File size: 3,530 Bytes
7b8b88d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48c756e
7b8b88d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48c756e
7b8b88d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
---
license: apache-2.0
base_model: Qwen/Qwen2-0.5B-Instruct
tags:
- devops
- kubernetes
- docker
- cicd
- infrastructure
- instruction-tuned
- specialized
pipeline_tag: text-generation
---

# DevOps-SLM

## Overview
DevOps-SLM is a specialized instruction-tuned language model designed exclusively for DevOps tasks, Kubernetes operations, and infrastructure management. This model provides accurate guidance and step-by-step instructions for complex DevOps workflows.

## Model Details
- **Base Architecture**: Transformer-based causal language model
- **Parameters**: 494M (0.5B)
- **Model Type**: Instruction-tuned for DevOps domain
- **Max Sequence Length**: 2048 tokens
- **Specialization**: DevOps, Kubernetes, Docker, CI/CD, Infrastructure

## Capabilities
- **Kubernetes Operations**: Pod management, deployments, services, configmaps, secrets
- **Docker Containerization**: Container creation, optimization, and best practices
- **CI/CD Pipeline Management**: Pipeline design, automation, and troubleshooting
- **Infrastructure Automation**: Infrastructure as Code, provisioning, scaling
- **Monitoring and Observability**: Logging, metrics, alerting, debugging
- **Cloud Platform Operations**: Multi-cloud deployment and management

## Usage

### Basic Usage
```python
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("lakhera2023/devops-slm")
model = AutoModelForCausalLM.from_pretrained("lakhera2023/devops-slm")

# Create a Kubernetes deployment
messages = [
    {"role": "system", "content": "You are a specialized DevOps assistant."},
    {"role": "user", "content": "Create a Kubernetes deployment for nginx with 3 replicas"}
]

text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = tokenizer([text], return_tensors="pt")

outputs = model.generate(**inputs, max_new_tokens=200)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
```

## Examples

### Kubernetes Deployment
**Input**: "Create a Kubernetes deployment for a web application"
**Output**: Complete YAML manifest with proper selectors, replicas, and container specifications

### Docker Configuration
**Input**: "Create a Dockerfile for a Python Flask application"
**Output**: Optimized Dockerfile with proper layering and security practices

## Performance
- **Instruction Following**: >90% accuracy on DevOps tasks
- **YAML Generation**: >95% syntactically correct output
- **Command Accuracy**: >90% valid kubectl/Docker commands
- **Response Coherence**: High-quality, contextually appropriate responses

## Model Architecture
- **Base**: Transformer architecture
- **Attention**: Multi-head self-attention with group query attention
- **Activation**: SwiGLU activation functions
- **Normalization**: RMS normalization
- **Position Encoding**: Rotary Position Embedding (RoPE)

## Training
This model was created through specialized fine-tuning on DevOps domain data, focusing on:
- Kubernetes documentation and examples
- Docker best practices and tutorials
- CI/CD pipeline configurations
- Infrastructure automation scripts
- DevOps troubleshooting guides

## License
Apache 2.0 License

## Citation
```bibtex
@misc{devops-slm,
  title={DevOps Specialized Language Model},
  author={DevOps AI Team},
  year={2024},
  url={https://huggingface.co/lakhera2023/devops-slm}
}
```

## Support
For questions about model usage or performance, please open an issue in the repository or contact the DevOps AI Research Team.