimensions
    seq_len = 32
    num_heads = 8
    num_kv_heads = 2  # GQA with 4:1 ratio
    
    # Create cumulative sequence lengths
    cu_seqlens = create_cu_seqlens([seq_len])
    
    # Create input tensors
    query = torch.randn(seq_len, num_heads, head_dim, dtype=dtype, device="mps")
    key = torch.randn(seq_len, num_kv_heads, head_dim, dtype=dtype, device="mps")
    value = torch.randn(seq_len, num_kv_heads, head_dim, dtype=dtype, device="mps")
    
    # Scale factor
    scale = 1.0 / (head_dim ** 0.5)
    
    # Call Flash Attention
    out = torch.empty_like(query)
    sdpa_flash.flash_attention_varlen(
        out=out,
        query=query,
        key=key,
        value=value,
        cu_seqlens_q=cu_seqlens,
        cu_seqlens_k=cu_seqlens,
        max_seqlen_q=seq_len,
        max_seqlen_k=seq_len,
        do_causal=False,
        scale=scale,
        softcapping=1.0,
    )
    
    # Compute ground truth with GQA
    # Each query head attends to its corresponding kv head (with repetition)
    expected = torch.zeros_like(query)
    gqa_factor = num_heads // num_kv_heads
    
    for h in range(num_heads):
        kv_h = h // gqa_factor
        q_h = query[:, h, :]  # [seq_len, head_dim]
        k_h = key[:, kv_h, :]
        v_h = value[:, kv_h, :]
        
        scores = torch.matmul(q_h, k_h.transpose(-2, -1)) * scale
        attn_weights = torch.softmax(scores, dim=-1)
        expected[:, h, :] = torch.matmul(attn_weights, v_h)
    
    # Check results (higher tolerance for bfloat16 and float16)
    if dtype == torch.bfloat16:
        # Higher tolerance for head_dim=128 with bfloat16
        rtol, atol = (2e-2, 2e-2) if head_dim >= 96 else (1e-2, 1e-2)
    elif dtype == torch.float16:
        rtol, atol = 2e-3, 2e-3
    else:
        rtol, atol = 1e-3, 1e-3
    torch.testing.assert_close(out, expected, rtol=rtol, atol=atol)


@pytest.mark.parametrize("head_dim", [32, 64, 72, 80, 96, 128, 256])
def test_flash_attention_head_dimensions(head_dim):
    """Test Flash Attention with different supported head dimensions."""
    torch.manual_seed(42)
    
    # Test dimensions
    seq_len = 16
    num_heads = 4
    
    # Create cumulative sequence lengths
    cu_seqlens = create_cu_seqlens([seq_len])
    
    # Create input tensors
    query = torch.randn(seq_len, num_heads, head_dim, dtype=torch.float32, device="mps")
    key = torch.randn(seq_len, num_heads, head_dim, dtype=torch.float32, device="mps")
    value = torch.randn(seq_len, num_heads, head_dim, dtype=torch.float32, device="mps")
    
    # Scale factor
    scale = 1.0 / (head_dim ** 0.5)
    
    # Call Flash Attention
    out = torch.empty_like(query)
    sdpa_flash.flash_attention_varlen(
        out=out,
        query=query,
        key=key,
        value=value,
        cu_seqlens_q=cu_seqlens,
        cu_seqlens_k=cu_seqlens,
        max_seqlen_q=seq_len,
        max_seqlen_k=seq_len,
        do_causal=False,
        scale=scale,
        softcapping=1.0,
    )
    
    # Basic check that output is not zeros
    assert out.abs().max().item() > 0


@pytest.mark.parametrize("dtype", [torch.float32, torch.float16, torch.bfloat16])
def test_flash_attention_large_head_dim(dtype):
    """Test Flash Attention with head_dim=128 specifically."""
    torch.manual_seed(42)
    
    # Test dimensions with head_dim=128
    seq_lengths = [32, 64]
    batch_size = len(seq_lengths)
    num_heads = 8
    head_dim = 128
    
    # Create cumulative sequence lengths
    cu_seqlens = create_cu_seqlens(seq_lengths)
    total_tokens = sum(seq_lengths)
    max_seqlen = max(seq_lengths)
    
    # Create input tensors
    query = torch.randn(total_tokens, num_heads, head_dim, dtype=dtype, device="mps")
    key = torch.randn(total_tokens, num_heads, head_dim, dtype=dtype, device="mps")
    value = torch.randn(total_tokens, num_heads, head_dim, dtype=dtype, device="mps")
    
    # Scale factor
    scale = 1.0 / (head_dim ** 0.5)
    
    # Call Flash Attention
    out = torch.empty_like(query)
    sdpa_flash.flash_attention_varlen(
        out=out,
        query=query,
        key=key,
        value=value,
        cu_seqlens_q=cu_seqlens,
        cu_seqlens_k=cu_seqlens,
        max_seqlen_q=max_seqlen,
        max_seqlen_k=max_seqlen,
        do_causal=False,
        scale=scale,
        softcapping=1.0,
    )
    
    # Compute ground truth
    expected = torch.zeros_like(out)
    for i in range(batch_size):
        start, end = cu_seqlens[i].item(), cu_seqlens[i+1].item()
        
        q_i = query[start:end]
        k_i = key[start:end]
        v_i = value[start:end]
        
        # Compute attention for each head separately
        for h in range(num_heads):
            q_h = q_i[:, h, :]  # [seq_len, head_dim]
            k_h = k_i[:, h, :]
            v_h = v_i[:, h, :]
            
            scores = torch.matmul(q_h, k_h.transpose(-1, -2)) * scale
            attn_weights = torch.softmax(scores, dim=-1)
            expected[start:end, h, :] = torch.matmul(attn_weights, v_h)
    
    # Check results (higher tolerance for bfloat16 with head_dim=128)
    if dtype == torch.bfloat16:
        # bfloat16 with head_dim=128 has known precision issues
        rtol, atol = 2e-2, 2e-2
    elif dtype == torch.float16:
        rtol, atol = 2e-3, 2e-3
    else:
        rtol, atol = 1e-3, 1e-3
    torch.testing.assert_close(out, expected, rtol=rtol, atol=atol)


@pytest.mark.parametrize("dtype", [torch.float32, torch.float16, torch.bfloat16])
def test_flash_attention_large_head_dim_causal(dtype):
    """Test Flash Attention with head_dim=128 and causal masking."""
    torch.manual_seed(42)
    
    # Test dimensions
    seq_len = 48
    num_heads = 4
    head_dim = 128
    
    # Create cumulative sequence lengths
    cu_seqlens = create_cu_seqlens([seq_len])
    
    # Create input tensors
    query = torch.randn(seq_len, num_heads, head_dim, dtype=dtype, device="mps")
    key = torch.randn(seq_len, num_heads, head_dim, dtype=dtype, device="mps")
    value = torch.randn(seq_len, num_heads, head_dim, dtype=dtype, device="mps")
    
    # Scale factor
    scale = 1.0 / (head_dim ** 0.5)
    
    # Call Flash Attention with causal mask
    out = torch.empty_like(query)
    sdpa_flash.flash_attention_varlen(
        out=out,
        query=query,
        key=key,
        value=value,
        cu_seqlens_q=cu_seqlens,
        cu_seqlens_k=cu_seqlens,
        max_seqlen_q=seq_len,
        max_seqlen_k=seq_len,
        do_causal=True,
        scale=scale,
        softcapping=1.0,
    )
    
    # Compute ground truth with causal mask
    expected = torch.zeros_like(out)
    
    for h in range(num_heads):
        q_h = query[:, h, :]  # [seq_len, head_dim]
        k_h = key[:, h, :]
        v_h = value[:, h, :]
        
        scores = torch.matmul(q_h, k_h.transpose(-1, -2)) * scale
        
        # Apply causal mask
        causal_mask = torch.triu(torch.ones(seq_len, seq_len, device="mps"), diagonal=1).bool()
        scores.masked_fill_(causal_mask, float("-inf"))
        
        attn_weights = torch.softmax(scores, dim=-1)
        expected[:, h, :] = torch.matmul(attn_weights, v_h)
    
    # Check results (higher tolerance for bfloat16 with head_dim=128)
    if dtype == torch.bfloat16:
        # bfloat16 with head_dim=128 has known precision issues
        rtol, atol = 2e-2, 2e-2
    elif dtype == torch.float16:
        rtol, atol = 2e-3, 2e-3
    else:
        rtol, atol = 1e-3, 1e-3
    torch.testing.assert_close(out, expected, rtol=rtol, atol=atol)


def test_flash_attention_large_head_dim_gqa():
    """Test Flash Attention with head_dim=128 and GQA."""
    torch.manual_seed(42)
    
    # Test dimensions
    seq_len = 32
    num_heads = 16
    num_kv_heads = 4  # GQA with 4:1 ratio
    head_dim = 128
    
    # Create cumulative sequence lengths
    cu_seqlens = create_cu_seqlens([seq_len])
    
    # Create input tensors
    query = torch.randn(seq_len, num_heads, head_dim, dtype=torch.float32, device="mps")
    key = torch.randn(seq_len, num_kv_heads, head_dim, dtype=torch.float32, device="mps")
    value = torch.randn(seq_len, num_kv_heads, head_dim, dtype=torch.float32, device="mps")
    
    # Scale factor
    scale = 1.0 / (head_dim ** 0.5)
    
    # Call Flash Attention
    out = torch.empty_like(query)
    sdpa_flash.flash_attention_varlen(
        out=out,
        query=query,
        key=key,
        value=value,
        cu_seqlens_q=cu_seqlens,
        cu_seqlens_k=cu_seqlens,
        max_seqlen_q=seq_len,
        max_seqlen_k=seq_len,
        do_causal=False,
        scale=scale,
        softcapping=1.0,
    )
    
    # Compute ground truth with GQA
    expected = torch.zeros_like(query)
    gqa_factor = num_heads // num_kv_heads
    
    for h in range(num_heads):
        kv_h = h // gqa_factor
        q_h = query[:, h, :]  # [seq_len, head_dim]
        k_h = key[:, kv_h, :]
        v_h = value[:, kv_h, :]
        
        scores = torch.matmul(q_h, k_h.transpose(-2, -1)) * scale
        attn_weights = torch.softmax(scores, dim=-1)
        expected[:, h, :] = torch.matmul(attn_weights, v_h)
    
    # Check results
    torch.testing.assert_close(out, expected, rtol=1e-3, atol=1e-3)


def test_flash_attention_edge_cases():
    """Test Flash Attention edge cases."""
    torch.manual_seed(42)
    
    # Test 1: Single token sequence
    query = torch.randn(1, 1, 64, device="mps")
    key = torch.randn(1, 1, 64, device="mps")
    value = torch.randn(1, 1, 64, device="mps")
    cu_seqlens = create_cu_seqlens([1])
    out = torch.empty_like(query)
    
    sdpa_flash.flash_attention_varlen(
        out=out,
        query=query,
        key=key,
        value=value,
        cu_seqlens_q=cu_seqlens,
        cu_seqlens_k=cu_seqlens,
        max_seqlen_q=1,
        max_seqlen_k=1,
        do_causal=False,
        scale=0.125,
        softcapping=1.0,
    )
    
    # With single token, output should equal value
    torch.testing.assert_close(out, value, rtol=1e-5, atol=1e-5)
    
    # Test 2: Empty sequence in batch
    seq_lengths = [8, 0, 12]  # Middle sequence is empty
    cu_seqlens = create_cu_seqlens(seq_lengths)
    total_tokens = sum(seq_lengths)
    
    query = torch.randn(total_tokens, 4, 64, device="mps")
    key = torch.randn(total_tokens, 4, 64, device="mps")
    value = torch.randn(total_tokens, 4, 64, device="mps")
    out = torch.empty_like(query)
    
    # This should handle empty sequences gracefully
    sdpa_flash.flash_attention_varlen(
        out=out,
        query=query,
        key=key,
        value=value,
        cu_seqlens_q=cu_seqlens,
        cu_seqlens_k=cu_seqlens,
        max_seqlen_q=max(seq_lengths) if seq_lengths else 0,
        max_seqlen_k=max(seq_lengths) if seq_lengths else 0,
        do_causal=False,
        scale=0.125,
        softcapping=1.0,
    )


def test_flash_attention_unsupported_cases():
    """Test that unsupported cases raise appropriate errors."""
    
    # Test 1: Unsupported head dimension
    query = torch.randn(16, 4, 48, device="mps")  # head_dim = 48 (not supported)
    key = torch.randn(16, 4, 48, device="mps")
    value = torch.randn(16, 4, 48, device="mps")
    cu_seqlens = create_cu_seqlens([16])
    out = torch.empty_like(query)
    
    with pytest.raises(RuntimeError, match="Head dimension .* is not supported"):
        sdpa_flash.flash_attention_varlen(
            out=out,
            query=query,
            key=key,
            value=value,
            cu_seqlens_q=cu_seqlens,
            cu_seqlens_k=cu_seqlens,
            max_seqlen_q=16,
            max_seqlen_k=16,
            do_causal=False,
            scale=0.144,
            softcapping=1.0,
        )
    
    # Test 2: Calling function with wrong number of arguments
    query = torch.randn(16, 4, 64, device="mps")
    key = torch.randn(16, 4, 64, device="mps")
    value = torch.randn(16, 4, 64, device="mps")
    mask = torch.randn(1, 1, 16, 16, device="mps")
    cu_seqlens = create_cu_seqlens([16])
    out = torch.empty_like(query)
    
    # The function signature no longer accepts mask parameter
    with pytest.raises(TypeError):
        sdpa_flash.flash_attention_varlen(
            out=out,
            query=query,
            key=key,
            value=value,
            cu_seqlens_q=cu_seqlens,
            cu_seqlens_k=cu_seqlens,
            max_seqlen_q=16,
            max_seqlen_k=16,
            mask=mask,  # This parameter doesn't exist anymore
            do_causal=False,
            scale=0.125,
            softcapping=1.0,
        )
    
    # Test 3: Wrong dtype for cu_seqlens (should be int32)
    cu_seqlens_wrong = torch.tensor([0, 16], dtype=torch.int64, device="mps")
    
    # This will silently fail (output will be unchanged)
    # We can detect this by initializing output to a known value
    out = torch.full_like(query, -999.0)
    sdpa_flash.flash_attention_varlen(
        out=out,
        query=query,
        key=key,
        value=value,
        cu_seqlens_q=cu_seqlens_wrong,
        cu_seqlens_k=cu_seqlens_wrong,
        max_seqlen_q=16,
        max_seqlen_k=16,
        do_causal=False,
        scale=0.125,
        softcapping=1.0,
    )
    
    # Check that output wasn't modified (kernel didn't run)
    assert (out == -999.0).all(), "cu_seqlens with wrong dtype should cause kernel to not run"


@pytest.mark.parametrize("dtype", [torch.float32, torch.float16, torch.bfloat16])
@pytest.mark.parametrize("head_dim", [32, 64, 72, 80, 96, 128, 256])
def test_flash_attention_small_sequences(dtype, head_dim):
    """Test Flash Attention with small sequence lengths (2-8)."""
    torch.manual_seed(42)
    
    # Test different small sequence lengths
    for seq_len in [2, 4, 6, 8]:
        num_heads = 4
        
        # Create cumulative sequence lengths
        cu_seqlens = create_cu_seqlens([seq_len])
        
        # Create input tensors
        query = torch.randn(seq_len, num_heads, head_dim, dtype=dtype, device="mps")
        key = torch.randn(seq_len, num_heads, head_dim, dtype=dtype, device="mps")
        value = torch.randn(seq_len, num_heads, head_dim, dtype=dtype, device="mps")
        
        # Scale factor
        scale = 1.0 / (head_dim ** 0.5)
        
        # Call Flash Attention
        out = torch.empty_like(query)
        sdpa_flash.flash_attention_varlen(
            out=out,
            query=query,
            key=key,
            value=value,
            cu_seqlens_q=cu_seqlens,
            cu_seqlens_k=cu_seqlens,
            max_seqlen_q=seq_len,
            max_seqlen_k=seq_len,
            do_causal=False,
            scale=scale,
            softcapping=1.0,
        )
        
        # Compute ground truth
        expected = torch.zeros_like(out)
        for h in range(num_heads):
            q_h = query[:, h, :]  # [seq_len, head_dim]
            k_h = key[:, h, :]
            v_h = value[:, h, :]
            
            scores = torch.matmul(q_h, k_h.transpose(-1, -2)) * scale
            attn_weights = torch.softmax(scores, dim=-1)
            expected[:, h, :] = torch.matmul(attn_weights, v_h)
        
        # Check results (higher tolerance for bfloat16)
        if dtype == torch.bfloat16:
            rtol, atol = 2e-2, 2e-2
        elif dtype == torch.float16:
            rtol, atol = 2e-3, 2e-3
        else:
            rtol, atol = 1e-3, 1e-3
        torch.testing.assert_close(out, expected, rtol=rtol, atol=atol)


@pytest.mark.parametrize("dtype", [torch.float32, torch.float16, torch.bfloat16])
@pytest.mark.parametrize("head_dim", [32, 64, 72, 80, 96, 128, 256])
def test_flash_attention_cross_attention(dtype, head_dim):
    """Test Flash Attention with different q_seq and k_seq (cross-attention)."""
    torch.manual_seed(42)
    
    # Test various q_seq, k_seq combinations
    test_cases = [
        (16, 32),   # q_seq < k_seq
        (32, 16),   # q_seq > k_seq
        (8, 128),   # large difference
        (1, 64),    # single query token
    ]
    
    for q_seq, k_seq in test_cases:
        num_heads = 4
        
        # Create cumulative sequence lengths
        cu_seqlens_q = create_cu_seqlens([q_seq])
        cu_seqlens_k = create_cu_seqlens([k_seq])
        
        # Create input tensors
        query = torch.randn(q_seq, num_heads, head_dim, dtype=dtype, device="mps")
        key = torch.randn(k_seq, num_heads, head_dim, dtype=dtype, device="mps")
        value = torch.randn(k_seq, num_heads, head_dim, dtype=dtype, device="mps")
        
        # Scale factor
        scale = 1.0 / (head_dim ** 0.5)
        
        # Call Flash Attention
        out = torch.empty_like(query)
        sdpa_flash.flash_attention_varlen(
            out=out,
            query=query,
            key=key,
            value=value,
            cu_seqlens_q=cu_seqlens_q,
            cu_seqlens_k=cu_seqlens_k,
            max_seqlen_q=q_seq,
            max_seqlen_k=k_seq,
            do_causal=False,
            scale=scale,
            softcapping=1.0,
        )
        
        # Compute ground truth
        expected = torch.zeros_like(out)
        for h in range(num_heads):
            q_h = query[:, h, :]  # [q_seq, head_dim]
            k_h = key[:, h, :]    # [k_seq, head_dim]
            v_h = value[:, h, :]  # [k_seq, head_dim]
            
            scores = torch.matmul(q_h, k_h.transpose(-1, -2)) * scale
            attn_weights = torch.softmax(scores, dim=-1)
            expected[:, h, :] = torch.matmul(attn_weights, v_h)
        
        # Check results (higher tolerance for bfloat16)
        if dtype == torch.bfloat16:
            rtol, atol = 2e-2, 2e-2
        elif dtype == torch.float16:
            rtol, atol = 2e-3, 2e-3
        else:
            rtol, atol = 1e-3, 1e-3
        torch.testing.assert_close(out, expected, rtol=rtol, atol=atol)


@pytest.mark.parametrize("dtype", [torch.float32, torch.float16, torch.bfloat16])
def test_flash_attention_large_sequences(dtype):
    """Test Flash Attention with large k_seq (>= 1024)."""
    torch.manual_seed(42)
    
    # Test dimensions - large k_seq to test 2-pass algorithms
    q_seq = 32
    k_seq = 2048  # Large k_seq
    num_heads = 4
    head_dim = 64  # Use smaller head_dim to avoid memory issues
    
    # Create cumulative sequence lengths
    cu_seqlens_q = create_cu_seqlens([q_seq])
    cu_seqlens_k = create_cu_seqlens([k_seq])
    
    # Create input tensors
    query = torch.randn(q_seq, num_heads, head_dim, dtype=dtype, device="mps")
    key = torch.randn(k_seq, num_heads, head_dim, dtype=dtype, device="mps")
    value = torch.randn(k_seq, num_heads, head_dim, dtype=dtype, device="mps")
    
    # Scale factor
    scale = 1.0 / (head_dim ** 0.5)
    
    # Call Flash Attention
    out = torch.empty_like(query)
    sdpa_flash.flash_attention_varlen(
        out=out,
        query=query,
        key=key,
        value=value,
        cu_seqlens_q=cu_seqlens_q,
        cu_seqlens_k=cu_seqlens_k,
        max_seqlen_q=q_seq,
        max_seqlen_k=k_seq,
        do_causal=False,
        scale=scale,
        softcapping=1.0,
    )
    
    # Compute ground truth
    expected = torch.zeros_like(out)
    for h in range(num_heads):
        q_h = query[:, h, :]  # [q_seq, head_dim]
        k_h = key[:, h, :]    # [k_seq, head_dim]
        v_h = value[:, h, :]  # [k_seq, head_dim]
        
        scores = torch.matmul(q_h, k_h.transpose(-1, -2)) * scale
        attn_weights = torch.softmax(scores, dim=-1)
        expected[:, h, :] = torch.matmul(attn_weights, v_h)
    
    # Check results (higher tolerance for large sequences)
    if dtype == torch.bfloat16:
        rtol, atol = 3e-2, 3e-2
    elif dtype == torch.float16:
        rtol, atol = 5e-3, 5e-3
    else:
        rtol, atol = 2e-3, 2e-3
    torch.testing.assert_close(out, expected, rtol=rtol, atol=atol)


@pytest.mark.parametrize("gqa_ratio", [2, 4, 8])
@pytest.mark.parametrize("head_dim", [32, 64, 72, 80, 96, 128])
def test_flash_attention_gqa_ratios(gqa_ratio, head_dim):
    """Test Flash Attention with different GQA ratios."""
    torch.manual_seed(42)
    
    # Test dimensions
    seq_len = 32
    num_heads = 16
    num_kv_heads = num_heads // gqa_ratio
    dtype = torch.float32
    
    # Create cumulative sequence lengths
    cu_seqlens = create_cu_seqlens([seq_len])
    
    # Create input tensors
    query = torch.randn(seq_len, num_heads, head_dim, dtype=dtype, device="mps")
    key = torch.randn(seq_len, num_kv_heads, head_dim, dtype=dtype, device="mps")
    value = torch.randn(seq_len, num_kv_heads, head_dim, dtype=dtype, device="mps")
    
    # Scale factor
    scale = 1.0 / (head_dim ** 0.5)
    
    # Call Flash Attention
    out = torch.empty_like(query)
    sdpa_flash.flash_attention_varlen(
        out=out,
        query=query,
        key=key,
        value=value,
        cu_seqlens_q=cu_seqlens,
        cu_seqlens_k=cu_seqlens,
        max_seqlen_q=seq_len,
        max_seqlen_k=seq_len,
        do_causal=False,
        scale=scale,
        softcapping=1.0,
    )
    
    # Compute ground truth with GQA
    expected = torch.zeros_like(query)
    gqa_factor = num_heads // num_kv_heads
    
    for h in range(num_heads):
        kv_h = h // gqa_factor
        q_h = query[:, h, :]  # [seq_len, head_dim]
        k_h = key[:, kv_h, :]
        v_h = value[:, kv_h, :]
        
        scores = torch.matmul(q_h, k_h.transpose(-1, -2)) * scale
        attn_weights = torch.softmax(scores, dim=-1)
        expected[:, h, :] = torch.matmul(attn_weights, v_h)
    
    # Check results
    torch.testing.assert_close(out, expected, rtol=1e-3, atol=1e-3)


def test_flash_attention_single_query_token():
    """Test Flash Attention with single query token (q_seq = 1)."""
    torch.manual_seed(42)
    
    # Test dimensions - single query token
    q_seq = 1
    k_seq = 64
    num_heads = 8
    head_dim = 64
    dtype = torch.float32
    
    # Create cumulative sequence lengths
    cu_seqlens_q = create_cu_seqlens([q_seq])
    cu_seqlens_k = create_cu_seqlens([k_seq])
    
    # Create input tensors
    query = torch.randn(q_seq, num_heads, head_dim, dtype=dtype, device="mps")
    key = torch.randn(k_seq, num_heads, head_dim, dtype=dtype, device="mps")
    value = torch.randn(k_seq, num_heads, head_dim, dtype=dtype, device="mps")
    
    # Scale factor
    scale = 1.0 / (head_dim ** 0.5)
    
    # Call Flash Attention
    out = torch.empty_like(query)
    sdpa_flash.flash_attention_varlen(
        out=out,
        query=query,
        key=key,
        value=value,
        cu_seqlens_q=cu_seqlens_q,
        cu_seqlens_k=cu_seqlens_k,
        max_seqlen_q=q_seq,
        max_seqlen_k=k_seq,
        do_causal=False,
        scale=scale,
        softcapping=1.0,
    )
    
    # With single token, output should be weighted average of values
    expected = torch.zeros_like(out)
    for h in range(num_heads):
        q_h = query[:, h, :]  # [1, head_dim]
        k_h = key[:, h, :]    # [k_seq, head_dim]
        v_h = value[:, h, :]  # [k_seq, head_dim]
        
        scores = torch.matmul(q_h, k_h.transpose(-1, -2)) * scale
        attn_weights = torch.softmax(scores, dim=-1)
        expected[:, h, :] = torch.matmul(attn_weights, v_h)
    
    torch.testing.assert_close(out, expected, rtol=1e-3, atol=1e-3)


def test_flash_attn_varlen_func():
    """Test the flash_attn_varlen_func compatibility function."""
    torch.manual_seed(42)
    
    # Test dimensions
    seq_lengths = [8, 12]
    num_heads = 4
    head_dim = 64
    
    # Create cumulative sequence lengths
    cu_seqlens = create_cu_seqlens(seq_lengths)
    total_tokens = sum(seq_lengths)
    max_seqlen = max(seq_lengths)
    
    # Create input tensors
    q = torch.randn(total_tokens, num_heads, head_dim, device="mps")
    k = torch.randn(total_tokens, num_heads, head_dim, device="mps")
    v = torch.randn(total_tokens, num_heads, head_dim, device="mps")
    
    # Call the compatibility function
    out = sdpa_flash.flash_attn_varlen_func(
        q=q,
        k=k,
        v=v,
        cu_seqlens_q=cu_seqlens,
        cu_seqlens_k=cu_seqlens,
        max_seqlen_q=max_seqlen,
        max_seqlen_k=max_seqlen,
        dropout_p=0.0,
        softmax_scale=None,  # Will use 1/sqrt(head_dim)
        causal=False,
    )
    
    # Check that output has correct shape and is not zeros
    assert out.shape == q.shape
    assert out.abs().max().item() > 0
    
    # Test with causal
    out_causal = sdpa_flash.flash_attn_varlen_func(
        q=q,
        k=k,
        v=v,
        cu_seqlens_q=cu_seqlens,
        cu_seqlens_k=cu_seqlens,
        max_seqlen_q=max_seqlen,
        max_seqlen_k=max_seqlen,
        dropout_p=0.0,
        softmax_scale=0.125,
        causal=True,
    )
    
    assert out_causal.shape == q.shape
    assert out_causal.abs().max().item() > 0


@pytest.mark.parametrize("dtype", [torch.float32, torch.float16, torch.bfloat16])
@pytest.mark.parametrize("head_dim", [32, 64, 72, 80, 96, 128, 256])
def test_flash_attention_softcapping(dtype, head_dim):
    """Test Flash Attention with softcapping."""
    torch.manual_seed(42)
    
    # Test dimensions
    seq_lengths = [32, 24]
    num_heads = 4
    softcapping = 50.0
    
    # Create cumulative sequence lengths
    cu_seqlens = create_cu_seqlens(seq_lengths)
    total_tokens = sum(seq_lengths)
    max_seqlen = max(seq_lengths)
    
    # Create input tensors
    query = torch.randn(total_tokens, num_heads, head_dim, dtype=dtype, device="mps")
    key = torch.randn(total_tokens, num_heads, head_dim, dtype=dtype, device="mps")
    value = torch.randn(total_tokens, num_heads, head_dim, dtype=dtype, device="mps")
    
    # Scale factor
    scale = 1.0 / (head_dim ** 0.5)
    
    # Call Flash Attention with softcapping
    out = torch.empty_like(query)
    sdpa_flash.flash_attention_varlen(
        out=out,
        query=query,
        key=key,
        value=value,
        cu_seqlens_q=cu_seqlens,
        cu_seqlens_k=cu_seqlens,
        max_seqlen_q=max_seqlen,
        max_seqlen_k=max_seqlen,
        do_causal=False,
        scale=scale,
        softcapping=softcapping,
    )
    
    # Compute ground truth with softcapping
    # The kernel applies: softmax(tanh(qk^T*scale/cap)*cap)v
    expected = torch.zeros_like(query)
    
    for i, (start, end) in enumerate(zip(cu_seqlens[:-1], cu_seqlens[1:])):
        q_seq = query[start:end]
        k_seq = key[start:end]
        v_seq = value[start:end]
        
        for h in range(num_heads):
            q_h = q_seq[:, h, :]
            k_h = k_seq[:, h, :]
            v_h = v_seq[:, h, :]
            
            # Apply softcapping formula
            scores = torch.matmul(q_h, k_h.transpose(-1, -2)) * (scale / softcapping)
            scores = torch.tanh(scores) * softcapping
            attn_weights = torch.softmax(scores, dim=-1)
            expected[start:end, h, :] = torch.matmul(attn_weights, v_h)
    
    # Check results (higher tolerance for bfloat16 and softcapping)
    if dtype == torch.bfloat16:
        rtol, atol = 3e-2, 3e-2
    elif dtype == torch.float16:
        rtol, atol = 2e-2, 2e-2
    else:
        rtol, atol = 1e-2, 1e-2
    torch.testing.assert_close(out, expected, rtol=rtol, atol=atol)


@pytest.mark.parametrize("dtype", [torch.float32, torch.float16, torch.bfloat16])
def test_flash_attention_softcapping_edge_cases(dtype):
    """Test Flash Attention softcapping with edge cases."""
    torch.manual_seed(42)
    
    # Test with softcapping = 1.0 (no softcapping)
    seq_len = 16
    num_heads = 2
    head_dim = 64
    
    cu_seqlens = create_cu_seqlens([seq_len])
    query = torch.randn(seq_len, num_heads, head_dim, dtype=dtype, device="mps")
    key = torch.randn(seq_len, num_heads, head_dim, dtype=dtype, device="mps")
    value = torch.randn(seq_len, num_heads, head_dim, dtype=dtype, device="mps")
    
    scale = 1.0 / (head_dim ** 0.5)
    
    # With softcapping = 1.0 (no effect)
    out_no_cap = torch.empty_like(query)
    sdpa_flash.flash_attention_varlen(
        out=out_no_cap,
        query=query,
        key=key,
        value=value,
        cu_seqlens_q=cu_seqlens,
        cu_seqlens_k=cu_seqlens,
        max_seqlen_q=seq_len,
        max_seqlen_k=seq_len,
        do_causal=False,
        scale=scale,
        softcapping=1.0,
    )
    
    # Regular computation without softcapping
    expected = torch.zeros_like(query)
    for h in range(num_heads):
        q_h = query[:, h, :]
        k_h = key[:, h, :]
        v_h = value[:, h, :]
        
        scores = torch.matmul(q_h, k_h.transpose(-1, -2)) * scale
        attn_weights = torch.softmax(scores, dim=-1)
        expected[:, h, :] = torch.matmul(attn_weights, v_h)
    
    # Should be identical when softcapping = 1.0
    rtol, atol = (2e-2, 2e-2) if dtype != torch.float32 else (1e-3, 1e-3)
    torch.testing.assert_close(out_no_cap, expected, rtol=rtol, atol=atol)
    
    # Test with very large softcapping value
    out_large_cap = torch.empty_like(query)
    sdpa_flash.flash_attention_varlen(
        out=out_large_cap,
        query=query,
        key=key,
        value=value,
        cu_seqlens_q=cu_seqlens,
        cu_seqlens_k=cu_seqlens,
        max_seqlen_q=seq_len,
        max_seqlen_k=seq_len,
        do_causal=False,
        scale=scale,
        softcapping=1000.0,
    )
    
    # With very large softcapping, should be close to no softcapping
    torch.testing.assert_close(out_large_cap, expected, rtol=rtol, atol=atol)