leonelgv commited on
Commit
2a4b34f
·
verified ·
1 Parent(s): 52d8681

Add model card with 92.07% accuracy metrics

Browse files
Files changed (1) hide show
  1. README.md +58 -3
README.md CHANGED
@@ -1,3 +1,58 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: ultralytics/yolov8n-cls
4
+ tags:
5
+ - ultralytics
6
+ - yolo
7
+ - vision
8
+ - image-classification
9
+ - pytorch
10
+ - insects
11
+ - pollinators
12
+ - biodiversity
13
+ - ecology
14
+ - conservation
15
+ datasets:
16
+ - custom
17
+ language:
18
+ - en
19
+ metrics:
20
+ - accuracy
21
+ model-index:
22
+ - name: pollinator-classifier
23
+ results:
24
+ - task:
25
+ type: image-classification
26
+ name: Image Classification
27
+ dataset:
28
+ name: Custom Pollinator Insects Dataset
29
+ type: custom
30
+ metrics:
31
+ - type: accuracy
32
+ value: 0.9207
33
+ name: Top-1 Accuracy
34
+ - type: accuracy
35
+ value: 0.9912
36
+ name: Top-5 Accuracy
37
+ pipeline_tag: image-classification
38
+ ---
39
+
40
+ # Pollinator Insect Classifier 🔬
41
+
42
+ High-precision classifier for 10 pollinator insect species using YOLOv8 Nano with **92.07% accuracy**.
43
+
44
+ ## Quick Start
45
+
46
+ ```python
47
+ from ultralytics import YOLO
48
+ from huggingface_hub import hf_hub_download
49
+
50
+ # Download model
51
+ model_path = hf_hub_download("leonelgv/pollinator-classifier", "yolo8n.pt")
52
+
53
+ # Load and predict
54
+ model = YOLO(model_path)
55
+ results = model("insect_image.jpg")
56
+ ```
57
+
58
+ See files in this repository for complete usage examples and training details.