kingabzpro commited on
Commit
682acdb
·
verified ·
1 Parent(s): 6b7bfc8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +118 -150
README.md CHANGED
@@ -1,199 +1,167 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
 
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
 
 
 
 
118
 
119
- [More Information Needed]
120
 
121
- #### Metrics
122
 
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
 
 
124
 
125
- [More Information Needed]
126
 
127
- ### Results
128
 
129
- [More Information Needed]
130
 
131
- #### Summary
 
132
 
 
 
 
133
 
 
 
 
134
 
135
- ## Model Examination [optional]
 
136
 
137
- <!-- Relevant interpretability work for the model goes here -->
138
 
139
- [More Information Needed]
140
 
141
- ## Environmental Impact
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
 
 
 
144
 
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
 
 
154
 
155
- ### Model Architecture and Objective
156
 
157
- [More Information Needed]
158
 
159
- ### Compute Infrastructure
 
 
 
160
 
161
- [More Information Needed]
 
 
162
 
163
- #### Hardware
 
164
 
165
- [More Information Needed]
 
 
 
 
 
166
 
167
- #### Software
 
168
 
169
- [More Information Needed]
 
 
 
170
 
171
- ## Citation [optional]
 
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
 
174
 
175
- **BibTeX:**
 
 
 
 
 
 
176
 
177
- [More Information Needed]
 
 
 
 
 
 
 
178
 
179
- **APA:**
 
 
 
 
 
 
180
 
181
- [More Information Needed]
 
182
 
183
- ## Glossary [optional]
 
 
 
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
 
 
186
 
187
- [More Information Needed]
 
188
 
189
- ## More Information [optional]
 
 
190
 
191
- [More Information Needed]
 
 
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - medical
5
+ license: apache-2.0
6
+ datasets:
7
+ - FreedomIntelligence/medical-o1-reasoning-SFT
8
+ language:
9
+ - en
10
+ base_model:
11
+ - Qwen/Qwen3-32B
12
+ pipeline_tag: text-generation
13
  ---
14
 
15
+ # Fine-tuning Qwen3-32B in 4-bit Quantization for Medical Reasoning
16
 
17
+ This project fine-tunes the [`Qwen/Qwen3-32B`](https://huggingface.co/Qwen/Qwen3-32B) model using a medical reasoning dataset (`FreedomIntelligence/medical-o1-reasoning-SFT`) with **4-bit quantization** for memory-efficient training.
18
 
19
+ ---
20
 
21
+ ## Setup
22
 
23
+ 1. Install the required libraries:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
 
25
+ ```bash
26
+ pip install -U datasets accelerate peft trl bitsandbytes
27
+ pip install -U transformers
28
+ pip install huggingface_hub[hf_xet]
29
+ ```
30
 
31
+ 2. Authenticate with Hugging Face Hub:
32
 
33
+ Make sure your Hugging Face token is stored in an environment variable:
34
 
35
+ ```bash
36
+ export HF_TOKEN=your_huggingface_token
37
+ ```
38
 
39
+ The notebook will automatically log you in using this token.
40
 
41
+ ---
42
 
43
+ ## How to Run
44
 
45
+ 1. **Load the Model and Tokenizer**
46
+ The script downloads the Qwen3-32B model and applies 4-bit quantization with `BitsAndBytesConfig` for efficient memory usage.
47
 
48
+ 2. **Prepare the Dataset**
49
+ - The notebook uses `FreedomIntelligence/medical-o1-reasoning-SFT` (first 500 samples).
50
+ - It formats each example into an **instruction-following prompt** with step-by-step chain-of-thought reasoning.
51
 
52
+ 3. **Fine-tuning**
53
+ - Fine-tuning is set up with PEFT (LoRA / Adapter Tuning style) to modify a small subset of model parameters.
54
+ - TRL (Transformer Reinforcement Learning) is used to fine-tune efficiently.
55
 
56
+ 4. **Push Fine-tuned Model**
57
+ - After training, the fine-tuned model and tokenizer are pushed back to your Hugging Face account.
58
 
59
+ ---
60
 
61
+ Here is the training notebook: [Fine_tuning_Qwen-3-32B](https://huggingface.co/kingabzpro/Qwen-3-32B-Medical-Reasoning/blob/main/fine-tuning-qwen-3.ipynb)
62
 
63
+ ## Model Configuration
64
 
65
+ - **Base Model**: `Qwen/Qwen3-32B`
66
+ - **Quantization**: 4-bit (NF4)
67
+ - **Training**: PEFT + TRL
68
+ - **Dataset**: 2000 examples from medical reasoning dataset
69
 
70
+ ---
71
 
72
+ ## Notes
 
 
 
 
73
 
74
+ - **GPU Required**: Make sure you have access to 1X A100s. Get it from RunPod for an hours. Training took only 50 minutes.
75
+ - **Environment**: The notebook expects an environment where NVIDIA CUDA drivers are available (`nvidia-smi` check is included).
76
+ - **Memory Efficiency**: 4-bit loading greatly reduces memory footprint.
77
 
78
+ ---
79
 
80
+ ## Example Prompt Format
81
 
82
+ ```
83
+ Below is an instruction that describes a task, paired with an input that provides further context.
84
+ Write a response that appropriately completes the request.
85
+ Before answering, think carefully about the question and create a step-by-step chain of thoughts to ensure a logical and accurate response.
86
 
87
+ ### Instruction:
88
+ You are a medical expert with advanced knowledge in clinical reasoning, diagnostics, and treatment planning.
89
+ Please answer the following medical question.
90
 
91
+ ### Question:
92
+ {}
93
 
94
+ ### Response:
95
+ <think>
96
+ {}
97
+ </think>
98
+ {}
99
+ ```
100
 
101
+ ---
102
+ ## Usage Script (not-tested)
103
 
104
+ ```python
105
+ from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
106
+ from peft import PeftModel
107
+ import torch
108
 
109
+ # Base model (original model from Meta)
110
+ base_model_id = "Qwen/Qwen3-32B"
111
 
112
+ # Your fine-tuned LoRA adapter repository
113
+ lora_adapter_id = "kingabzpro/Qwen-3-32B-Medical-Reasoning"
114
 
115
+ # Load the model in 4-bit
116
+ bnb_config = BitsAndBytesConfig(
117
+ load_in_4bit=True,
118
+ bnb_4bit_use_double_quant=False,
119
+ bnb_4bit_quant_type="nf4",
120
+ bnb_4bit_compute_dtype=torch.bfloat16,
121
+ )
122
 
123
+ # Load base model
124
+ base_model = AutoModelForCausalLM.from_pretrained(
125
+ base_model_id,
126
+ device_map="auto",
127
+ torch_dtype=torch.bfloat16,
128
+ quantization_config=bnb_config,
129
+ trust_remote_code=True,
130
+ )
131
 
132
+ # Attach the LoRA adapter
133
+ model = PeftModel.from_pretrained(
134
+ base_model,
135
+ lora_adapter_id,
136
+ device_map="auto",
137
+ trust_remote_code=True,
138
+ )
139
 
140
+ # Load tokenizer
141
+ tokenizer = AutoTokenizer.from_pretrained(base_model_id, trust_remote_code=True)
142
 
143
+ # Inference example
144
+ prompt = """Below is an instruction that describes a task, paired with an input that provides further context.
145
+ Write a response that appropriately completes the request.
146
+ Before answering, think carefully about the question and create a step-by-step chain of thoughts to ensure a logical and accurate response.
147
 
148
+ ### Instruction:
149
+ You are a medical expert with advanced knowledge in clinical reasoning, diagnostics, and treatment planning.
150
+ Please answer the following medical question.
151
 
152
+ ### Question:
153
+ What is the initial management for a patient presenting with diabetic ketoacidosis (DKA)?
154
 
155
+ ### Response:
156
+ <think>
157
+ """
158
 
159
+ inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
160
+ outputs = model.generate(**inputs, max_new_tokens=1200)
161
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
162
 
163
+ print(response)
164
 
 
165
 
 
166
 
167
+ ```