import re import numpy as np import torch from datasets import load_dataset, Dataset from transformers import ( AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer, DataCollatorForLanguageModeling, ) from huggingface_hub import login ########## # CONFIG # ########## MODEL_NAME = "Qwen/Qwen2.5-0.5B-Instruct" DATASET = "dataset/repo" OUTPUT_MODEL = "model/repo" # Training hyperparams NUM_EPOCHS = 3 PER_DEVICE_BATCH = 4 GRADIENT_ACCUMULATION = 4 LEARNING_RATE = 2e-5 WEIGHT_DECAY = 0.01 WARMUP_STEPS = 100 BF16 = True TORCH_COMPILE = False ######### # LOGIN # ######### login("") ################## # LOAD TOKENIZER # ################## tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) tokenizer.padding_side = "right" ################ # LOAD DATASET # ################ raw_ds = load_dataset(DATASET, "default", split="train") raw_ds = raw_ds.shuffle(seed=42) # Apply Qwen chat template formatted_texts = [ tokenizer.apply_chat_template( conv, tokenize=False, add_generation_prompt=False ) for conv in raw_ds["text"] ] # Build simple dataset ds = Dataset.from_dict({"text": formatted_texts}) ######################## # CUSTOM DATA COLLATOR # ######################## class Qwen25DataCollator(DataCollatorForLanguageModeling): def __init__(self, tokenizer, mlm=False): super().__init__(tokenizer=tokenizer, mlm=mlm) # get token ids robustly (some tokenizers might return [] for encode if token missing) try: self.im_start_token = tokenizer.encode("<|im_start|>", add_special_tokens=False)[0] except Exception: self.im_start_token = None try: self.im_end_token = tokenizer.encode("<|im_end|>", add_special_tokens=False)[0] except Exception: self.im_end_token = None # "assistant" token sequence (may be multiple tokens) try: self.assistant_text = tokenizer.encode("assistant", add_special_tokens=False) except Exception: self.assistant_text = [] # Provide both __call__ and torch_call for compatibility def __call__(self, features): return self.torch_call(features) def torch_call(self, examples): """ examples: list of dicts returned by tokenization (each example contains 'input_ids', 'attention_mask', etc.) We'll leverage the parent to create initial batch and then mask labels for assistant responses only. """ batch = super().torch_call(examples) # returns input_ids, attention_mask, labels (for MLM) input_ids = batch["input_ids"] labels = batch["labels"] # If special tokens are not present, return default batch unchanged if self.im_start_token is None or self.im_end_token is None or len(self.assistant_text) == 0: return batch # Iterate examples in batch to mask labels: only assistant response tokens should be supervised for i, ids in enumerate(input_ids): # Find positions of <|im_start|> and <|im_end|> im_start_positions = torch.where(ids == self.im_start_token)[0] im_end_positions = torch.where(ids == self.im_end_token)[0] if im_start_positions.numel() == 0 or im_end_positions.numel() == 0: # no recognized chat markers: leave labels as-is (or continue) continue last_assistant_start = None # Find last im_start that is followed by "assistant" for start_pos in im_start_positions: # check if tokens following start_pos match "assistant" as_len = len(self.assistant_text) candidate_end = start_pos + 1 + as_len if candidate_end <= len(ids): segment = ids[start_pos + 1:start_pos + 1 + as_len] if torch.equal(segment, torch.tensor(self.assistant_text, device=ids.device)): last_assistant_start = int(start_pos) if last_assistant_start is None: continue # Find first im_end after last_assistant_start assistant_end_positions = im_end_positions[im_end_positions > last_assistant_start] if assistant_end_positions.numel() == 0: continue assistant_end = int(assistant_end_positions[0]) # Response text is between (last_assistant_start + 1 + len("assistant")) and assistant_end - 1 (inclusive), # but because template may include a newline or an extra token, we set response_start carefully. response_start = last_assistant_start + 1 + len(self.assistant_text) # If there's a newline token or separator, skip it if present in input_ids # (this is conservative: we do not assume an extra token, but we keep it if present) if response_start < len(ids) and ids[response_start] == tokenizer.encode("\n", add_special_tokens=False)[0]: response_start += 1 # Apply masking: # Set everything before response_start to -100 (ignored), preserve response tokens, set rest to -100 labels[i, :] = -100 if response_start < len(ids): # labels slice up to assistant_end inclusive end_idx = min(assistant_end + 1, ids.shape[0]) labels[i, response_start:end_idx] = ids[response_start:end_idx] # assign modified labels back batch["labels"] = labels return batch collator = Qwen25DataCollator(tokenizer=tokenizer, mlm=False) ############################################### # ANALYZE DATASET LENGTHS TO SET `max_length` # ############################################### # We analyze the dataset to optimize the choice of `max_length` print("Analyzing dataset to determine max_length (sample up to 1000)...") assistant_lengths = [] full_lengths = [] sample_limit = min(1000, len(ds)) for example in ds["text"][:sample_limit]: full_tokens = tokenizer(example, truncation=False, add_special_tokens=True) full_lengths.append(len(full_tokens["input_ids"])) # extract the last assistant response via regex pattern pattern = r"<\|im_start\|>assistant\n(.*?)<\|im_end\|>" matches = re.findall(pattern, example, re.DOTALL) if matches: last_response = matches[-1] resp_tokens = tokenizer(last_response, truncation=False, add_special_tokens=False) assistant_lengths.append(len(resp_tokens["input_ids"])) # Basic statistics (guard for empty lists) def safe_stat(arr): if len(arr) == 0: return 0.0, 0.0, 0.0, 0.0 return np.mean(arr), np.median(arr), np.percentile(arr, 95), np.percentile(arr, 99) mean_ass, med_ass, p95_ass, p99_ass = safe_stat(assistant_lengths) mean_full, _, p95_full, _ = safe_stat(full_lengths) print(f"Assistant response mean={mean_ass:.1f}, median={med_ass:.1f}, 95%={p95_ass:.1f}, 99%={p99_ass:.1f}") print(f"Full conversation mean={mean_full:.1f}, 95%={p95_full:.1f}") # Round up to nearest power of two but don't exceed tokenizer.model_max_length def next_power_of_2(x): if x <= 1: return 1 return 2 ** int(np.ceil(np.log2(x))) target_length = int(min(p95_full if p95_full > 0 else tokenizer.model_max_length, tokenizer.model_max_length)) MAX_LENGTH = next_power_of_2(target_length) if MAX_LENGTH > tokenizer.model_max_length: MAX_LENGTH = tokenizer.model_max_length print(f"Using MAX_LENGTH = {MAX_LENGTH}") #################### # TOKENIZE DATASET # #################### def tokenize_function(examples): return tokenizer(examples["text"], truncation=True, max_length=MAX_LENGTH, padding=False) tokenized_ds = ds.map(tokenize_function, batched=True, remove_columns=ds.column_names) ############## # LOAD MODEL # ############## # Load model model = AutoModelForCausalLM.from_pretrained( MODEL_NAME, torch_dtype=torch.bfloat16 if BF16 else None, device_map="auto", attn_implementation="flash_attention_2", use_cache=False, ) try: from liger_kernel.transformers import apply_liger_kernel_to_qwen2 try: apply_liger_kernel_to_qwen2(model) except TypeError: apply_liger_kernel_to_qwen2() print("Liger Kernel applied successfully for Qwen2 optimization") except Exception: print("Liger Kernel not available or failed to apply; continuing without it.") print(f"Model loaded. Parameters: {model.num_parameters() / 1e9:.3f}B") ###################### # TRAINING ARGUMENTS # ###################### training_args = TrainingArguments( output_dir="./qwen_rephraser_checkpoints", num_train_epochs=NUM_EPOCHS, per_device_train_batch_size=PER_DEVICE_BATCH, gradient_accumulation_steps=GRADIENT_ACCUMULATION, learning_rate=LEARNING_RATE, weight_decay=WEIGHT_DECAY, warmup_steps=WARMUP_STEPS, lr_scheduler_type="cosine", logging_steps=10, save_steps=500, save_total_limit=2, bf16=BF16, optim="adamw_torch_fused", gradient_checkpointing=True, report_to="none", push_to_hub=False, # we'll push manually at the end hub_model_id=OUTPUT_MODEL, hub_private_repo=True, dataloader_num_workers=4, dataloader_pin_memory=True, ddp_find_unused_parameters=False, torch_compile=TORCH_COMPILE, ) ########### # TRAINER # ########### trainer = Trainer( model=model, args=training_args, train_dataset=tokenized_ds, data_collator=collator, ) ######### # TRAIN # ######### print("Starting training...") trainer.train() #################### # SAVE FINAL MODEL # #################### print("Saving model to ./final_model ...") model.config.use_cache = True trainer.save_model("./final_model") tokenizer.save_pretrained("./final_model") ################## # PUSHING TO HUB # ################## try: print(f"Pushing model and tokenizer to the hub as {OUTPUT_MODEL} (private)...") model.push_to_hub(OUTPUT_MODEL, private=True) tokenizer.push_to_hub(OUTPUT_MODEL, private=True) print("Push completed.") except Exception as e: print("Warning: push_to_hub failed:", e) print("Training complete!")