Upload Fine-tuning.py
Browse files- Code/Fine-tuning.py +307 -0
Code/Fine-tuning.py
ADDED
|
@@ -0,0 +1,307 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
import numpy as np
|
| 3 |
+
import torch
|
| 4 |
+
from datasets import load_dataset, Dataset
|
| 5 |
+
from transformers import (
|
| 6 |
+
AutoModelForCausalLM,
|
| 7 |
+
AutoTokenizer,
|
| 8 |
+
TrainingArguments,
|
| 9 |
+
Trainer,
|
| 10 |
+
DataCollatorForLanguageModeling,
|
| 11 |
+
)
|
| 12 |
+
from huggingface_hub import login
|
| 13 |
+
|
| 14 |
+
##########
|
| 15 |
+
# CONFIG #
|
| 16 |
+
##########
|
| 17 |
+
|
| 18 |
+
MODEL_NAME = "Qwen/Qwen2.5-0.5B-Instruct"
|
| 19 |
+
DATASET = "dataset/repo"
|
| 20 |
+
OUTPUT_MODEL = "model/repo"
|
| 21 |
+
|
| 22 |
+
# Training hyperparams
|
| 23 |
+
NUM_EPOCHS = 3
|
| 24 |
+
PER_DEVICE_BATCH = 4
|
| 25 |
+
GRADIENT_ACCUMULATION = 4
|
| 26 |
+
LEARNING_RATE = 2e-5
|
| 27 |
+
WEIGHT_DECAY = 0.01
|
| 28 |
+
WARMUP_STEPS = 100
|
| 29 |
+
BF16 = True
|
| 30 |
+
TORCH_COMPILE = False
|
| 31 |
+
|
| 32 |
+
#########
|
| 33 |
+
# LOGIN #
|
| 34 |
+
#########
|
| 35 |
+
|
| 36 |
+
login("<YOUR_HF_TOKEN>")
|
| 37 |
+
|
| 38 |
+
##################
|
| 39 |
+
# LOAD TOKENIZER #
|
| 40 |
+
##################
|
| 41 |
+
|
| 42 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 43 |
+
tokenizer.padding_side = "right"
|
| 44 |
+
|
| 45 |
+
################
|
| 46 |
+
# LOAD DATASET #
|
| 47 |
+
################
|
| 48 |
+
|
| 49 |
+
raw_ds = load_dataset(DATASET, "default", split="train")
|
| 50 |
+
raw_ds = raw_ds.shuffle(seed=42)
|
| 51 |
+
|
| 52 |
+
# Apply Qwen chat template
|
| 53 |
+
formatted_texts = [
|
| 54 |
+
tokenizer.apply_chat_template(
|
| 55 |
+
conv,
|
| 56 |
+
tokenize=False,
|
| 57 |
+
add_generation_prompt=False
|
| 58 |
+
)
|
| 59 |
+
for conv in raw_ds["text"]
|
| 60 |
+
]
|
| 61 |
+
|
| 62 |
+
# Build simple dataset
|
| 63 |
+
ds = Dataset.from_dict({"text": formatted_texts})
|
| 64 |
+
|
| 65 |
+
########################
|
| 66 |
+
# CUSTOM DATA COLLATOR #
|
| 67 |
+
########################
|
| 68 |
+
|
| 69 |
+
class Qwen25DataCollator(DataCollatorForLanguageModeling):
|
| 70 |
+
def __init__(self, tokenizer, mlm=False):
|
| 71 |
+
super().__init__(tokenizer=tokenizer, mlm=mlm)
|
| 72 |
+
# get token ids robustly (some tokenizers might return [] for encode if token missing)
|
| 73 |
+
try:
|
| 74 |
+
self.im_start_token = tokenizer.encode("<|im_start|>", add_special_tokens=False)[0]
|
| 75 |
+
except Exception:
|
| 76 |
+
self.im_start_token = None
|
| 77 |
+
try:
|
| 78 |
+
self.im_end_token = tokenizer.encode("<|im_end|>", add_special_tokens=False)[0]
|
| 79 |
+
except Exception:
|
| 80 |
+
self.im_end_token = None
|
| 81 |
+
|
| 82 |
+
# "assistant" token sequence (may be multiple tokens)
|
| 83 |
+
try:
|
| 84 |
+
self.assistant_text = tokenizer.encode("assistant", add_special_tokens=False)
|
| 85 |
+
except Exception:
|
| 86 |
+
self.assistant_text = []
|
| 87 |
+
|
| 88 |
+
# Provide both __call__ and torch_call for compatibility
|
| 89 |
+
def __call__(self, features):
|
| 90 |
+
return self.torch_call(features)
|
| 91 |
+
|
| 92 |
+
def torch_call(self, examples):
|
| 93 |
+
"""
|
| 94 |
+
examples: list of dicts returned by tokenization (each example contains 'input_ids', 'attention_mask', etc.)
|
| 95 |
+
We'll leverage the parent to create initial batch and then mask labels for assistant responses only.
|
| 96 |
+
"""
|
| 97 |
+
batch = super().torch_call(examples) # returns input_ids, attention_mask, labels (for MLM)
|
| 98 |
+
input_ids = batch["input_ids"]
|
| 99 |
+
labels = batch["labels"]
|
| 100 |
+
|
| 101 |
+
# If special tokens are not present, return default batch unchanged
|
| 102 |
+
if self.im_start_token is None or self.im_end_token is None or len(self.assistant_text) == 0:
|
| 103 |
+
return batch
|
| 104 |
+
|
| 105 |
+
# Iterate examples in batch to mask labels: only assistant response tokens should be supervised
|
| 106 |
+
for i, ids in enumerate(input_ids):
|
| 107 |
+
# Find positions of <|im_start|> and <|im_end|>
|
| 108 |
+
im_start_positions = torch.where(ids == self.im_start_token)[0]
|
| 109 |
+
im_end_positions = torch.where(ids == self.im_end_token)[0]
|
| 110 |
+
|
| 111 |
+
if im_start_positions.numel() == 0 or im_end_positions.numel() == 0:
|
| 112 |
+
# no recognized chat markers: leave labels as-is (or continue)
|
| 113 |
+
continue
|
| 114 |
+
|
| 115 |
+
last_assistant_start = None
|
| 116 |
+
# Find last im_start that is followed by "assistant"
|
| 117 |
+
for start_pos in im_start_positions:
|
| 118 |
+
# check if tokens following start_pos match "assistant"
|
| 119 |
+
as_len = len(self.assistant_text)
|
| 120 |
+
candidate_end = start_pos + 1 + as_len
|
| 121 |
+
if candidate_end <= len(ids):
|
| 122 |
+
segment = ids[start_pos + 1:start_pos + 1 + as_len]
|
| 123 |
+
if torch.equal(segment, torch.tensor(self.assistant_text, device=ids.device)):
|
| 124 |
+
last_assistant_start = int(start_pos)
|
| 125 |
+
|
| 126 |
+
if last_assistant_start is None:
|
| 127 |
+
continue
|
| 128 |
+
|
| 129 |
+
# Find first im_end after last_assistant_start
|
| 130 |
+
assistant_end_positions = im_end_positions[im_end_positions > last_assistant_start]
|
| 131 |
+
if assistant_end_positions.numel() == 0:
|
| 132 |
+
continue
|
| 133 |
+
|
| 134 |
+
assistant_end = int(assistant_end_positions[0])
|
| 135 |
+
|
| 136 |
+
# Response text is between (last_assistant_start + 1 + len("assistant")) and assistant_end - 1 (inclusive),
|
| 137 |
+
# but because template may include a newline or an extra token, we set response_start carefully.
|
| 138 |
+
response_start = last_assistant_start + 1 + len(self.assistant_text)
|
| 139 |
+
# If there's a newline token or separator, skip it if present in input_ids
|
| 140 |
+
# (this is conservative: we do not assume an extra token, but we keep it if present)
|
| 141 |
+
if response_start < len(ids) and ids[response_start] == tokenizer.encode("\n", add_special_tokens=False)[0]:
|
| 142 |
+
response_start += 1
|
| 143 |
+
|
| 144 |
+
# Apply masking:
|
| 145 |
+
# Set everything before response_start to -100 (ignored), preserve response tokens, set rest to -100
|
| 146 |
+
labels[i, :] = -100
|
| 147 |
+
if response_start < len(ids):
|
| 148 |
+
# labels slice up to assistant_end inclusive
|
| 149 |
+
end_idx = min(assistant_end + 1, ids.shape[0])
|
| 150 |
+
labels[i, response_start:end_idx] = ids[response_start:end_idx]
|
| 151 |
+
|
| 152 |
+
# assign modified labels back
|
| 153 |
+
batch["labels"] = labels
|
| 154 |
+
return batch
|
| 155 |
+
|
| 156 |
+
collator = Qwen25DataCollator(tokenizer=tokenizer, mlm=False)
|
| 157 |
+
|
| 158 |
+
###############################################
|
| 159 |
+
# ANALYZE DATASET LENGTHS TO SET `max_length` #
|
| 160 |
+
###############################################
|
| 161 |
+
|
| 162 |
+
# We analyze the dataset to optimize the choice of `max_length`
|
| 163 |
+
print("Analyzing dataset to determine max_length (sample up to 1000)...")
|
| 164 |
+
assistant_lengths = []
|
| 165 |
+
full_lengths = []
|
| 166 |
+
|
| 167 |
+
sample_limit = min(1000, len(ds))
|
| 168 |
+
for example in ds["text"][:sample_limit]:
|
| 169 |
+
full_tokens = tokenizer(example, truncation=False, add_special_tokens=True)
|
| 170 |
+
full_lengths.append(len(full_tokens["input_ids"]))
|
| 171 |
+
|
| 172 |
+
# extract the last assistant response via regex pattern
|
| 173 |
+
pattern = r"<\|im_start\|>assistant\n(.*?)<\|im_end\|>"
|
| 174 |
+
matches = re.findall(pattern, example, re.DOTALL)
|
| 175 |
+
if matches:
|
| 176 |
+
last_response = matches[-1]
|
| 177 |
+
resp_tokens = tokenizer(last_response, truncation=False, add_special_tokens=False)
|
| 178 |
+
assistant_lengths.append(len(resp_tokens["input_ids"]))
|
| 179 |
+
|
| 180 |
+
# Basic statistics (guard for empty lists)
|
| 181 |
+
def safe_stat(arr):
|
| 182 |
+
if len(arr) == 0:
|
| 183 |
+
return 0.0, 0.0, 0.0, 0.0
|
| 184 |
+
return np.mean(arr), np.median(arr), np.percentile(arr, 95), np.percentile(arr, 99)
|
| 185 |
+
|
| 186 |
+
mean_ass, med_ass, p95_ass, p99_ass = safe_stat(assistant_lengths)
|
| 187 |
+
mean_full, _, p95_full, _ = safe_stat(full_lengths)
|
| 188 |
+
|
| 189 |
+
print(f"Assistant response mean={mean_ass:.1f}, median={med_ass:.1f}, 95%={p95_ass:.1f}, 99%={p99_ass:.1f}")
|
| 190 |
+
print(f"Full conversation mean={mean_full:.1f}, 95%={p95_full:.1f}")
|
| 191 |
+
|
| 192 |
+
# Round up to nearest power of two but don't exceed tokenizer.model_max_length
|
| 193 |
+
def next_power_of_2(x):
|
| 194 |
+
if x <= 1:
|
| 195 |
+
return 1
|
| 196 |
+
return 2 ** int(np.ceil(np.log2(x)))
|
| 197 |
+
|
| 198 |
+
target_length = int(min(p95_full if p95_full > 0 else tokenizer.model_max_length, tokenizer.model_max_length))
|
| 199 |
+
MAX_LENGTH = next_power_of_2(target_length)
|
| 200 |
+
if MAX_LENGTH > tokenizer.model_max_length:
|
| 201 |
+
MAX_LENGTH = tokenizer.model_max_length
|
| 202 |
+
|
| 203 |
+
print(f"Using MAX_LENGTH = {MAX_LENGTH}")
|
| 204 |
+
|
| 205 |
+
####################
|
| 206 |
+
# TOKENIZE DATASET #
|
| 207 |
+
####################
|
| 208 |
+
|
| 209 |
+
def tokenize_function(examples):
|
| 210 |
+
return tokenizer(examples["text"], truncation=True, max_length=MAX_LENGTH, padding=False)
|
| 211 |
+
|
| 212 |
+
tokenized_ds = ds.map(tokenize_function, batched=True, remove_columns=ds.column_names)
|
| 213 |
+
|
| 214 |
+
##############
|
| 215 |
+
# LOAD MODEL #
|
| 216 |
+
##############
|
| 217 |
+
|
| 218 |
+
# Load model
|
| 219 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 220 |
+
MODEL_NAME,
|
| 221 |
+
torch_dtype=torch.bfloat16 if BF16 else None,
|
| 222 |
+
device_map="auto",
|
| 223 |
+
attn_implementation="flash_attention_2",
|
| 224 |
+
use_cache=False,
|
| 225 |
+
)
|
| 226 |
+
|
| 227 |
+
try:
|
| 228 |
+
from liger_kernel.transformers import apply_liger_kernel_to_qwen2
|
| 229 |
+
try:
|
| 230 |
+
apply_liger_kernel_to_qwen2(model)
|
| 231 |
+
except TypeError:
|
| 232 |
+
apply_liger_kernel_to_qwen2()
|
| 233 |
+
print("Liger Kernel applied successfully for Qwen2 optimization")
|
| 234 |
+
except Exception:
|
| 235 |
+
print("Liger Kernel not available or failed to apply; continuing without it.")
|
| 236 |
+
|
| 237 |
+
print(f"Model loaded. Parameters: {model.num_parameters() / 1e9:.3f}B")
|
| 238 |
+
|
| 239 |
+
######################
|
| 240 |
+
# TRAINING ARGUMENTS #
|
| 241 |
+
######################
|
| 242 |
+
|
| 243 |
+
training_args = TrainingArguments(
|
| 244 |
+
output_dir="./qwen_rephraser_checkpoints",
|
| 245 |
+
num_train_epochs=NUM_EPOCHS,
|
| 246 |
+
per_device_train_batch_size=PER_DEVICE_BATCH,
|
| 247 |
+
gradient_accumulation_steps=GRADIENT_ACCUMULATION,
|
| 248 |
+
learning_rate=LEARNING_RATE,
|
| 249 |
+
weight_decay=WEIGHT_DECAY,
|
| 250 |
+
warmup_steps=WARMUP_STEPS,
|
| 251 |
+
lr_scheduler_type="cosine",
|
| 252 |
+
logging_steps=10,
|
| 253 |
+
save_steps=500,
|
| 254 |
+
save_total_limit=2,
|
| 255 |
+
bf16=BF16,
|
| 256 |
+
optim="adamw_torch_fused",
|
| 257 |
+
gradient_checkpointing=True,
|
| 258 |
+
report_to="none",
|
| 259 |
+
push_to_hub=False, # we'll push manually at the end
|
| 260 |
+
hub_model_id=OUTPUT_MODEL,
|
| 261 |
+
hub_private_repo=True,
|
| 262 |
+
dataloader_num_workers=4,
|
| 263 |
+
dataloader_pin_memory=True,
|
| 264 |
+
ddp_find_unused_parameters=False,
|
| 265 |
+
torch_compile=TORCH_COMPILE,
|
| 266 |
+
)
|
| 267 |
+
|
| 268 |
+
###########
|
| 269 |
+
# TRAINER #
|
| 270 |
+
###########
|
| 271 |
+
|
| 272 |
+
trainer = Trainer(
|
| 273 |
+
model=model,
|
| 274 |
+
args=training_args,
|
| 275 |
+
train_dataset=tokenized_ds,
|
| 276 |
+
data_collator=collator,
|
| 277 |
+
)
|
| 278 |
+
|
| 279 |
+
#########
|
| 280 |
+
# TRAIN #
|
| 281 |
+
#########
|
| 282 |
+
|
| 283 |
+
print("Starting training...")
|
| 284 |
+
trainer.train()
|
| 285 |
+
|
| 286 |
+
####################
|
| 287 |
+
# SAVE FINAL MODEL #
|
| 288 |
+
####################
|
| 289 |
+
|
| 290 |
+
print("Saving model to ./final_model ...")
|
| 291 |
+
model.config.use_cache = True
|
| 292 |
+
trainer.save_model("./final_model")
|
| 293 |
+
tokenizer.save_pretrained("./final_model")
|
| 294 |
+
|
| 295 |
+
##################
|
| 296 |
+
# PUSHING TO HUB #
|
| 297 |
+
##################
|
| 298 |
+
|
| 299 |
+
try:
|
| 300 |
+
print(f"Pushing model and tokenizer to the hub as {OUTPUT_MODEL} (private)...")
|
| 301 |
+
model.push_to_hub(OUTPUT_MODEL, private=True)
|
| 302 |
+
tokenizer.push_to_hub(OUTPUT_MODEL, private=True)
|
| 303 |
+
print("Push completed.")
|
| 304 |
+
except Exception as e:
|
| 305 |
+
print("Warning: push_to_hub failed:", e)
|
| 306 |
+
|
| 307 |
+
print("Training complete!")
|