kevin510 commited on
Commit
9b0a84f
·
verified ·
1 Parent(s): 7dcce93

Upload 5 files

Browse files
configuration_friday.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ from .modeling_friday import FridayConfig
2
+
3
+ __all__ = [
4
+ "FridayConfig",
5
+ ]
configuration_phi3.py ADDED
@@ -0,0 +1,226 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """Phi-3 model configuration"""
17
+
18
+ from transformers.configuration_utils import PretrainedConfig
19
+ from transformers.utils import logging
20
+
21
+
22
+ logger = logging.get_logger(__name__)
23
+
24
+
25
+ class Phi3Config(PretrainedConfig):
26
+ r"""
27
+ This is the configuration class to store the configuration of a [`Phi3Model`]. It is used to instantiate a Phi-3
28
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
29
+ defaults will yield a similar configuration to that of the
30
+ [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct).
31
+
32
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
33
+ documentation from [`PretrainedConfig`] for more information.
34
+
35
+ Args:
36
+ vocab_size (`int`, *optional*, defaults to 32064):
37
+ Vocabulary size of the Phi-3 model. Defines the number of different tokens that can be represented by the
38
+ `inputs_ids` passed when calling [`Phi3Model`].
39
+ hidden_size (`int`, *optional*, defaults to 3072):
40
+ Dimension of the hidden representations.
41
+ intermediate_size (`int`, *optional*, defaults to 8192):
42
+ Dimension of the MLP representations.
43
+ num_hidden_layers (`int`, *optional*, defaults to 32):
44
+ Number of hidden layers in the Transformer decoder.
45
+ num_attention_heads (`int`, *optional*, defaults to 32):
46
+ Number of attention heads for each attention layer in the Transformer decoder.
47
+ num_key_value_heads (`int`, *optional*):
48
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
49
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
50
+ `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
51
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
52
+ by meanpooling all the original heads within that group. For more details checkout [this
53
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
54
+ `num_attention_heads`.
55
+ resid_pdrop (`float`, *optional*, defaults to 0.0):
56
+ Dropout probability for mlp outputs.
57
+ embd_pdrop (`int`, *optional*, defaults to 0.0):
58
+ The dropout ratio for the embeddings.
59
+ attention_dropout (`float`, *optional*, defaults to 0.0):
60
+ The dropout ratio after computing the attention scores.
61
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
62
+ The non-linear activation function (function or string) in the decoder.
63
+ max_position_embeddings (`int`, *optional*, defaults to 4096):
64
+ The maximum sequence length that this model might ever be used with.
65
+ original_max_position_embeddings (`int`, *optional*, defaults to 4096):
66
+ The maximum sequence length that this model was trained with. This is used to determine the size of the
67
+ original RoPE embeddings when using long scaling.
68
+ initializer_range (`float`, *optional*, defaults to 0.02):
69
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
70
+ rms_norm_eps (`float`, *optional*, defaults to 1e-05):
71
+ The epsilon value used for the RMSNorm.
72
+ use_cache (`bool`, *optional*, defaults to `True`):
73
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
74
+ relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
75
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
76
+ Whether to tie weight embeddings
77
+ rope_theta (`float`, *optional*, defaults to 10000.0):
78
+ The base period of the RoPE embeddings.
79
+ rope_scaling (`dict`, *optional*):
80
+ The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must
81
+ contain the following keys: `type`, `short_factor` and `long_factor`. The `type` must be `longrope` and
82
+ the `short_factor` and `long_factor` must be lists of numbers with the same length as the hidden size
83
+ divided by the number of attention heads divided by 2.
84
+ partial_rotary_factor (`float`, *optional*, defaults to 1.0):
85
+ Percentage of the query and keys which will have rotary embedding. Must be between 0.0 and 1.0.
86
+ bos_token_id (`int`, *optional*, defaults to 1):
87
+ The id of the "beginning-of-sequence" token.
88
+ eos_token_id (`int`, *optional*, defaults to 32000):
89
+ The id of the "end-of-sequence" token.
90
+ pad_token_id (`int`, *optional*, defaults to 32000):
91
+ The id of the padding token.
92
+ sliding_window (`int`, *optional*):
93
+ Sliding window attention window size. If `None`, no sliding window is applied.
94
+
95
+ Example:
96
+
97
+ ```python
98
+ >>> from transformers import Phi3Model, Phi3Config
99
+
100
+ >>> # Initializing a Phi-3 style configuration
101
+ >>> configuration = Phi3Config.from_pretrained("microsoft/Phi-3-mini-4k-instruct")
102
+
103
+ >>> # Initializing a model from the configuration
104
+ >>> model = Phi3Model(configuration)
105
+
106
+ >>> # Accessing the model configuration
107
+ >>> configuration = model.config
108
+ ```"""
109
+
110
+ model_type = "phi3"
111
+ keys_to_ignore_at_inference = ["past_key_values"]
112
+
113
+ def __init__(
114
+ self,
115
+ vocab_size=32064,
116
+ hidden_size=3072,
117
+ intermediate_size=8192,
118
+ num_hidden_layers=32,
119
+ num_attention_heads=32,
120
+ num_key_value_heads=None,
121
+ resid_pdrop=0.0,
122
+ embd_pdrop=0.0,
123
+ attention_dropout=0.0,
124
+ hidden_act="silu",
125
+ max_position_embeddings=4096,
126
+ original_max_position_embeddings=4096,
127
+ initializer_range=0.02,
128
+ rms_norm_eps=1e-5,
129
+ use_cache=True,
130
+ tie_word_embeddings=False,
131
+ rope_theta=10000.0,
132
+ rope_scaling=None,
133
+ partial_rotary_factor=1.0,
134
+ bos_token_id=1,
135
+ eos_token_id=32000,
136
+ pad_token_id=32000,
137
+ sliding_window=None,
138
+ **kwargs,
139
+ ):
140
+ self.vocab_size = vocab_size
141
+ self.hidden_size = hidden_size
142
+ self.intermediate_size = intermediate_size
143
+ self.num_hidden_layers = num_hidden_layers
144
+ self.num_attention_heads = num_attention_heads
145
+
146
+ if num_key_value_heads is None:
147
+ num_key_value_heads = num_attention_heads
148
+
149
+ self.num_key_value_heads = num_key_value_heads
150
+ self.resid_pdrop = resid_pdrop
151
+ self.embd_pdrop = embd_pdrop
152
+ self.attention_dropout = attention_dropout
153
+ self.hidden_act = hidden_act
154
+ self.max_position_embeddings = max_position_embeddings
155
+ self.original_max_position_embeddings = original_max_position_embeddings
156
+ self.initializer_range = initializer_range
157
+ self.rms_norm_eps = rms_norm_eps
158
+ self.use_cache = use_cache
159
+ self.rope_theta = rope_theta
160
+ self.rope_scaling = rope_scaling
161
+ self.partial_rotary_factor = partial_rotary_factor
162
+ self._rope_scaling_adjustment()
163
+ self._rope_scaling_validation()
164
+ self.sliding_window = sliding_window
165
+
166
+ super().__init__(
167
+ bos_token_id=bos_token_id,
168
+ eos_token_id=eos_token_id,
169
+ pad_token_id=pad_token_id,
170
+ tie_word_embeddings=tie_word_embeddings,
171
+ **kwargs,
172
+ )
173
+
174
+ def _rope_scaling_adjustment(self):
175
+ """
176
+ Adjust the `type` of the `rope_scaling` configuration for backward compatibility.
177
+ """
178
+ if self.rope_scaling is None:
179
+ return
180
+
181
+ rope_scaling_type = self.rope_scaling.get("type", None)
182
+
183
+ # For backward compatibility if previous version used "su" or "yarn"
184
+ if rope_scaling_type is not None and rope_scaling_type in ["su", "yarn"]:
185
+ self.rope_scaling["type"] = "longrope"
186
+
187
+ def _rope_scaling_validation(self):
188
+ """
189
+ Validate the `rope_scaling` configuration.
190
+ """
191
+ if self.rope_scaling is None:
192
+ return
193
+
194
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 3:
195
+ raise ValueError(
196
+ "`rope_scaling` must be a dictionary with three fields, `type`, `short_factor` and `long_factor`, "
197
+ f"got {self.rope_scaling}"
198
+ )
199
+ rope_scaling_type = self.rope_scaling.get("type", None)
200
+ rope_scaling_short_factor = self.rope_scaling.get("short_factor", None)
201
+ rope_scaling_long_factor = self.rope_scaling.get("long_factor", None)
202
+ if rope_scaling_type is None or rope_scaling_type not in ["longrope"]:
203
+ raise ValueError(f"`rope_scaling`'s type field must be one of ['longrope'], got {rope_scaling_type}")
204
+ if not (
205
+ isinstance(rope_scaling_short_factor, list)
206
+ and all(isinstance(x, (int, float)) for x in rope_scaling_short_factor)
207
+ ):
208
+ raise ValueError(
209
+ f"`rope_scaling`'s short_factor field must be a list of numbers, got {rope_scaling_short_factor}"
210
+ )
211
+ rotary_ndims = int(self.hidden_size // self.num_attention_heads * self.partial_rotary_factor)
212
+ if not len(rope_scaling_short_factor) == rotary_ndims // 2:
213
+ raise ValueError(
214
+ f"`rope_scaling`'s short_factor field must have length {rotary_ndims // 2}, got {len(rope_scaling_short_factor)}"
215
+ )
216
+ if not (
217
+ isinstance(rope_scaling_long_factor, list)
218
+ and all(isinstance(x, (int, float)) for x in rope_scaling_long_factor)
219
+ ):
220
+ raise ValueError(
221
+ f"`rope_scaling`'s long_factor field must be a list of numbers, got {rope_scaling_long_factor}"
222
+ )
223
+ if not len(rope_scaling_long_factor) == rotary_ndims // 2:
224
+ raise ValueError(
225
+ f"`rope_scaling`'s long_factor field must have length {rotary_ndims // 2}, got {len(rope_scaling_long_factor)}"
226
+ )
friday_map.py ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ from .configuration_friday import FridayConfig # your real class
2
+ from .modeling_friday import FridayForCausalLM
3
+
4
+ __all__ = ["FridayForCausalLM", "FridayConfig"]
modeling_friday.py ADDED
@@ -0,0 +1,1248 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ # Model Constants
4
+ IMAGE_TOKEN = "<image>"
5
+ IMG_START_TOKEN = "<img_start>"
6
+ IMG_END_TOKEN = "<img_end>"
7
+ IGNORE_INDEX = -100
8
+ PAD_FOR_EOS = -300
9
+
10
+
11
+
12
+
13
+
14
+ import torch
15
+ import torch.nn.functional as F
16
+
17
+ from PIL import Image
18
+
19
+
20
+ import torch
21
+
22
+ def mask_token_segment(
23
+ start_id: int,
24
+ end_id: int,
25
+ input_ids: torch.Tensor,
26
+ fill_value: int = -100):
27
+ """
28
+ Replace *every* token from each `start_id` **through** its matching `end_id`
29
+ (boundaries included) with `fill_value`. Any spans that start with some
30
+ other token are left untouched.
31
+
32
+ Works on CUDA, TorchScript, batched via vmap, etc.—no Python loops.
33
+ """
34
+ if input_ids.dim() != 1:
35
+ raise ValueError("`input_ids` must be 1-D")
36
+
37
+ device = input_ids.device
38
+ n = input_ids.size(0)
39
+
40
+ # where the *target* start-tokens and end-tokens sit
41
+ start_pos = (input_ids == start_id).nonzero(as_tuple=True)[0] # ascending
42
+ end_pos = (input_ids == end_id).nonzero(as_tuple=True)[0] # ascending
43
+
44
+ if start_pos.numel() == 0:
45
+ return input_ids.clone()
46
+
47
+ # ── pair every start with the first end that comes *after* it ────────────────
48
+ # searchsorted gives the insertion index into the (sorted) end positions
49
+ idx_in_end = torch.searchsorted(end_pos, start_pos, right=False)
50
+
51
+ have_match = idx_in_end < end_pos.size(0) # safety: drop unmatched
52
+ start_pos = start_pos[have_match]
53
+ end_pos = end_pos[idx_in_end[have_match]]
54
+
55
+ # (rare) guard against pathological orderings
56
+ keep = end_pos > start_pos
57
+ start_pos, end_pos = start_pos[keep], end_pos[keep]
58
+
59
+ if start_pos.numel() == 0:
60
+ return input_ids
61
+
62
+ # ── differential “scan-line” trick to build the span mask in O(N) ───────────
63
+ # +1 at each start index, -1 at the element *after* each end
64
+ delta = torch.zeros(n + 1, dtype=torch.int8, device=device)
65
+ delta[start_pos] += 1
66
+ delta[end_pos + 1] -= 1 # +1 is safe because delta is length n+1
67
+
68
+ inside = torch.cumsum(delta[:-1], dim=0) > 0 # boolean mask, incl. boundaries
69
+
70
+ # ── apply ────────────────────────────────────────────────────────────────────
71
+ out = input_ids.clone()
72
+ out[inside] = fill_value
73
+ return out
74
+
75
+
76
+
77
+ def maybe_zero_3(param, ignore_status=False, name=None):
78
+ from deepspeed import zero
79
+ from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus
80
+ if hasattr(param, "ds_id"):
81
+ if param.ds_status == ZeroParamStatus.NOT_AVAILABLE:
82
+ if not ignore_status:
83
+ print(name, 'no ignore status')
84
+ with zero.GatheredParameters([param]):
85
+ param = param.data.detach().cpu().clone()
86
+ else:
87
+ param = param.detach().cpu().clone()
88
+ return param
89
+
90
+
91
+ # Borrowed from peft.util.get_peft_model_state_dict
92
+ def get_peft_state_maybe_zero_3(named_params, bias):
93
+ if bias == "none":
94
+ to_return = {k: t for k, t in named_params if "lora_" in k}
95
+ elif bias == "all":
96
+ to_return = {k: t for k, t in named_params if "lora_" in k or "bias" in k}
97
+ elif bias == "lora_only":
98
+ to_return = {}
99
+ maybe_lora_bias = {}
100
+ lora_bias_names = set()
101
+ for k, t in named_params:
102
+ if "lora_" in k:
103
+ to_return[k] = t
104
+ bias_name = k.split("lora_")[0] + "bias"
105
+ lora_bias_names.add(bias_name)
106
+ elif "bias" in k:
107
+ maybe_lora_bias[k] = t
108
+ for k, t in maybe_lora_bias:
109
+ if bias_name in lora_bias_names:
110
+ to_return[bias_name] = t
111
+ else:
112
+ raise NotImplementedError
113
+ to_return = {k: maybe_zero_3(v, ignore_status=True) for k, v in to_return.items()}
114
+ return to_return
115
+
116
+
117
+ def get_peft_state_non_lora_maybe_zero_3(named_params, require_grad_only=True):
118
+ to_return = {k: t for k, t in named_params if "lora_" not in k}
119
+ if require_grad_only:
120
+ to_return = {k: t for k, t in to_return.items() if t.requires_grad}
121
+ to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()}
122
+ return to_return
123
+
124
+
125
+ def find_all_linear_names(modules):
126
+ lora_module_names = set()
127
+ for name, module in modules():
128
+ if isinstance(module, torch.nn.Linear):
129
+ names = name.split('.')
130
+ lora_module_names.add(names[0] if len(names) == 1 else names[-1])
131
+
132
+ if 'lm_head' in lora_module_names: # needed for 16-bit
133
+ lora_module_names.remove('lm_head')
134
+ return list(lora_module_names)
135
+
136
+
137
+ def expand2square(pil_img, background_color):
138
+ width, height = pil_img.size
139
+ if width == height:
140
+ return pil_img
141
+ elif width > height:
142
+ result = Image.new(pil_img.mode, (width, width), background_color)
143
+ result.paste(pil_img, (0, (width - height) // 2))
144
+ return result
145
+ else:
146
+ result = Image.new(pil_img.mode, (height, height), background_color)
147
+ result.paste(pil_img, ((height - width) // 2, 0))
148
+ return result
149
+
150
+ def pad_and_stack(img_list, pad_value=0.0):
151
+ """
152
+ img_list : list[Tensor] each (C, H, W) already *normalised*
153
+ pad_value: float or tuple/list of 3 floats (one per channel)
154
+ Use 0.0 if your processor has already centred to mean 0.
155
+ Returns
156
+ -------
157
+ batch : Tensor (B, C, H_max, W_max)
158
+ """
159
+
160
+ # 1. target square size ---------------------------------------------------
161
+ h_max = max(t.shape[1] for t in img_list)
162
+ w_max = max(t.shape[2] for t in img_list)
163
+ H, W = max(h_max, w_max), max(h_max, w_max)
164
+
165
+ # 2. create padded copies -------------------------------------------------
166
+ padded = []
167
+ for img in img_list:
168
+ c, h, w = img.shape
169
+ canvas = img.new_full((c, H, W), pad_value) # filled with mean/zeros
170
+ canvas[:, :h, :w] = img # top-left corner
171
+ padded.append(canvas)
172
+
173
+ return torch.stack(padded, 0) # (B,C,H,W)
174
+
175
+
176
+
177
+
178
+
179
+ # ------------------------------------------------------------------------------------------
180
+ # Copyright (c) 2024 Baifeng Shi.
181
+ # All rights reserved.
182
+ #
183
+ # Licensed under the MIT License (MIT). See LICENSE in the repo root for license information.
184
+ # ------------------------------------------------------------------------------------------
185
+
186
+ import torch
187
+
188
+ def split_chessboard(x, num_split):
189
+ """
190
+ x: b * c * h * w
191
+ Deividing x into num_split**2 sub-squares, and concatenate all the sub-squares on the batch dimension
192
+ """
193
+ B, C, H, W = x.shape
194
+ assert H % num_split == 0 and W % num_split == 0
195
+ h, w = H // num_split, W // num_split
196
+ x_split = torch.cat([x[:, :, i*h:(i+1)*h, j*w:(j+1)*w] for i in range(num_split) for j in range(num_split)], dim=0)
197
+ return x_split
198
+
199
+ def merge_chessboard(x, num_split):
200
+ """
201
+ x: b * c * h * w
202
+ Assuming x contains num_split**2 sub-squares concatenated along batch dimension, merge the sub-squares back to the original whole square.
203
+ (inverse of split_chessboard)
204
+ """
205
+ B, C, H, W = x.shape
206
+ assert B % (num_split**2) == 0
207
+ b = B // (num_split**2)
208
+ x_merge = torch.cat([torch.cat([x[(i*num_split + j)*b:(i*num_split + j + 1)*b] for j in range(num_split)], dim=-1)
209
+ for i in range(num_split)], dim=-2)
210
+ return x_merge
211
+
212
+ def batched_forward(model, x, batch_size=-1):
213
+ if batch_size == -1:
214
+ return model(x)
215
+ else:
216
+ x_batched = x.split(batch_size)
217
+ outs = [model(x) for x in x_batched]
218
+ return torch.cat(outs, dim=0)
219
+
220
+
221
+
222
+
223
+
224
+
225
+
226
+ # ------------------------------------------------------------------------------------------
227
+ # Copyright (c) 2024 Baifeng Shi.
228
+ # All rights reserved.
229
+ #
230
+ # Licensed under the MIT License (MIT). See LICENSE in the repo root for license information.
231
+ # ------------------------------------------------------------------------------------------
232
+
233
+ import math
234
+ import torch
235
+ import torch.nn.functional as F
236
+ from einops import rearrange
237
+
238
+ def multiscale_forward(model, input, scales=None, img_sizes=None, max_split_size=None, resize_output_to_idx=0, num_prefix_token=0,
239
+ output_shape='bnc', split_forward=False):
240
+
241
+ # print(f"Input shape: {input.shape}")
242
+
243
+ assert input.dim() == 4, "Input image must be in the shape of BxCxHxW."
244
+ assert input.shape[2] == input.shape[3], "Currently only square images are supported."
245
+ assert output_shape in ['bnc', 'bchw'], "Output shape should be either BxNxC (e.g., ViT) or BxCxHxW (e.g., ConvNet)."
246
+ assert output_shape == 'bnc' or num_prefix_token == 0, "For ConvNet there shouldn't be any prefix token."
247
+
248
+ b, c, input_size, _ = input.shape
249
+
250
+ # image size for each scale
251
+ assert scales is not None or img_sizes is not None, "Please assign either scales or img_sizes."
252
+ img_sizes = img_sizes or [int(input_size * scale) for scale in scales]
253
+
254
+ # prepare multiscale inputs
255
+ max_split_size = max_split_size or input_size # The maximum size of each split of image. Set as the input size by default
256
+ num_splits = [math.ceil(size / max_split_size) for size in img_sizes] # number of splits each scale
257
+ input_multiscale = []
258
+ for size, num_split in zip(img_sizes, num_splits):
259
+ x = F.interpolate(input.to(torch.float32), size=size, mode='bicubic').to(input.dtype)
260
+ x = split_chessboard(x, num_split=num_split)
261
+ input_multiscale.append(x)
262
+
263
+ # run feedforward on each scale
264
+ outs_multiscale = [batched_forward(model, x, b) if split_forward else model(x) for x in input_multiscale]
265
+ if num_prefix_token > 0:
266
+ outs_prefix_multiscale = [out[:, :num_prefix_token] for out in outs_multiscale]
267
+ outs_multiscale = [out[:, num_prefix_token:] for out in outs_multiscale]
268
+ if output_shape == 'bnc':
269
+ outs_multiscale = [rearrange(out, 'b (h w) c -> b c h w', h=int(out.shape[1] ** 0.5), w=int(out.shape[1] ** 0.5))
270
+ for out in outs_multiscale]
271
+
272
+ # merge outputs of different splits for each scale separately
273
+ outs_multiscale = [merge_chessboard(out, num_split=num_split) for num_split, out in zip(num_splits, outs_multiscale)]
274
+
275
+ # interpolate outputs from different scales and concat together
276
+ output_size = outs_multiscale[resize_output_to_idx].shape[-2]
277
+ out = torch.cat([F.interpolate(outs_multiscale[i].to(torch.float32), size=output_size,
278
+ mode='area').to(outs_multiscale[i].dtype)
279
+ for i in range(len(outs_multiscale))], dim=1)
280
+ if output_shape == 'bnc':
281
+ out = rearrange(out, 'b c h w -> b (h w) c')
282
+ if num_prefix_token > 0:
283
+ # take the mean of prefix tokens from different splits for each scale
284
+ outs_prefix_multiscale = [torch.stack(out.split(b, dim=0), dim=0).mean(dim=0) for out in outs_prefix_multiscale]
285
+ out_prefix_multiscale = torch.cat(outs_prefix_multiscale, dim=-1)
286
+ out = torch.cat([out_prefix_multiscale, out], dim=1)
287
+
288
+ return out
289
+
290
+
291
+
292
+
293
+
294
+ import torch
295
+ import torch.nn as nn
296
+
297
+ class MLPAdapter(nn.Module):
298
+
299
+ def __init__(self, input_dim, hidden_dim, output_dim, num_layers=2, activation='gelu', checkpoint_path=None, device=None, **kwargs):
300
+ """
301
+ Initialize the MLPAdapter with the given dimensions and activation function.
302
+
303
+ Args:
304
+ input_dim (int): Input dimension.
305
+ hidden_dim (int): Hidden dimension.
306
+ output_dim (int): Output dimension.
307
+ layers (int): Number of layers in the MLP.
308
+ activation (str): Activation function to use ('gelu' or 'relu').
309
+ """
310
+ super().__init__()
311
+ self.num_layers = num_layers
312
+ self.activation = activation
313
+ self.output_dim = output_dim
314
+
315
+ # Define the first layer
316
+ layers_list = [nn.Linear(input_dim, hidden_dim, device=device)]
317
+ if activation == 'gelu':
318
+ layers_list.append(nn.GELU())
319
+ elif activation == 'relu':
320
+ layers_list.append(nn.ReLU())
321
+ else:
322
+ raise ValueError("Unsupported activation function. Use 'gelu' or 'relu'.")
323
+
324
+ # Define the subsequent layers
325
+ for _ in range(1, num_layers):
326
+ layers_list.append(nn.Linear(hidden_dim, hidden_dim, device=device))
327
+ if activation == 'gelu':
328
+ layers_list.append(nn.GELU())
329
+ elif activation == 'relu':
330
+ layers_list.append(nn.ReLU())
331
+
332
+ # Define the final output layer
333
+ layers_list.append(nn.Linear(hidden_dim, output_dim, device=device))
334
+ self.mlp = nn.Sequential(*layers_list)
335
+
336
+ # Load checkpoint if provided
337
+ if checkpoint_path:
338
+ self.load_state_dict(torch.load(checkpoint_path, map_location=device), strict=False)
339
+ print(f"Loaded MLPAdapter from {checkpoint_path}")
340
+
341
+ if device:
342
+ self.to(device)
343
+
344
+ def forward(self, x):
345
+ """
346
+ Forward pass through the MLPAdapter.
347
+
348
+ Args:
349
+ x (torch.Tensor): Input tensor.
350
+
351
+ Returns:
352
+ torch.Tensor: Output tensor after passing through the MLP.
353
+ """
354
+ return self.mlp(x)
355
+
356
+
357
+
358
+
359
+ import torch
360
+ import torch.nn as nn
361
+ import torch.nn.functional as F
362
+
363
+ import PIL.Image
364
+ from typing import List
365
+
366
+ from transformers import AutoModel, AutoImageProcessor
367
+
368
+
369
+ class FastVitVisionTower(nn.Module):
370
+ def __init__(self, pretrained_model_name_or_path, model_params={}, pad_to_square=True, **kwargs):
371
+ super().__init__()
372
+
373
+ self.is_loaded = False
374
+ self.pretrained_model_name_or_path = pretrained_model_name_or_path
375
+ self.model_params = model_params
376
+ self.pad_to_square = pad_to_square
377
+ self.load_model()
378
+
379
+ @property
380
+ def output_dim(self):
381
+ return self.vision_tower.config.embed_dim if self.vision_tower else None
382
+
383
+ def load_model(self):
384
+ if self.is_loaded:
385
+ return
386
+ self.image_processor = AutoImageProcessor.from_pretrained(self.pretrained_model_name_or_path)
387
+ self.image_processor.crop_size = self.image_processor.size
388
+ self.vision_tower = AutoModel.from_pretrained(
389
+ self.pretrained_model_name_or_path,
390
+ **self.model_params,
391
+ )
392
+ self.vision_tower.requires_grad_(False)
393
+
394
+ self.is_loaded = True
395
+
396
+ def preprocess_images(self, imgs: List[PIL.Image.Image], pad_and_stack_tensors=True) -> torch.Tensor:
397
+ img_mean = tuple(int(x * 255) for x in self.image_processor.image_mean)
398
+ if self.pad_to_square:
399
+ imgs = [expand2square(img, img_mean) for img in imgs]
400
+
401
+ imgs = [self.image_processor(img, do_resize=True, do_center_crop=False, return_tensors="pt")['pixel_values'][0] for img in imgs]
402
+
403
+
404
+ if pad_and_stack_tensors:
405
+ imgs = pad_and_stack(imgs, pad_value=0.0)
406
+ imgs = imgs.to(dtype=torch.float32, device=self.device)
407
+
408
+ return imgs
409
+
410
+ def forward(self, images):
411
+ if type(images) is list:
412
+ image_features = []
413
+ for image in images:
414
+ image_feature = self.vision_tower(
415
+ image.to(device=self.device, dtype=self.dtype).unsqueeze(0)
416
+ )
417
+ image_features.append(image_feature)
418
+ else:
419
+ image_features = self.vision_tower(
420
+ images.to(device=self.device, dtype=self.dtype),
421
+ )
422
+
423
+ return image_features
424
+
425
+ @property
426
+ def dummy_feature(self):
427
+ return torch.zeros(1, self.embed_dim, device=self.device, dtype=self.dtype)
428
+
429
+ @property
430
+ def dtype(self):
431
+ return self.vision_tower.dtype
432
+
433
+ @property
434
+ def device(self):
435
+ return self.vision_tower.device
436
+
437
+ @property
438
+ def config(self):
439
+ if self.is_loaded:
440
+ return self.vision_tower.config
441
+ else:
442
+ return self.cfg_only
443
+
444
+ @property
445
+ def hidden_size(self):
446
+ return self.config.embed_dim
447
+
448
+ @property
449
+ def num_patches(self):
450
+ return (self.config.image_size // self.config.patch_size) ** 2
451
+
452
+
453
+ class FastVitVisionTowerS2(FastVitVisionTower):
454
+ def __init__(self, pretrained_model_name_or_path, s2_scales, model_params={}, **kwargs):
455
+ self.s2_scales = list(map(int, s2_scales.split(',')))
456
+ self.s2_scales.sort()
457
+ self.s2_split_size = self.s2_scales[0]
458
+ self.s2_image_size = self.s2_scales[-1]
459
+
460
+ super().__init__(pretrained_model_name_or_path, model_params)
461
+
462
+ self.multiscale_forward = multiscale_forward
463
+
464
+ @property
465
+ def output_dim(self):
466
+ return (2*self.vision_tower.config.embed_dim) if self.vision_tower else None
467
+
468
+ def load_model(self):
469
+ if self.is_loaded:
470
+ return
471
+
472
+ super().load_model()
473
+ self.image_processor.size = self.image_processor.crop_size = {
474
+ "height": self.s2_image_size,
475
+ "width": self.s2_image_size
476
+ }
477
+
478
+ def forward_feature(self, images):
479
+ image_size = self.vision_tower.config.image_size
480
+ if images.shape[2] != image_size or images.shape[3] != image_size:
481
+ images = F.interpolate(
482
+ images,
483
+ size=(image_size, image_size),
484
+ mode="bilinear",
485
+ align_corners=False,
486
+ antialias=True
487
+ )
488
+
489
+ return self.vision_tower(
490
+ images.to(device=self.device, dtype=self.dtype),
491
+ )
492
+
493
+ def forward(self, images):
494
+ if type(images) is list:
495
+ image_features = []
496
+ for image in images:
497
+ image_feature = self.multiscale_forward(
498
+ self.forward_feature,
499
+ image.unsqueeze(0),
500
+ img_sizes=self.s2_scales,
501
+ max_split_size=self.s2_split_size
502
+ )
503
+ image_features.append(image_feature)
504
+ else:
505
+ image_features = self.multiscale_forward(
506
+ self.forward_feature,
507
+ images,
508
+ img_sizes=self.s2_scales,
509
+ max_split_size=self.s2_split_size
510
+ )
511
+
512
+ return image_features
513
+
514
+ @property
515
+ def hidden_size(self):
516
+ return self.config.embed_dim * len(self.s2_scales)
517
+
518
+
519
+
520
+
521
+
522
+ import torch
523
+ import torch.nn as nn
524
+
525
+ import PIL.Image
526
+ from typing import List
527
+
528
+ from transformers import SiglipVisionModel, SiglipImageProcessor, SiglipVisionConfig
529
+
530
+
531
+ class SiglipVisionTower(nn.Module):
532
+ def __init__(self, pretrained_model_name_or_path, model_params={}, pad_to_square=True, **kwargs):
533
+ super().__init__()
534
+
535
+ self.is_loaded = False
536
+ self.pretrained_model_name_or_path = pretrained_model_name_or_path
537
+ self.model_params = model_params
538
+ self.pad_to_square = pad_to_square
539
+ self.select_layer = -2
540
+ self.load_model()
541
+
542
+ @property
543
+ def output_dim(self):
544
+ return self.vision_tower.config.hidden_size if self.vision_tower else None
545
+
546
+ def load_model(self):
547
+ if self.is_loaded:
548
+ return
549
+ self.image_processor = SiglipImageProcessor.from_pretrained(self.pretrained_model_name_or_path)
550
+ self.image_processor.crop_size = self.image_processor.size
551
+ self.vision_tower = SiglipVisionModel.from_pretrained(
552
+ self.pretrained_model_name_or_path,
553
+ **self.model_params,
554
+ )
555
+ self.vision_tower.requires_grad_(False)
556
+
557
+ self.is_loaded = True
558
+
559
+ def preprocess_images(self, imgs: List[PIL.Image.Image], pad_and_stack_tensors=True) -> torch.Tensor:
560
+ img_mean = tuple(int(x * 255) for x in self.image_processor.image_mean)
561
+ if self.pad_to_square:
562
+ imgs = [expand2square(img, img_mean) for img in imgs]
563
+ imgs = [self.image_processor(img, return_tensors="pt")['pixel_values'][0] for img in imgs]
564
+
565
+ if pad_and_stack_tensors:
566
+ imgs = pad_and_stack(imgs, pad_value=0.0)
567
+ imgs = imgs.to(dtype=torch.float32, device=self.device)
568
+
569
+ return imgs
570
+
571
+ def feature_select(self, image_forward_outs):
572
+ image_features = image_forward_outs.hidden_states[self.select_layer]
573
+
574
+ return image_features
575
+
576
+ def forward(self, images):
577
+ if type(images) is list:
578
+ image_features = []
579
+ for image in images:
580
+ image_forward_out = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0),
581
+ output_hidden_states=True)
582
+ image_feature = self.feature_select(image_forward_out).to(image.dtype)
583
+ image_features.append(image_feature)
584
+ else:
585
+ image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype),
586
+ output_hidden_states=True)
587
+ image_features = self.feature_select(image_forward_outs).to(images.dtype)
588
+
589
+ return image_features
590
+
591
+ @property
592
+ def dummy_feature(self):
593
+ return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
594
+
595
+ @property
596
+ def dtype(self):
597
+ return self.vision_tower.dtype
598
+
599
+ @property
600
+ def device(self):
601
+ return self.vision_tower.device
602
+
603
+ @property
604
+ def config(self):
605
+ if self.is_loaded:
606
+ return self.vision_tower.config
607
+ else:
608
+ return self.cfg_only
609
+
610
+ @property
611
+ def hidden_size(self):
612
+ return self.config.hidden_size
613
+
614
+ @property
615
+ def num_patches(self):
616
+ return (self.config.image_size // self.config.patch_size) ** 2
617
+
618
+
619
+ class SiglipVisionTowerS2(SiglipVisionTower):
620
+ def __init__(self, pretrained_model_name_or_path, s2_scales, model_params={}, **kwargs):
621
+ self.s2_scales = list(map(int, s2_scales.split(',')))
622
+ self.s2_scales.sort()
623
+ self.s2_split_size = self.s2_scales[0]
624
+ self.s2_image_size = self.s2_scales[-1]
625
+
626
+ super().__init__(pretrained_model_name_or_path, model_params)
627
+
628
+ self.multiscale_forward = multiscale_forward
629
+
630
+ self.image_processor.size['height'] = self.image_processor.size['width'] = self.s2_image_size
631
+ self.image_processor.crop_size['height'] = self.image_processor.crop_size['width'] = self.s2_image_size
632
+
633
+ @property
634
+ def output_dim(self):
635
+ return (2*self.vision_tower.config.hidden_size) if self.vision_tower else None
636
+
637
+ def load_model(self):
638
+ if self.is_loaded:
639
+ return
640
+
641
+ super().load_model()
642
+ self.image_processor.size['height'] = self.image_processor.size['width'] = self.s2_image_size
643
+ self.image_processor.crop_size['height'] = self.image_processor.crop_size['width'] = self.s2_image_size
644
+
645
+ def forward_feature(self, images):
646
+ image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype),
647
+ output_hidden_states=True)
648
+ image_features = self.feature_select(image_forward_outs).to(images.dtype)
649
+ return image_features
650
+
651
+ def forward(self, images):
652
+ if type(images) is list:
653
+ image_features = []
654
+ for image in images:
655
+ image_feature = self.multiscale_forward(
656
+ self.forward_feature,
657
+ image.unsqueeze(0),
658
+ img_sizes=self.s2_scales,
659
+ max_split_size=self.s2_split_size
660
+ )
661
+ image_features.append(image_feature)
662
+ else:
663
+ image_features = self.multiscale_forward(
664
+ self.forward_feature,
665
+ images,
666
+ img_sizes=self.s2_scales,
667
+ max_split_size=self.s2_split_size
668
+ )
669
+
670
+ return image_features
671
+
672
+ @property
673
+ def hidden_size(self):
674
+ return self.config.hidden_size * len(self.s2_scales)
675
+
676
+
677
+
678
+
679
+
680
+
681
+
682
+ import torch
683
+ import torch.nn as nn
684
+ import torch.nn.functional as F
685
+ from torchvision import transforms
686
+
687
+ from typing import List, Tuple, Optional, Union
688
+
689
+ import PIL
690
+
691
+ from transformers import AutoTokenizer, AutoConfig
692
+ from transformers.modeling_outputs import CausalLMOutputWithPast
693
+
694
+ from .configuration_phi3 import Phi3Config
695
+ from .modeling_phi3 import Phi3Model, Phi3ForCausalLM
696
+
697
+
698
+ DEFAULT_CFG_SPECIAL_TOKENS = {
699
+ "image_token_id": 200029,
700
+ "image_start_token_id": 200030,
701
+ "image_end_token_id": 200031,
702
+ }
703
+ DEFAULT_CFG_VISION_TOWER = {
704
+ "pretrained_model_name_or_path": "kevin510/fast-vit-hd",
705
+ "type": "fastvit",
706
+ "s2_scales": "512,1024",
707
+ "use_s2": True,
708
+ "pad_to_square": True,
709
+ "freeze": False,
710
+ "model_params": { "trust_remote_code": True }
711
+ }
712
+ DEFAULT_CFG_VISION_ADAPTER = {
713
+ "input_dim": 6144,
714
+ "hidden_dim": 3072,
715
+ "output_dim": 3072,
716
+ "layers": 2,
717
+ "activation": "gelu",
718
+ "freeze": False,
719
+ }
720
+
721
+
722
+ class FridayConfig(Phi3Config):
723
+ model_type = "friday"
724
+
725
+ def __init__(self,
726
+ base_model_name_or_path: str | None = "microsoft/Phi-4-mini-reasoning",
727
+ delay_load=False,
728
+ tokenizer_model_max_length=None,
729
+ **kwargs
730
+ ):
731
+ base_kwargs = {}
732
+ if base_model_name_or_path is not None:
733
+ base_cfg = AutoConfig.from_pretrained(
734
+ base_model_name_or_path,
735
+ trust_remote_code=True, # Phi‑4 uses custom code in the repo
736
+ )
737
+ base_kwargs = base_cfg.to_dict()
738
+
739
+ merged = {**base_kwargs, **kwargs}
740
+ self.delay_load = delay_load
741
+ self.tokenizer_model_max_length = tokenizer_model_max_length
742
+
743
+ self._cfg_vision_tower = DEFAULT_CFG_VISION_TOWER.copy()
744
+ if "cfg_vision_tower" in kwargs:
745
+ self._cfg_vision_tower.update(kwargs["cfg_vision_tower"])
746
+
747
+ self._cfg_vision_adapter = DEFAULT_CFG_VISION_ADAPTER.copy()
748
+ if "cfg_vision_adapter" in kwargs:
749
+ self._cfg_vision_adapter.update(kwargs["cfg_vision_adapter"])
750
+
751
+ self._cfg_special_tokens = DEFAULT_CFG_SPECIAL_TOKENS.copy()
752
+ if "cfg_special_tokens" in kwargs:
753
+ self._cfg_special_tokens.update(kwargs["cfg_special_tokens"])
754
+
755
+ super().__init__(**merged)
756
+
757
+
758
+ @property
759
+ def cfg_vision_tower(self):
760
+ return self._cfg_vision_tower
761
+
762
+ @cfg_vision_tower.setter
763
+ def cfg_vision_tower(self, value):
764
+ if not value:
765
+ raise ValueError("Name cannot be empty")
766
+ self._cfg_vision_tower.update(value)
767
+
768
+
769
+ @property
770
+ def cfg_vision_adapter(self):
771
+ return self._cfg_vision_adapter
772
+
773
+ @cfg_vision_adapter.setter
774
+ def cfg_vision_adapter(self, value):
775
+ if not value:
776
+ raise ValueError("Name cannot be empty")
777
+ self._cfg_vision_adapter.update(value)
778
+
779
+ @property
780
+ def cfg_special_tokens(self):
781
+ return self._cfg_special_tokens
782
+
783
+ @cfg_special_tokens.setter
784
+ def cfg_special_tokens(self, value):
785
+ if not value:
786
+ raise ValueError("Name cannot be empty")
787
+ self._cfg_special_tokens.update(value)
788
+
789
+
790
+ class FridayModel(Phi3Model):
791
+ config_class = FridayConfig
792
+
793
+ def __init__(self, config: FridayConfig):
794
+ super().__init__(config)
795
+
796
+ self.cfg_vision_adapter = config.cfg_vision_adapter
797
+ self.cfg_vision_tower = config.cfg_vision_tower
798
+
799
+ self.vision_tower = None
800
+ self.mm_projector = None
801
+ if not config.delay_load:
802
+ self.initialize_vision_modules()
803
+
804
+ def get_vision_tower(self):
805
+ return self.vision_tower
806
+
807
+ def initialize_vision_modules(self):
808
+ if self.vision_tower is not None:
809
+ return
810
+
811
+ if self.cfg_vision_tower.get("type", "siglip").lower() == "siglip":
812
+ if self.cfg_vision_tower.get("use_s2", True):
813
+ self.vision_tower = SiglipVisionTowerS2(**self.cfg_vision_tower)
814
+ else:
815
+ self.vision_tower = SiglipVisionTower(**self.cfg_vision_tower)
816
+ elif self.cfg_vision_tower.get("type", "siglip").lower() == "fastvit":
817
+ if self.cfg_vision_tower.get("use_s2", True):
818
+ self.vision_tower = FastVitVisionTowerS2(**self.cfg_vision_tower)
819
+ else:
820
+ self.vision_tower = FastVitVisionTower(**self.cfg_vision_tower)
821
+ else:
822
+ raise ValueError(f"Unsupported vision tower type: {self.cfg_vision_tower.get('type', 'siglip')}. Supported types are 'siglip' and 'fastvit'.")
823
+
824
+ self.vision_tower.load_model()
825
+ self.mm_projector = MLPAdapter(**self.cfg_vision_adapter)
826
+
827
+ if self.cfg_vision_tower.get("freeze", False):
828
+ self.set_vision_tower_requires_grad(False)
829
+
830
+ if self.cfg_vision_adapter.get("freeze", False):
831
+ self.set_vision_adapter_requires_grad(False)
832
+
833
+ def compute_image_features(self, imgs: torch.Tensor) -> torch.Tensor:
834
+ features = self.vision_tower(imgs)
835
+ if isinstance(features, list):
836
+ features = torch.stack(features, dim=1)
837
+ return self.mm_projector(features)
838
+
839
+ def set_vision_tower_requires_grad(self, requires_grad: bool):
840
+ if self.vision_tower is not None:
841
+ for param in self.vision_tower.parameters():
842
+ param.requires_grad = requires_grad
843
+ else:
844
+ raise ValueError("Vision tower is not initialized. Please call initialize_vision_modules() first.")
845
+
846
+ def set_vision_adapter_requires_grad(self, requires_grad: bool):
847
+ if self.mm_projector is not None:
848
+ for param in self.mm_projector.parameters():
849
+ param.requires_grad = requires_grad
850
+ else:
851
+ raise ValueError("Vision adapter is not initialized. Please call initialize_vision_modules() first.")
852
+
853
+ def set_vision_tower_dtype(self, dtype: torch.dtype):
854
+ if self.vision_tower is not None:
855
+ for p in self.vision_tower.parameters():
856
+ p.data = p.data.to(dtype)
857
+ else:
858
+ raise ValueError("Vision tower is not initialized. Please call initialize_vision_modules() first.")
859
+
860
+ def set_vision_adapter_dtype(self, dtype: torch.dtype):
861
+ if self.mm_projector is not None:
862
+ for p in self.mm_projector.parameters():
863
+ p.data = p.data.to(dtype)
864
+ else:
865
+ raise ValueError("Vision adapter is not initialized. Please call initialize_vision_modules() first.")
866
+
867
+ def is_vision_tower_frozen(self):
868
+ if self.vision_tower is not None:
869
+ return all(not p.requires_grad for p in self.vision_tower.parameters())
870
+ else:
871
+ raise ValueError("Vision tower is not initialized. Please call initialize_vision_modules() first.")
872
+
873
+ def is_vision_adapter_frozen(self):
874
+ if self.mm_projector is not None:
875
+ return all(not p.requires_grad for p in self.mm_projector.parameters())
876
+ else:
877
+ raise ValueError("Vision adapter is not initialized. Please call initialize_vision_modules() first.")
878
+
879
+
880
+ class FridayForCausalLM(Phi3ForCausalLM):
881
+ config_class = FridayConfig
882
+
883
+ def __init__(self, config: FridayConfig):
884
+ super().__init__(config)
885
+
886
+ self.config = config
887
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
888
+ self.image_token_id = config.cfg_special_tokens["image_token_id"]
889
+ self.image_start_id = config.cfg_special_tokens["image_start_token_id"]
890
+ self.image_end_id = config.cfg_special_tokens["image_end_token_id"]
891
+
892
+ self.model = FridayModel(config)
893
+ self.post_init()
894
+
895
+ def get_model(self) -> FridayModel:
896
+ return self.model
897
+
898
+ def get_vision_tower(self) -> SiglipVisionTower:
899
+ return self.model.get_vision_tower()
900
+
901
+ def get_vision_adapter(self) -> MLPAdapter:
902
+ return self.model.mm_projector
903
+
904
+ def get_llm_parameters(self, exclude_lora: bool = False):
905
+ return [
906
+ p for n, p in self.named_parameters()
907
+ if "vision_tower" not in n and "mm_projector" not in n and (not exclude_lora or ("lora_" not in n))
908
+ ]
909
+
910
+ def get_llm_named_modules(self):
911
+ return {n: m for n, m in self.named_modules() if "vision_tower" not in n and "mm_projector" not in n}
912
+
913
+ def set_llm_requires_grad(self, requires_grad: bool, exclude_lora: bool = True):
914
+ for n, p in self.named_parameters():
915
+ if exclude_lora and ("lora_A" in n or "lora_B" in n):
916
+ continue
917
+ if "vision_tower" in n or "mm_projector" in n:
918
+ continue
919
+ p.requires_grad = requires_grad
920
+
921
+ def set_vision_tower_requires_grad(self, requires_grad: bool):
922
+ self.model.set_vision_tower_requires_grad(requires_grad)
923
+
924
+ def set_vision_adapter_requires_grad(self, requires_grad: bool):
925
+ self.model.set_vision_adapter_requires_grad(requires_grad)
926
+
927
+ def set_llm_dtype(self, dtype: torch.dtype):
928
+ for p in self.get_llm_parameters():
929
+ p.data = p.data.to(dtype)
930
+
931
+ def set_vision_tower_dtype(self, dtype: torch.dtype):
932
+ self.model.set_vision_tower_dtype(dtype)
933
+
934
+ def set_vision_adapter_dtype(self, dtype: torch.dtype):
935
+ self.model.set_vision_adapter_dtype(dtype)
936
+
937
+ def is_llm_frozen(self):
938
+ return all(not p.requires_grad for p in self.get_llm_parameters())
939
+
940
+ def is_vision_tower_frozen(self):
941
+ return self.model.is_vision_tower_frozen()
942
+
943
+ def is_vision_adapter_frozen(self):
944
+ return self.model.is_vision_adapter_frozen()
945
+
946
+
947
+
948
+ def initialize_vision_modules(self):
949
+ self.model.initialize_vision_modules()
950
+
951
+ def get_multimodal_input_embeddings(self, input_ids, image_features, return_labels=True) -> torch.Tensor:
952
+ emb_start_image_id = self.model.embed_tokens(torch.tensor([self.image_start_id], device=self.device))
953
+ emb_end_image_id = self.model.embed_tokens(torch.tensor([self.image_end_id], device=self.device))
954
+ id_ignore = torch.tensor([IGNORE_INDEX], device=self.device)
955
+
956
+ # repetition‑penalty safety ????
957
+ # input_ids[input_ids == self.image_token_id] = 0
958
+
959
+
960
+ # Iterate over each batch item
961
+ embeds_list, labels_list = [], []
962
+ for batch_id, item_ids in enumerate(input_ids):
963
+
964
+ image_token_positions = (item_ids == self.image_token_id).nonzero(as_tuple=True)[0]
965
+ if len(image_token_positions) != image_features[batch_id].shape[0]:
966
+ raise ValueError(
967
+ f"Mismatch between number of image tokens ({len(image_token_positions)}) and number of image features ({image_features[batch_id].shape[0]})"
968
+ )
969
+
970
+
971
+ cursor = 0
972
+ emb_parts, lbl_parts = [], []
973
+ for indx_image, image_token_pos in enumerate(image_token_positions):
974
+ if image_token_pos > cursor:
975
+ span = item_ids[cursor:image_token_pos]
976
+ emb_parts.append(self.model.embed_tokens(span))
977
+ lbl_parts.append(span)
978
+
979
+ # <image_start>
980
+ emb_parts.append(emb_start_image_id)
981
+ lbl_parts.append(id_ignore)
982
+
983
+ # vision embeddings
984
+ image_tokens = image_features[batch_id][indx_image]
985
+ if image_tokens.shape[0] == 1 and image_tokens.ndim == 3:
986
+ image_tokens = image_tokens.squeeze(0)
987
+ emb_parts.append(image_tokens)
988
+ lbl_parts.append(id_ignore.repeat(image_tokens.shape[0]))
989
+
990
+ # <image_end>
991
+ emb_parts.append(emb_end_image_id)
992
+ lbl_parts.append(id_ignore)
993
+
994
+ cursor = image_token_pos + 1
995
+
996
+ # tail text
997
+ if cursor < item_ids.shape[0]:
998
+ tail = item_ids[cursor:]
999
+ emb_parts.append(self.model.embed_tokens(tail))
1000
+ lbl_parts.append(tail)
1001
+
1002
+ embeds_list.append(torch.cat(emb_parts, dim=0))
1003
+ labels_list.append(torch.cat(lbl_parts, dim=0))
1004
+
1005
+ return (embeds_list, labels_list) if return_labels else embeds_list
1006
+
1007
+ def prepare_inputs_for_multimodal(
1008
+ self,
1009
+ input_ids: torch.LongTensor,
1010
+ images: List[List[PIL.Image.Image]], # B x N
1011
+ position_ids: Optional[torch.LongTensor],
1012
+ attention_mask: Optional[torch.Tensor],
1013
+ past_key_values: Optional[List[torch.FloatTensor]],
1014
+ labels: Optional[torch.LongTensor],
1015
+ ) -> Tuple[Optional[torch.Tensor], Optional[torch.LongTensor], Optional[torch.Tensor], Optional[List[torch.FloatTensor]], torch.Tensor, Optional[torch.Tensor]]:
1016
+
1017
+ # ─────────────────── early return (no image / streaming step) ───────────────────
1018
+ # if we have already processed images and are in a streaming step we can skip the multimodal processing
1019
+ # but we need to ensure the attention mask and position ids are correct
1020
+
1021
+ if past_key_values is not None and attention_mask is not None and input_ids.shape[1] == 1:
1022
+ tgt = past_key_values[-1][-1].shape[-2] + 1
1023
+ attention_mask = torch.cat(
1024
+ [attention_mask,
1025
+ torch.ones((attention_mask.size(0),
1026
+ tgt - attention_mask.size(1)),
1027
+ dtype=attention_mask.dtype,
1028
+ device=attention_mask.device)],
1029
+ dim=1,
1030
+ )
1031
+ position_ids = (attention_mask.sum(dim=1, keepdim=True) - 1).long()
1032
+
1033
+ return input_ids, position_ids, attention_mask, past_key_values, None, labels
1034
+
1035
+ # ─────────────────────────── images: (B, N) ───────────────────────────
1036
+ if isinstance(images, list) and isinstance(images[0], list):
1037
+ # images is a list of lists, each containing multiple images, B x N
1038
+ # e.g. [[img1, img2], [img3, img4]]
1039
+ assert len(images) == input_ids.shape[0], f"Batch size mismatch: {len(images)} vs {input_ids.shape[0]}"
1040
+ image_features = []
1041
+ for sublst_images in images:
1042
+ if len(sublst_images) == 0:
1043
+ image_features.append(torch.zeros((0, self.get_model().mm_projector.output_dim), device=self.device))
1044
+ else:
1045
+ if isinstance(sublst_images[0], PIL.Image.Image):
1046
+ image_features.append(
1047
+ self.model.compute_image_features(
1048
+ self.model.vision_tower.preprocess_images(sublst_images, pad_and_stack_tensors=True)
1049
+ )
1050
+ )
1051
+ elif isinstance(sublst_images[0], torch.Tensor):
1052
+ # This should be a list of tensors of pre-processed images, [(N X 3 X W x H), ...]
1053
+ image_features.append(
1054
+ self.model.compute_image_features(sublst_images)
1055
+ )
1056
+ elif isinstance(images, list) and isinstance(images[0], PIL.Image.Image):
1057
+ # images is a list of images for a single batch item, 1 x N
1058
+ # e.g. [img1, img2, img3]
1059
+ assert input_ids.shape[0] == 1, f"Batch size mismatch: {len(images)} vs {input_ids.shape[0]}"
1060
+ image_features = [
1061
+ self.model.compute_image_features(
1062
+ self.model.vision_tower.preprocess_images(images, pad_and_stack_tensors=True)
1063
+ )
1064
+ ]
1065
+ elif isinstance(images, list) and isinstance(images[0], torch.Tensor):
1066
+ # This should be a list of tensors of pre-processed images, [(N X 3 X W x H), ...]
1067
+ # The list length should match the batch size
1068
+ assert input_ids.shape[0] == len(images), f"Batch size mismatch: {len(images)} vs {input_ids.shape[0]}"
1069
+ image_features = [
1070
+ self.model.compute_image_features(imgs) for imgs in images
1071
+ ]
1072
+ elif isinstance(images, PIL.Image.Image):
1073
+ # images is a single image, 1 x 1
1074
+ # e.g. img1
1075
+ assert input_ids.shape[0] == 1, f"Batch size mismatch: {len(images)} vs {input_ids.shape[0]}"
1076
+ image_features = [
1077
+ self.model.compute_image_features(
1078
+ self.model.vision_tower.preprocess_images([images])
1079
+ )
1080
+ ]
1081
+ else:
1082
+ raise ValueError(f"Unsupported images format: {type(images)}. Expected list of PIL images, a single PIL image or a Tensor of pre-processed images")
1083
+
1084
+ # ─────────────────────────── image_features: (B x N x D) ───────────────────────────
1085
+ if isinstance(image_features, list):
1086
+ assert input_ids.shape[0] == len(image_features), f"Incorrectly formatted image_features: list length should match batch size"
1087
+ assert isinstance(image_features[0], torch.Tensor), f"Incorrectly formatted image_features: list items should be tensors"
1088
+ elif isinstance(image_features, torch.Tensor):
1089
+ assert input_ids.shape[0] == image_features.shape[0], f"Incorrectly formatted image_features: tensor should match batch size"
1090
+
1091
+
1092
+ # ───────────────────────────── pad handling prelims ──────────────────────────────
1093
+ if attention_mask is None:
1094
+ attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
1095
+ else:
1096
+ attention_mask = attention_mask.bool()
1097
+ if position_ids is None:
1098
+ position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
1099
+
1100
+ input_ids_nopad = [ids[mask] for ids, mask in zip(input_ids, attention_mask)]
1101
+ embeds_list, labels_list = self.get_multimodal_input_embeddings(
1102
+ input_ids_nopad,
1103
+ image_features,
1104
+ return_labels=True
1105
+ )
1106
+
1107
+ # ───────────────────── truncate then pad back to rectangle ──────────────────────
1108
+ new_input_embeds = torch.nn.utils.rnn.pad_sequence(
1109
+ embeds_list,
1110
+ batch_first=True,
1111
+ padding_value=0.0
1112
+ ).to(dtype=self.dtype)
1113
+
1114
+ new_labels = torch.nn.utils.rnn.pad_sequence(
1115
+ labels_list,
1116
+ batch_first=True,
1117
+ padding_value=IGNORE_INDEX
1118
+ ).long()
1119
+
1120
+ if self.config.tokenizer_model_max_length is not None:
1121
+ new_input_embeds = new_input_embeds[:, :self.config.tokenizer_model_max_length]
1122
+ new_labels = new_labels[:, :self.config.tokenizer_model_max_length]
1123
+
1124
+
1125
+
1126
+
1127
+ # ────────────────────────────── attention mask and position ids ────────────────
1128
+
1129
+ attention_mask = (
1130
+ torch.arange(new_input_embeds.size(1), device=input_ids.device)
1131
+ .unsqueeze(0)
1132
+ < torch.tensor([e.size(0) for e in embeds_list],
1133
+ device=input_ids.device).unsqueeze(1)
1134
+ )
1135
+
1136
+ raw_pos = attention_mask.cumsum(dim=1) - 1
1137
+ position_ids = raw_pos.masked_fill(~attention_mask, 0).long()
1138
+
1139
+ if not self.training:
1140
+ new_labels = None
1141
+
1142
+ return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels
1143
+
1144
+
1145
+
1146
+ # ------------------------------------------------------------------
1147
+ def forward(
1148
+ self,
1149
+ input_ids: torch.LongTensor = None,
1150
+ attention_mask: Optional[torch.Tensor] = None,
1151
+ position_ids: Optional[torch.LongTensor] = None,
1152
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
1153
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1154
+ labels: Optional[torch.LongTensor] = None,
1155
+ use_cache: Optional[bool] = None,
1156
+ output_attentions: Optional[bool] = None,
1157
+ output_hidden_states: Optional[bool] = None,
1158
+ return_dict: Optional[bool] = None,
1159
+ cache_position: Optional[torch.LongTensor] = None,
1160
+ logits_to_keep: Union[int, torch.Tensor] = 0,
1161
+ images: Optional[PIL.Image.Image] = None,
1162
+ **kwargs: Unpack[KwargsForCausalLM],
1163
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1164
+
1165
+ is_multi_modal = images is not None and not (
1166
+ (
1167
+ isinstance(images, list) and (len(images) == 0 or all(i == [] for i in images))
1168
+ )
1169
+ )
1170
+
1171
+
1172
+ if inputs_embeds is None and is_multi_modal:
1173
+ (
1174
+ input_ids,
1175
+ position_ids,
1176
+ attention_mask,
1177
+ past_key_values,
1178
+ inputs_embeds,
1179
+ labels
1180
+ ) = self.prepare_inputs_for_multimodal(
1181
+ input_ids=input_ids,
1182
+ images=images,
1183
+ position_ids=position_ids,
1184
+ attention_mask=attention_mask,
1185
+ past_key_values=past_key_values,
1186
+ labels=labels,
1187
+ )
1188
+
1189
+ if cache_position is not None and inputs_embeds is not None and cache_position.shape[0] != inputs_embeds.shape[1]:
1190
+ cache_position = torch.arange(inputs_embeds.shape[1], device=self.device)
1191
+
1192
+
1193
+ return Phi3ForCausalLM.forward(
1194
+ self,
1195
+ input_ids=input_ids,
1196
+ attention_mask=attention_mask,
1197
+ position_ids=position_ids,
1198
+ past_key_values=past_key_values,
1199
+ inputs_embeds=inputs_embeds,
1200
+ labels=labels,
1201
+ use_cache=use_cache,
1202
+ output_attentions=output_attentions,
1203
+ output_hidden_states=output_hidden_states,
1204
+ return_dict=return_dict,
1205
+ cache_position=cache_position,
1206
+ logits_to_keep=logits_to_keep,
1207
+ **kwargs
1208
+ )
1209
+
1210
+ def print_device_configuration(self):
1211
+ print("*************Device Configuration*********")
1212
+ if len(self.get_llm_parameters()) > 0:
1213
+ llm_device = set({str(p.device) for p in self.get_llm_parameters()})
1214
+ llm_dtype = set({p.dtype for p in self.get_llm_parameters()})
1215
+ print(f"LLM Parameters:\t\t\tdevice: {llm_device}\tdtype: {llm_dtype}\tfrozen: {self.is_llm_frozen()}")
1216
+ else:
1217
+ print("LLM parameters have not been initialized")
1218
+
1219
+ if self.get_model().vision_tower is not None:
1220
+ vt_device = set({str(p.device) for p in self.get_model().vision_tower.parameters()})
1221
+ vt_dtype = set({p.dtype for p in self.get_model().vision_tower.parameters()})
1222
+ print(f"Vision Tower Parameters:\tdevice: {vt_device}\tdtype: {vt_dtype}\tfrozen: {self.is_vision_tower_frozen()}")
1223
+ else:
1224
+ print("Vision tower parameters have not been initialized")
1225
+
1226
+ if self.get_model().mm_projector is not None:
1227
+ mm_device = set({str(p.device) for p in self.get_model().mm_projector.parameters()})
1228
+ mm_dtype = set({p.dtype for p in self.get_model().mm_projector.parameters()})
1229
+ print(f"MM Projector Parameters:\tdevice: {mm_device}\tdtype: {mm_dtype}\tfrozen: {self.is_vision_adapter_frozen()}")
1230
+ else:
1231
+ print("MM Projector parameters have not been initialized")
1232
+ print("******************************************")
1233
+
1234
+
1235
+
1236
+ def build_tokenizer(base_model_id: str) -> Tuple[AutoTokenizer, dict]:
1237
+ tok = AutoTokenizer.from_pretrained(base_model_id, padding_side="right")
1238
+ specials = {t: tok.convert_tokens_to_ids(t) for t in [IMAGE_TOKEN, IMG_START_TOKEN, IMG_END_TOKEN] if t in tok.vocab}
1239
+ if len(specials) < 3:
1240
+ n = tok.add_tokens([IMAGE_TOKEN, IMG_START_TOKEN, IMG_END_TOKEN], special_tokens=True)
1241
+ tok.pad_token = tok.eos_token
1242
+ specials = {
1243
+ "image": tok.convert_tokens_to_ids(IMAGE_TOKEN),
1244
+ "start": tok.convert_tokens_to_ids(IMG_START_TOKEN),
1245
+ "end": tok.convert_tokens_to_ids(IMG_END_TOKEN),
1246
+ }
1247
+ return tok, specials
1248
+
modeling_phi3.py ADDED
@@ -0,0 +1,1181 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """PyTorch Phi-3 model."""
17
+
18
+ from typing import Callable, List, Optional, Tuple, Union
19
+
20
+ import torch
21
+ from torch import nn
22
+
23
+ from transformers.activations import ACT2FN
24
+ from transformers.cache_utils import Cache, DynamicCache, SlidingWindowCache, StaticCache
25
+ from transformers.generation import GenerationMixin
26
+ from transformers.modeling_attn_mask_utils import AttentionMaskConverter
27
+ from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
28
+ from transformers.modeling_outputs import (
29
+ BaseModelOutputWithPast,
30
+ CausalLMOutputWithPast,
31
+ SequenceClassifierOutputWithPast,
32
+ TokenClassifierOutput,
33
+ )
34
+ from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
35
+ from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
36
+ from transformers.processing_utils import Unpack
37
+ from transformers.utils import (
38
+ LossKwargs,
39
+ add_code_sample_docstrings,
40
+ add_start_docstrings,
41
+ add_start_docstrings_to_model_forward,
42
+ logging,
43
+ replace_return_docstrings,
44
+ )
45
+ from transformers.utils.deprecation import deprecate_kwarg
46
+ from .configuration_phi3 import Phi3Config
47
+
48
+
49
+ logger = logging.get_logger(__name__)
50
+
51
+ _CHECKPOINT_FOR_DOC = "microsoft/Phi-3-mini-4k-instruct"
52
+ _CONFIG_FOR_DOC = "Phi3Config"
53
+
54
+
55
+ class Phi3MLP(nn.Module):
56
+ def __init__(self, config):
57
+ super().__init__()
58
+
59
+ self.config = config
60
+ self.gate_up_proj = nn.Linear(config.hidden_size, 2 * config.intermediate_size, bias=False)
61
+ self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
62
+ self.activation_fn = ACT2FN[config.hidden_act]
63
+
64
+ def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
65
+ up_states = self.gate_up_proj(hidden_states)
66
+
67
+ gate, up_states = up_states.chunk(2, dim=-1)
68
+ up_states = up_states * self.activation_fn(gate)
69
+
70
+ return self.down_proj(up_states)
71
+
72
+
73
+ def rotate_half(x):
74
+ """Rotates half the hidden dims of the input."""
75
+ x1 = x[..., : x.shape[-1] // 2]
76
+ x2 = x[..., x.shape[-1] // 2 :]
77
+ return torch.cat((-x2, x1), dim=-1)
78
+
79
+
80
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
81
+ """
82
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
83
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
84
+ """
85
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
86
+ if n_rep == 1:
87
+ return hidden_states
88
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
89
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
90
+
91
+
92
+ def eager_attention_forward(
93
+ module: nn.Module,
94
+ query: torch.Tensor,
95
+ key: torch.Tensor,
96
+ value: torch.Tensor,
97
+ attention_mask: Optional[torch.Tensor],
98
+ scaling: float,
99
+ dropout: float = 0.0,
100
+ **kwargs,
101
+ ):
102
+ key_states = repeat_kv(key, module.num_key_value_groups)
103
+ value_states = repeat_kv(value, module.num_key_value_groups)
104
+
105
+ attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
106
+ if attention_mask is not None:
107
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
108
+ attn_weights = attn_weights + causal_mask
109
+
110
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
111
+ attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
112
+ attn_output = torch.matmul(attn_weights, value_states)
113
+ attn_output = attn_output.transpose(1, 2).contiguous()
114
+
115
+ return attn_output, attn_weights
116
+
117
+
118
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
119
+ """Applies Rotary Position Embedding to the query and key tensors.
120
+
121
+ Args:
122
+ q (`torch.Tensor`): The query tensor.
123
+ k (`torch.Tensor`): The key tensor.
124
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
125
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
126
+ position_ids (`torch.Tensor`, *optional*):
127
+ Deprecated and unused.
128
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
129
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
130
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
131
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
132
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
133
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
134
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
135
+ Returns:
136
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
137
+ """
138
+ cos = cos.unsqueeze(unsqueeze_dim)
139
+ sin = sin.unsqueeze(unsqueeze_dim)
140
+
141
+ rotary_dim = cos.shape[-1]
142
+ q_rot, q_pass = q[..., :rotary_dim], q[..., rotary_dim:]
143
+ k_rot, k_pass = k[..., :rotary_dim], k[..., rotary_dim:]
144
+
145
+ q_embed = torch.cat([(q_rot * cos) + (rotate_half(q_rot) * sin), q_pass], dim=-1)
146
+ k_embed = torch.cat([(k_rot * cos) + (rotate_half(k_rot) * sin), k_pass], dim=-1)
147
+ return q_embed, k_embed
148
+
149
+
150
+ class Phi3Attention(nn.Module):
151
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
152
+
153
+ def __init__(self, config: Phi3Config, layer_idx: Optional[int] = None):
154
+ super().__init__()
155
+ self.config = config
156
+ self.layer_idx = layer_idx
157
+ self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
158
+ self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
159
+ self.num_key_value_heads = config.num_key_value_heads
160
+ self.scaling = self.head_dim**-0.5
161
+ self.attention_dropout = config.attention_dropout
162
+ self.is_causal = True
163
+
164
+ op_size = config.num_attention_heads * self.head_dim + 2 * (config.num_key_value_heads * self.head_dim)
165
+ self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False)
166
+ self.qkv_proj = nn.Linear(config.hidden_size, op_size, bias=False)
167
+
168
+ def forward(
169
+ self,
170
+ hidden_states: torch.Tensor,
171
+ position_embeddings: Tuple[torch.Tensor, torch.Tensor],
172
+ attention_mask: Optional[torch.Tensor],
173
+ past_key_value: Optional[Cache] = None,
174
+ cache_position: Optional[torch.LongTensor] = None,
175
+ **kwargs: Unpack[FlashAttentionKwargs],
176
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
177
+ input_shape = hidden_states.shape[:-1]
178
+ hidden_shape = (*input_shape, -1, self.head_dim)
179
+
180
+ qkv = self.qkv_proj(hidden_states)
181
+ query_pos = self.config.num_attention_heads * self.head_dim
182
+ query_states = qkv[..., :query_pos]
183
+ key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
184
+ value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
185
+
186
+ query_states = query_states.view(hidden_shape).transpose(1, 2)
187
+ key_states = key_states.view(hidden_shape).transpose(1, 2)
188
+ value_states = value_states.view(hidden_shape).transpose(1, 2)
189
+
190
+ cos, sin = position_embeddings
191
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
192
+
193
+ if past_key_value is not None:
194
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
195
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
196
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
197
+
198
+ attention_interface: Callable = eager_attention_forward
199
+ if self.config._attn_implementation != "eager":
200
+ if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
201
+ logger.warning_once(
202
+ "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
203
+ 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
204
+ )
205
+ else:
206
+ attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
207
+
208
+ attn_output, attn_weights = attention_interface(
209
+ self,
210
+ query_states,
211
+ key_states,
212
+ value_states,
213
+ attention_mask,
214
+ dropout=0.0 if not self.training else self.attention_dropout,
215
+ scaling=self.scaling,
216
+ sliding_window=getattr(self.config, "sliding_window", None),
217
+ **kwargs,
218
+ )
219
+
220
+ attn_output = attn_output.reshape(*input_shape, -1).contiguous()
221
+ attn_output = self.o_proj(attn_output)
222
+ return attn_output, attn_weights
223
+
224
+
225
+ class Phi3RMSNorm(nn.Module):
226
+ def __init__(self, hidden_size, eps=1e-6):
227
+ """
228
+ Phi3RMSNorm is equivalent to T5LayerNorm
229
+ """
230
+ super().__init__()
231
+ self.weight = nn.Parameter(torch.ones(hidden_size))
232
+ self.variance_epsilon = eps
233
+
234
+ def forward(self, hidden_states):
235
+ input_dtype = hidden_states.dtype
236
+ hidden_states = hidden_states.to(torch.float32)
237
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
238
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
239
+ return self.weight * hidden_states.to(input_dtype)
240
+
241
+ def extra_repr(self):
242
+ return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
243
+
244
+
245
+ class Phi3DecoderLayer(nn.Module):
246
+ def __init__(self, config: Phi3Config, layer_idx: int):
247
+ super().__init__()
248
+ self.hidden_size = config.hidden_size
249
+ self.self_attn = Phi3Attention(config=config, layer_idx=layer_idx)
250
+ self.mlp = Phi3MLP(config)
251
+ self.input_layernorm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
252
+ self.post_attention_layernorm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
253
+ self.config = config
254
+ self.resid_attn_dropout = nn.Dropout(config.resid_pdrop)
255
+ self.resid_mlp_dropout = nn.Dropout(config.resid_pdrop)
256
+
257
+ def forward(
258
+ self,
259
+ hidden_states: torch.Tensor,
260
+ attention_mask: Optional[torch.Tensor] = None,
261
+ position_ids: Optional[torch.LongTensor] = None,
262
+ past_key_value: Optional[Cache] = None,
263
+ output_attentions: Optional[bool] = False,
264
+ use_cache: Optional[bool] = False,
265
+ cache_position: Optional[torch.LongTensor] = None,
266
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
267
+ **kwargs: Unpack[FlashAttentionKwargs],
268
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
269
+ """
270
+ Args:
271
+ hidden_states (`torch.FloatTensor`):
272
+ input to the layer of shape `(batch, seq_len, embed_dim)`
273
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
274
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
275
+ position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
276
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
277
+ `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
278
+ past_key_value (`Cache`, *optional*): cached past key and value projection states
279
+ output_attentions (`bool`, *optional*):
280
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
281
+ returned tensors for more detail.
282
+ use_cache (`bool`, *optional*):
283
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
284
+ (see `past_key_values`).
285
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
286
+ Indices depicting the position of the input sequence tokens in the sequence
287
+ kwargs (`dict`, *optional*):
288
+ Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
289
+ into the model
290
+ """
291
+ residual = hidden_states
292
+
293
+ hidden_states = self.input_layernorm(hidden_states)
294
+
295
+ # Self Attention
296
+ hidden_states, self_attn_weights = self.self_attn(
297
+ hidden_states=hidden_states,
298
+ attention_mask=attention_mask,
299
+ position_ids=position_ids,
300
+ past_key_value=past_key_value,
301
+ output_attentions=output_attentions,
302
+ use_cache=use_cache,
303
+ cache_position=cache_position,
304
+ position_embeddings=position_embeddings,
305
+ **kwargs,
306
+ )
307
+ hidden_states = residual + self.resid_attn_dropout(hidden_states) # main diff with Llama
308
+
309
+ residual = hidden_states
310
+ hidden_states = self.post_attention_layernorm(hidden_states)
311
+ hidden_states = self.mlp(hidden_states)
312
+ hidden_states = residual + self.resid_mlp_dropout(hidden_states) # main diff with Llama
313
+
314
+ outputs = (hidden_states,)
315
+ if output_attentions:
316
+ outputs += (self_attn_weights,)
317
+
318
+ return outputs
319
+
320
+
321
+ class Phi3RotaryEmbedding(nn.Module):
322
+ def __init__(self, config: Phi3Config, device=None):
323
+ super().__init__()
324
+ # BC: "rope_type" was originally "type"
325
+ if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
326
+ self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
327
+ else:
328
+ self.rope_type = "default"
329
+ self.max_seq_len_cached = config.max_position_embeddings
330
+ self.original_max_seq_len = config.max_position_embeddings
331
+
332
+ self.config = config
333
+ self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
334
+
335
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
336
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
337
+ self.original_inv_freq = self.inv_freq
338
+
339
+ def _dynamic_frequency_update(self, position_ids, device):
340
+ """
341
+ dynamic RoPE layers should recompute `inv_freq` in the following situations:
342
+ 1 - growing beyond the cached sequence length (allow scaling)
343
+ 2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
344
+ """
345
+ seq_len = torch.max(position_ids) + 1
346
+ if seq_len > self.max_seq_len_cached: # growth
347
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len)
348
+ self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
349
+ self.max_seq_len_cached = seq_len
350
+
351
+ if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
352
+ # This .to() is needed if the model has been moved to a device after being initialized (because
353
+ # the buffer is automatically moved, but not the original copy)
354
+ self.original_inv_freq = self.original_inv_freq.to(device)
355
+ self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
356
+ self.max_seq_len_cached = self.original_max_seq_len
357
+
358
+ @torch.no_grad()
359
+ def forward(self, x, position_ids):
360
+ if "dynamic" in self.rope_type:
361
+ self._dynamic_frequency_update(position_ids, device=x.device)
362
+ elif self.rope_type == "longrope":
363
+ self._longrope_frequency_update(position_ids, device=x.device)
364
+
365
+ # Core RoPE block
366
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
367
+ position_ids_expanded = position_ids[:, None, :].float()
368
+ # Force float32 (see https://github.com/huggingface/transformers/pull/29285)
369
+ device_type = x.device.type
370
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
371
+ with torch.autocast(device_type=device_type, enabled=False):
372
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
373
+ emb = torch.cat((freqs, freqs), dim=-1)
374
+ cos = emb.cos()
375
+ sin = emb.sin()
376
+
377
+ # Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
378
+ cos = cos * self.attention_scaling
379
+ sin = sin * self.attention_scaling
380
+
381
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
382
+
383
+ def _longrope_frequency_update(self, position_ids, device):
384
+ """Longrope uses long factor if sequence is larger than original pretraining length, short otherwise."""
385
+ seq_len = torch.max(position_ids) + 1
386
+ if hasattr(self.config, "original_max_position_embeddings"):
387
+ original_max_position_embeddings = self.config.original_max_position_embeddings
388
+ else:
389
+ original_max_position_embeddings = self.config.max_position_embeddings
390
+ if seq_len > original_max_position_embeddings:
391
+ if not hasattr(self, "long_inv_freq"):
392
+ self.long_inv_freq, _ = self.rope_init_fn(
393
+ self.config, device, seq_len=original_max_position_embeddings + 1
394
+ )
395
+ self.register_buffer("inv_freq", self.long_inv_freq, persistent=False)
396
+ else:
397
+ # This .to() is needed if the model has been moved to a device after being initialized (because
398
+ # the buffer is automatically moved, but not the original copy)
399
+ self.original_inv_freq = self.original_inv_freq.to(device)
400
+ self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
401
+
402
+
403
+ PHI3_START_DOCSTRING = r"""
404
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
405
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
406
+ etc.)
407
+
408
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
409
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
410
+ and behavior.
411
+
412
+ Parameters:
413
+ config ([`Phi3Config`]):
414
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
415
+ load the weights associated with the model, only the configuration. Check out the
416
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
417
+ """
418
+
419
+
420
+ @add_start_docstrings(
421
+ "The bare Phi3 Model outputting raw hidden-states without any specific head on top.",
422
+ PHI3_START_DOCSTRING,
423
+ )
424
+ class Phi3PreTrainedModel(PreTrainedModel):
425
+ config_class = Phi3Config
426
+ base_model_prefix = "model"
427
+ supports_gradient_checkpointing = True
428
+ _no_split_modules = ["Phi3DecoderLayer"]
429
+ _skip_keys_device_placement = ["past_key_values"]
430
+ _supports_flash_attn_2 = True
431
+ _supports_sdpa = True
432
+ _supports_flex_attn = True
433
+ _supports_cache_class = True
434
+ _supports_quantized_cache = True
435
+ _supports_static_cache = True
436
+ _supports_attention_backend = True
437
+ _version = "0.0.5"
438
+
439
+ def _init_weights(self, module):
440
+ std = self.config.initializer_range
441
+ if isinstance(module, nn.Linear):
442
+ module.weight.data.normal_(mean=0.0, std=std)
443
+ if module.bias is not None:
444
+ module.bias.data.zero_()
445
+ elif isinstance(module, nn.Embedding):
446
+ module.weight.data.normal_(mean=0.0, std=std)
447
+ if module.padding_idx is not None:
448
+ module.weight.data[module.padding_idx].zero_()
449
+
450
+
451
+ PHI3_INPUTS_DOCSTRING = r"""
452
+ Args:
453
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
454
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
455
+ it.
456
+
457
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
458
+ [`PreTrainedTokenizer.__call__`] for details.
459
+
460
+ [What are input IDs?](../glossary#input-ids)
461
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
462
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
463
+
464
+ - 1 for tokens that are **not masked**,
465
+ - 0 for tokens that are **masked**.
466
+
467
+ [What are attention masks?](../glossary#attention-mask)
468
+
469
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
470
+ [`PreTrainedTokenizer.__call__`] for details.
471
+
472
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
473
+ `past_key_values`).
474
+
475
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
476
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
477
+ information on the default strategy.
478
+
479
+ - 1 indicates the head is **not masked**,
480
+ - 0 indicates the head is **masked**.
481
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
482
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
483
+ config.n_positions - 1]`.
484
+
485
+ [What are position IDs?](../glossary#position-ids)
486
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
487
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
488
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
489
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
490
+
491
+ Two formats are allowed:
492
+ - a [`~cache_utils.Cache`] instance, see our
493
+ [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
494
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
495
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
496
+ cache format.
497
+
498
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
499
+ legacy cache format will be returned.
500
+
501
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
502
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
503
+ of shape `(batch_size, sequence_length)`.
504
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
505
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
506
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
507
+ model's internal embedding lookup matrix.
508
+ use_cache (`bool`, *optional*):
509
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
510
+ `past_key_values`).
511
+ output_attentions (`bool`, *optional*):
512
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
513
+ tensors for more detail.
514
+ output_hidden_states (`bool`, *optional*):
515
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
516
+ more detail.
517
+ return_dict (`bool`, *optional*):
518
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
519
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
520
+ Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
521
+ this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
522
+ the complete sequence length.
523
+ """
524
+
525
+
526
+ @add_start_docstrings(
527
+ "The bare Phi3 Model outputting raw hidden-states without any specific head on top.",
528
+ PHI3_START_DOCSTRING,
529
+ )
530
+ class Phi3Model(Phi3PreTrainedModel):
531
+ """
532
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Phi3DecoderLayer`]
533
+
534
+ Args:
535
+ config: Phi3Config
536
+ """
537
+
538
+ def __init__(self, config: Phi3Config):
539
+ super().__init__(config)
540
+ self.padding_idx = config.pad_token_id
541
+ self.vocab_size = config.vocab_size
542
+
543
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
544
+ self.layers = nn.ModuleList(
545
+ [Phi3DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
546
+ )
547
+ self.norm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
548
+ self.rotary_emb = Phi3RotaryEmbedding(config=config)
549
+ self.gradient_checkpointing = False
550
+
551
+ # Initialize weights and apply final processing
552
+ self.post_init()
553
+
554
+ def get_input_embeddings(self):
555
+ return self.embed_tokens
556
+
557
+ def set_input_embeddings(self, value):
558
+ self.embed_tokens = value
559
+
560
+ @add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
561
+ def forward(
562
+ self,
563
+ input_ids: torch.LongTensor = None,
564
+ attention_mask: Optional[torch.Tensor] = None,
565
+ position_ids: Optional[torch.LongTensor] = None,
566
+ past_key_values: Optional[Cache] = None,
567
+ inputs_embeds: Optional[torch.FloatTensor] = None,
568
+ use_cache: Optional[bool] = None,
569
+ output_attentions: Optional[bool] = None,
570
+ output_hidden_states: Optional[bool] = None,
571
+ return_dict: Optional[bool] = None,
572
+ cache_position: Optional[torch.LongTensor] = None,
573
+ **flash_attn_kwargs: Unpack[FlashAttentionKwargs],
574
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
575
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
576
+ output_hidden_states = (
577
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
578
+ )
579
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
580
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
581
+
582
+ if (input_ids is None) ^ (inputs_embeds is not None):
583
+ raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
584
+
585
+ if self.gradient_checkpointing and self.training and use_cache:
586
+ logger.warning_once(
587
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
588
+ )
589
+ use_cache = False
590
+
591
+ if inputs_embeds is None:
592
+ inputs_embeds = self.embed_tokens(input_ids)
593
+
594
+ if use_cache and past_key_values is None:
595
+ past_key_values = DynamicCache()
596
+
597
+ if cache_position is None:
598
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
599
+ cache_position = torch.arange(
600
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
601
+ )
602
+
603
+ if position_ids is None:
604
+ position_ids = cache_position.unsqueeze(0)
605
+
606
+ causal_mask = self._update_causal_mask(
607
+ attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
608
+ )
609
+
610
+ hidden_states = inputs_embeds
611
+
612
+ # create position embeddings to be shared across the decoder layers
613
+ position_embeddings = self.rotary_emb(hidden_states, position_ids)
614
+
615
+ # decoder layers
616
+ all_hidden_states = () if output_hidden_states else None
617
+ all_self_attns = () if output_attentions else None
618
+
619
+ for decoder_layer in self.layers[: self.config.num_hidden_layers]:
620
+ if output_hidden_states:
621
+ all_hidden_states += (hidden_states,)
622
+
623
+ if self.gradient_checkpointing and self.training:
624
+ layer_outputs = self._gradient_checkpointing_func(
625
+ decoder_layer.__call__,
626
+ hidden_states,
627
+ causal_mask,
628
+ position_ids,
629
+ past_key_values,
630
+ output_attentions,
631
+ use_cache,
632
+ cache_position,
633
+ position_embeddings,
634
+ )
635
+ else:
636
+ layer_outputs = decoder_layer(
637
+ hidden_states,
638
+ attention_mask=causal_mask,
639
+ position_ids=position_ids,
640
+ past_key_value=past_key_values,
641
+ output_attentions=output_attentions,
642
+ use_cache=use_cache,
643
+ cache_position=cache_position,
644
+ position_embeddings=position_embeddings,
645
+ **flash_attn_kwargs,
646
+ )
647
+
648
+ hidden_states = layer_outputs[0]
649
+
650
+ if output_attentions:
651
+ all_self_attns += (layer_outputs[1],)
652
+
653
+ hidden_states = self.norm(hidden_states)
654
+
655
+ # add hidden states from the last decoder layer
656
+ if output_hidden_states:
657
+ all_hidden_states += (hidden_states,)
658
+
659
+ output = BaseModelOutputWithPast(
660
+ last_hidden_state=hidden_states,
661
+ past_key_values=past_key_values if use_cache else None,
662
+ hidden_states=all_hidden_states,
663
+ attentions=all_self_attns,
664
+ )
665
+ return output if return_dict else output.to_tuple()
666
+
667
+ def _update_causal_mask(
668
+ self,
669
+ attention_mask: torch.Tensor,
670
+ input_tensor: torch.Tensor,
671
+ cache_position: torch.Tensor,
672
+ past_key_values: Cache,
673
+ output_attentions: bool,
674
+ ):
675
+ if self.config._attn_implementation == "flash_attention_2":
676
+ if attention_mask is not None and past_key_values is not None:
677
+ is_padding_right = attention_mask[:, -1].sum().item() != input_tensor.size()[0]
678
+ if is_padding_right:
679
+ raise ValueError(
680
+ "You are attempting to perform batched generation with padding_side='right'"
681
+ " this may lead to unexpected behaviour for Flash Attention version of Phi3. Make sure to "
682
+ " call `tokenizer.padding_side = 'left'` before tokenizing the input. "
683
+ )
684
+ if attention_mask is not None and 0.0 in attention_mask:
685
+ return attention_mask
686
+ return None
687
+
688
+ # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
689
+ # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
690
+ # to infer the attention mask.
691
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
692
+ using_static_cache = isinstance(past_key_values, StaticCache)
693
+ using_sliding_window_cache = isinstance(past_key_values, SlidingWindowCache)
694
+
695
+ # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
696
+ if (
697
+ self.config._attn_implementation == "sdpa"
698
+ and not (using_static_cache or using_sliding_window_cache)
699
+ and not output_attentions
700
+ ):
701
+ if AttentionMaskConverter._ignore_causal_mask_sdpa(
702
+ attention_mask,
703
+ inputs_embeds=input_tensor,
704
+ past_key_values_length=past_seen_tokens,
705
+ sliding_window=self.config.sliding_window,
706
+ is_training=self.training,
707
+ ):
708
+ return None
709
+
710
+ dtype, device = input_tensor.dtype, input_tensor.device
711
+ min_dtype = torch.finfo(dtype).min
712
+ sequence_length = input_tensor.shape[1]
713
+ # SlidingWindowCache or StaticCache
714
+ if using_sliding_window_cache or using_static_cache:
715
+ target_length = past_key_values.get_max_cache_shape()
716
+ # DynamicCache or no cache
717
+ else:
718
+ target_length = (
719
+ attention_mask.shape[-1]
720
+ if isinstance(attention_mask, torch.Tensor)
721
+ else past_seen_tokens + sequence_length + 1
722
+ )
723
+
724
+ # In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
725
+ causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
726
+ attention_mask,
727
+ sequence_length=sequence_length,
728
+ target_length=target_length,
729
+ dtype=dtype,
730
+ device=device,
731
+ cache_position=cache_position,
732
+ batch_size=input_tensor.shape[0],
733
+ config=self.config,
734
+ past_key_values=past_key_values,
735
+ )
736
+
737
+ if (
738
+ self.config._attn_implementation == "sdpa"
739
+ and attention_mask is not None
740
+ and attention_mask.device.type in ["cuda", "xpu"]
741
+ and not output_attentions
742
+ ):
743
+ # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
744
+ # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
745
+ # Details: https://github.com/pytorch/pytorch/issues/110213
746
+ causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
747
+
748
+ return causal_mask
749
+
750
+ @staticmethod
751
+ def _prepare_4d_causal_attention_mask_with_cache_position(
752
+ attention_mask: torch.Tensor,
753
+ sequence_length: int,
754
+ target_length: int,
755
+ dtype: torch.dtype,
756
+ device: torch.device,
757
+ cache_position: torch.Tensor,
758
+ batch_size: int,
759
+ config: Phi3Config,
760
+ past_key_values: Cache,
761
+ ):
762
+ """
763
+ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
764
+ `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
765
+
766
+ Args:
767
+ attention_mask (`torch.Tensor`):
768
+ A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
769
+ sequence_length (`int`):
770
+ The sequence length being processed.
771
+ target_length (`int`):
772
+ The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
773
+ dtype (`torch.dtype`):
774
+ The dtype to use for the 4D attention mask.
775
+ device (`torch.device`):
776
+ The device to plcae the 4D attention mask on.
777
+ cache_position (`torch.Tensor`):
778
+ Indices depicting the position of the input sequence tokens in the sequence.
779
+ batch_size (`torch.Tensor`):
780
+ Batch size.
781
+ config (`Phi3Config`):
782
+ The model's configuration class
783
+ past_key_values (`Cache`):
784
+ The cache class that is being used currently to generate
785
+ """
786
+ if attention_mask is not None and attention_mask.dim() == 4:
787
+ # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
788
+ causal_mask = attention_mask
789
+ else:
790
+ min_dtype = torch.finfo(dtype).min
791
+ causal_mask = torch.full(
792
+ (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
793
+ )
794
+ diagonal_attend_mask = torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
795
+ if config.sliding_window is not None:
796
+ # if we have sliding window, we should not attend to tokens beyond sliding window length, so we mask them out also
797
+ # the check is needed to verify is current checkpoint was trained with sliding window or not
798
+ if not isinstance(past_key_values, SlidingWindowCache) or sequence_length > target_length:
799
+ sliding_attend_mask = torch.arange(target_length, device=device) <= (
800
+ cache_position.reshape(-1, 1) - config.sliding_window
801
+ )
802
+ diagonal_attend_mask.bitwise_or_(sliding_attend_mask)
803
+
804
+ causal_mask *= diagonal_attend_mask
805
+ causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
806
+ if attention_mask is not None:
807
+ causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
808
+ if attention_mask.shape[-1] > target_length:
809
+ attention_mask = attention_mask[:, :target_length]
810
+ mask_length = attention_mask.shape[-1]
811
+ padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
812
+ causal_mask.device
813
+ )
814
+ padding_mask = padding_mask == 0
815
+ causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
816
+ padding_mask, min_dtype
817
+ )
818
+ return causal_mask
819
+
820
+
821
+ class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
822
+
823
+
824
+ class Phi3ForCausalLM(Phi3PreTrainedModel, GenerationMixin):
825
+ _tied_weights_keys = ["lm_head.weight"]
826
+ _tp_plan = {"lm_head": "colwise_rep"}
827
+ _pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
828
+
829
+ def __init__(self, config):
830
+ super().__init__(config)
831
+ # self.model = Phi3Model(config)
832
+ # self.vocab_size = config.vocab_size
833
+ # self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
834
+
835
+ # # Initialize weights and apply final processing
836
+ # self.post_init()
837
+
838
+ def get_input_embeddings(self):
839
+ return self.model.embed_tokens
840
+
841
+ def set_input_embeddings(self, value):
842
+ self.model.embed_tokens = value
843
+
844
+ def get_output_embeddings(self):
845
+ return self.lm_head
846
+
847
+ def set_output_embeddings(self, new_embeddings):
848
+ self.lm_head = new_embeddings
849
+
850
+ def set_decoder(self, decoder):
851
+ self.model = decoder
852
+
853
+ def get_decoder(self):
854
+ return self.model
855
+
856
+ @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
857
+ @add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
858
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
859
+ def forward(
860
+ self,
861
+ input_ids: torch.LongTensor = None,
862
+ attention_mask: Optional[torch.Tensor] = None,
863
+ position_ids: Optional[torch.LongTensor] = None,
864
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
865
+ inputs_embeds: Optional[torch.FloatTensor] = None,
866
+ labels: Optional[torch.LongTensor] = None,
867
+ use_cache: Optional[bool] = None,
868
+ output_attentions: Optional[bool] = None,
869
+ output_hidden_states: Optional[bool] = None,
870
+ return_dict: Optional[bool] = None,
871
+ cache_position: Optional[torch.LongTensor] = None,
872
+ logits_to_keep: Union[int, torch.Tensor] = 0,
873
+ **kwargs: Unpack[KwargsForCausalLM],
874
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
875
+ r"""
876
+ Args:
877
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
878
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
879
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
880
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
881
+
882
+ logits_to_keep (`int` or `torch.Tensor`, *optional*):
883
+ If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
884
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
885
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
886
+ If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
887
+ This is useful when using packed tensor format (single dimension for batch and sequence length).
888
+
889
+ Returns:
890
+
891
+ Example:
892
+
893
+ ```python
894
+ >>> from transformers import AutoTokenizer, Phi3ForCausalLM
895
+
896
+ >>> model = Phi3ForCausalLM.from_pretrained("meta-phi3/Phi3-2-7b-hf")
897
+ >>> tokenizer = AutoTokenizer.from_pretrained("meta-phi3/Phi3-2-7b-hf")
898
+
899
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
900
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
901
+
902
+ >>> # Generate
903
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
904
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
905
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
906
+ ```"""
907
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
908
+ output_hidden_states = (
909
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
910
+ )
911
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
912
+
913
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
914
+ outputs = self.model(
915
+ input_ids=input_ids,
916
+ attention_mask=attention_mask,
917
+ position_ids=position_ids,
918
+ past_key_values=past_key_values,
919
+ inputs_embeds=inputs_embeds,
920
+ use_cache=use_cache,
921
+ output_attentions=output_attentions,
922
+ output_hidden_states=output_hidden_states,
923
+ return_dict=return_dict,
924
+ cache_position=cache_position,
925
+ **kwargs,
926
+ )
927
+
928
+ hidden_states = outputs[0]
929
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
930
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
931
+ logits = self.lm_head(hidden_states[:, slice_indices, :])
932
+
933
+ loss = None
934
+ if labels is not None:
935
+ loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
936
+
937
+ if not return_dict:
938
+ output = (logits,) + outputs[1:]
939
+ return (loss,) + output if loss is not None else output
940
+
941
+ return CausalLMOutputWithPast(
942
+ loss=loss,
943
+ logits=logits,
944
+ past_key_values=outputs.past_key_values,
945
+ hidden_states=outputs.hidden_states,
946
+ attentions=outputs.attentions,
947
+ )
948
+
949
+ def prepare_inputs_for_generation(
950
+ self,
951
+ input_ids,
952
+ past_key_values=None,
953
+ attention_mask=None,
954
+ inputs_embeds=None,
955
+ cache_position=None,
956
+ position_ids=None,
957
+ use_cache=True,
958
+ logits_to_keep=None,
959
+ **kwargs,
960
+ ):
961
+ # Overwritten -- this model may need to switch between short and long rope, invalidating the cache in the
962
+ # process
963
+
964
+ # When the first time input length reached long and short factor switching point, enforce re-compute cache
965
+ # It will cause downside of slower at this single token position, however, better than current failure.
966
+ if (
967
+ past_key_values
968
+ and self.config.rope_scaling
969
+ and input_ids.shape[1] >= self.config.original_max_position_embeddings + 1
970
+ ):
971
+ past_length = cache_position[0]
972
+ if past_length <= self.config.original_max_position_embeddings:
973
+ past_key_values = None
974
+
975
+ model_inputs = super().prepare_inputs_for_generation(
976
+ input_ids=input_ids,
977
+ past_key_values=past_key_values,
978
+ attention_mask=attention_mask,
979
+ inputs_embeds=inputs_embeds,
980
+ cache_position=cache_position,
981
+ position_ids=position_ids,
982
+ use_cache=use_cache,
983
+ logits_to_keep=logits_to_keep,
984
+ **kwargs,
985
+ )
986
+ return model_inputs
987
+
988
+
989
+ @add_start_docstrings(
990
+ """
991
+ The Phi3 Model transformer with a sequence classification head on top (linear layer).
992
+
993
+ [`Phi3ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
994
+ (e.g. GPT-2) do.
995
+
996
+ Since it does classification on the last token, it requires to know the position of the last token. If a
997
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
998
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
999
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1000
+ each row of the batch).
1001
+ """,
1002
+ PHI3_START_DOCSTRING,
1003
+ )
1004
+ class Phi3ForSequenceClassification(Phi3PreTrainedModel):
1005
+ def __init__(self, config):
1006
+ super().__init__(config)
1007
+ self.num_labels = config.num_labels
1008
+ self.model = Phi3Model(config)
1009
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1010
+
1011
+ # Initialize weights and apply final processing
1012
+ self.post_init()
1013
+
1014
+ def get_input_embeddings(self):
1015
+ return self.model.embed_tokens
1016
+
1017
+ def set_input_embeddings(self, value):
1018
+ self.model.embed_tokens = value
1019
+
1020
+ @add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
1021
+ def forward(
1022
+ self,
1023
+ input_ids: Optional[torch.LongTensor] = None,
1024
+ attention_mask: Optional[torch.Tensor] = None,
1025
+ position_ids: Optional[torch.LongTensor] = None,
1026
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
1027
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1028
+ labels: Optional[torch.LongTensor] = None,
1029
+ use_cache: Optional[bool] = None,
1030
+ output_attentions: Optional[bool] = None,
1031
+ output_hidden_states: Optional[bool] = None,
1032
+ return_dict: Optional[bool] = None,
1033
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1034
+ r"""
1035
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1036
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1037
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1038
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1039
+ """
1040
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1041
+
1042
+ transformer_outputs = self.model(
1043
+ input_ids,
1044
+ attention_mask=attention_mask,
1045
+ position_ids=position_ids,
1046
+ past_key_values=past_key_values,
1047
+ inputs_embeds=inputs_embeds,
1048
+ use_cache=use_cache,
1049
+ output_attentions=output_attentions,
1050
+ output_hidden_states=output_hidden_states,
1051
+ return_dict=return_dict,
1052
+ )
1053
+ hidden_states = transformer_outputs[0]
1054
+ logits = self.score(hidden_states)
1055
+
1056
+ if input_ids is not None:
1057
+ batch_size = input_ids.shape[0]
1058
+ else:
1059
+ batch_size = inputs_embeds.shape[0]
1060
+
1061
+ if self.config.pad_token_id is None and batch_size != 1:
1062
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1063
+ if self.config.pad_token_id is None:
1064
+ last_non_pad_token = -1
1065
+ elif input_ids is not None:
1066
+ # To handle both left- and right- padding, we take the rightmost token that is not equal to pad_token_id
1067
+ non_pad_mask = (input_ids != self.config.pad_token_id).to(logits.device, torch.int32)
1068
+ token_indices = torch.arange(input_ids.shape[-1], device=logits.device)
1069
+ last_non_pad_token = (token_indices * non_pad_mask).argmax(-1)
1070
+ else:
1071
+ last_non_pad_token = -1
1072
+ logger.warning_once(
1073
+ f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
1074
+ "unexpected if using padding tokens in conjunction with `inputs_embeds.`"
1075
+ )
1076
+
1077
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), last_non_pad_token]
1078
+
1079
+ loss = None
1080
+ if labels is not None:
1081
+ loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config)
1082
+
1083
+ if not return_dict:
1084
+ output = (pooled_logits,) + transformer_outputs[1:]
1085
+ return ((loss,) + output) if loss is not None else output
1086
+
1087
+ return SequenceClassifierOutputWithPast(
1088
+ loss=loss,
1089
+ logits=pooled_logits,
1090
+ past_key_values=transformer_outputs.past_key_values,
1091
+ hidden_states=transformer_outputs.hidden_states,
1092
+ attentions=transformer_outputs.attentions,
1093
+ )
1094
+
1095
+
1096
+ @add_start_docstrings(
1097
+ """
1098
+ The Phi3 Model transformer with a token classification head on top (a linear layer on top of the hidden-states
1099
+ output) e.g. for Named-Entity-Recognition (NER) tasks.
1100
+ """,
1101
+ PHI3_START_DOCSTRING,
1102
+ )
1103
+ class Phi3ForTokenClassification(Phi3PreTrainedModel):
1104
+ def __init__(self, config):
1105
+ super().__init__(config)
1106
+ self.num_labels = config.num_labels
1107
+ self.model = Phi3Model(config)
1108
+ if getattr(config, "classifier_dropout", None) is not None:
1109
+ classifier_dropout = config.classifier_dropout
1110
+ elif getattr(config, "hidden_dropout", None) is not None:
1111
+ classifier_dropout = config.hidden_dropout
1112
+ else:
1113
+ classifier_dropout = 0.1
1114
+ self.dropout = nn.Dropout(classifier_dropout)
1115
+ self.score = nn.Linear(config.hidden_size, config.num_labels)
1116
+
1117
+ # Initialize weights and apply final processing
1118
+ self.post_init()
1119
+
1120
+ def get_input_embeddings(self):
1121
+ return self.model.embed_tokens
1122
+
1123
+ def set_input_embeddings(self, value):
1124
+ self.model.embed_tokens = value
1125
+
1126
+ @add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
1127
+ @add_code_sample_docstrings(
1128
+ checkpoint=_CHECKPOINT_FOR_DOC,
1129
+ output_type=TokenClassifierOutput,
1130
+ config_class=_CONFIG_FOR_DOC,
1131
+ )
1132
+ def forward(
1133
+ self,
1134
+ input_ids: Optional[torch.LongTensor] = None,
1135
+ attention_mask: Optional[torch.Tensor] = None,
1136
+ position_ids: Optional[torch.LongTensor] = None,
1137
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1138
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1139
+ labels: Optional[torch.LongTensor] = None,
1140
+ use_cache: Optional[bool] = None,
1141
+ output_attentions: Optional[bool] = None,
1142
+ output_hidden_states: Optional[bool] = None,
1143
+ return_dict: Optional[bool] = None,
1144
+ ) -> Union[Tuple, TokenClassifierOutput]:
1145
+ r"""
1146
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1147
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1148
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1149
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1150
+ """
1151
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1152
+
1153
+ outputs = self.model(
1154
+ input_ids,
1155
+ attention_mask=attention_mask,
1156
+ position_ids=position_ids,
1157
+ past_key_values=past_key_values,
1158
+ inputs_embeds=inputs_embeds,
1159
+ use_cache=use_cache,
1160
+ output_attentions=output_attentions,
1161
+ output_hidden_states=output_hidden_states,
1162
+ return_dict=return_dict,
1163
+ )
1164
+ sequence_output = outputs[0]
1165
+ sequence_output = self.dropout(sequence_output)
1166
+ logits = self.score(sequence_output)
1167
+
1168
+ loss = None
1169
+ if labels is not None:
1170
+ loss = self.loss_function(logits, labels, self.config)
1171
+
1172
+ if not return_dict:
1173
+ output = (logits,) + outputs[2:]
1174
+ return ((loss,) + output) if loss is not None else output
1175
+
1176
+ return TokenClassifierOutput(
1177
+ loss=loss,
1178
+ logits=logits,
1179
+ hidden_states=outputs.hidden_states,
1180
+ attentions=outputs.attentions,
1181
+ )