Update README.md
Browse files
README.md
CHANGED
|
@@ -1,5 +1,8 @@
|
|
| 1 |
---
|
| 2 |
license: other
|
|
|
|
|
|
|
|
|
|
| 3 |
base_model: meta-llama/Meta-Llama-3-8B-Instruct
|
| 4 |
tags:
|
| 5 |
- generated_from_trainer
|
|
@@ -8,8 +11,45 @@ model-index:
|
|
| 8 |
results: []
|
| 9 |
---
|
| 10 |
|
| 11 |
-
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
|
| 15 |
<details><summary>See axolotl config</summary>
|
|
|
|
| 1 |
---
|
| 2 |
license: other
|
| 3 |
+
license_name: llama-3
|
| 4 |
+
license_link: https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct/raw/main/LICENSE
|
| 5 |
+
|
| 6 |
base_model: meta-llama/Meta-Llama-3-8B-Instruct
|
| 7 |
tags:
|
| 8 |
- generated_from_trainer
|
|
|
|
| 11 |
results: []
|
| 12 |
---
|
| 13 |
|
| 14 |
+
<p align="center">
|
| 15 |
+
<img width=400 src="https://cdn-uploads.huggingface.co/production/uploads/64b63f8ad57e02621dc93c8b/kg3QjQOde0X743csGJT-f.png" alt="Suzume - a Japanese tree sparrow"/>
|
| 16 |
+
</p>
|
| 17 |
+
|
| 18 |
+
# Suzume
|
| 19 |
+
|
| 20 |
+
This Suzume 8B, a Japanese finetune of Llama 3.
|
| 21 |
+
|
| 22 |
+
Llama 3 has exhibited excellent performance on many English language benchmarks.
|
| 23 |
+
However, it also seemingly been finetuned on mostly English data, meaning that it will respond in English, even if prompted in Japanese.
|
| 24 |
+
|
| 25 |
+
We have fine-tuned Llama 3 on almost 3,000 Japanese conversations meaning that this model has the smarts of Llama 3 but has the added ability to chat in Japanese.
|
| 26 |
+
|
| 27 |
+
Please feel free to comment on this model and give us feedback in the Community tab!
|
| 28 |
+
|
| 29 |
+
# How to use
|
| 30 |
+
|
| 31 |
+
You can use the original trained model with vLLM like so:
|
| 32 |
+
|
| 33 |
+
```python
|
| 34 |
+
from vllm import LLM, SamplingParams
|
| 35 |
+
|
| 36 |
+
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
|
| 37 |
+
|
| 38 |
+
llm = LLM(model="lightblue/suzume-llama-3-8B-japanese")
|
| 39 |
+
|
| 40 |
+
prompts = [
|
| 41 |
+
"東京のおすすめの観光スポットを教えて下さい",
|
| 42 |
+
]
|
| 43 |
+
|
| 44 |
+
outputs = llm.generate(prompts, sampling_params)
|
| 45 |
+
|
| 46 |
+
for output in outputs:
|
| 47 |
+
prompt = output.prompt
|
| 48 |
+
generated_text = output.outputs[0].text
|
| 49 |
+
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
| 50 |
+
```
|
| 51 |
+
|
| 52 |
+
# Training config
|
| 53 |
|
| 54 |
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
|
| 55 |
<details><summary>See axolotl config</summary>
|