Upload folder using huggingface_hub
Browse files
README.md
CHANGED
|
@@ -1,199 +1,197 @@
|
|
|
|
|
| 1 |
---
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
---
|
| 5 |
|
| 6 |
-
#
|
| 7 |
-
|
| 8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
## Model Details
|
| 13 |
-
|
| 14 |
-
### Model Description
|
| 15 |
-
|
| 16 |
-
<!-- Provide a longer summary of what this model is. -->
|
| 17 |
-
|
| 18 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
| 19 |
-
|
| 20 |
-
- **Developed by:** [More Information Needed]
|
| 21 |
-
- **Funded by [optional]:** [More Information Needed]
|
| 22 |
-
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
-
- **Model type:** [More Information Needed]
|
| 24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
-
- **License:** [More Information Needed]
|
| 26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
-
|
| 28 |
-
### Model Sources [optional]
|
| 29 |
-
|
| 30 |
-
<!-- Provide the basic links for the model. -->
|
| 31 |
-
|
| 32 |
-
- **Repository:** [More Information Needed]
|
| 33 |
-
- **Paper [optional]:** [More Information Needed]
|
| 34 |
-
- **Demo [optional]:** [More Information Needed]
|
| 35 |
-
|
| 36 |
-
## Uses
|
| 37 |
-
|
| 38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 39 |
-
|
| 40 |
-
### Direct Use
|
| 41 |
-
|
| 42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 43 |
-
|
| 44 |
-
[More Information Needed]
|
| 45 |
-
|
| 46 |
-
### Downstream Use [optional]
|
| 47 |
-
|
| 48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 49 |
-
|
| 50 |
-
[More Information Needed]
|
| 51 |
-
|
| 52 |
-
### Out-of-Scope Use
|
| 53 |
-
|
| 54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 55 |
-
|
| 56 |
-
[More Information Needed]
|
| 57 |
-
|
| 58 |
-
## Bias, Risks, and Limitations
|
| 59 |
-
|
| 60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 61 |
-
|
| 62 |
-
[More Information Needed]
|
| 63 |
-
|
| 64 |
-
### Recommendations
|
| 65 |
-
|
| 66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 67 |
-
|
| 68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 69 |
-
|
| 70 |
-
## How to Get Started with the Model
|
| 71 |
-
|
| 72 |
-
Use the code below to get started with the model.
|
| 73 |
-
|
| 74 |
-
[More Information Needed]
|
| 75 |
-
|
| 76 |
-
## Training Details
|
| 77 |
|
| 78 |
-
|
| 79 |
|
| 80 |
-
|
| 81 |
|
| 82 |
-
[
|
| 83 |
|
| 84 |
-
|
| 85 |
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
#### Training Hyperparameters
|
| 94 |
-
|
| 95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 96 |
-
|
| 97 |
-
#### Speeds, Sizes, Times [optional]
|
| 98 |
-
|
| 99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
-
|
| 101 |
-
[More Information Needed]
|
| 102 |
-
|
| 103 |
-
## Evaluation
|
| 104 |
-
|
| 105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
-
|
| 107 |
-
### Testing Data, Factors & Metrics
|
| 108 |
-
|
| 109 |
-
#### Testing Data
|
| 110 |
-
|
| 111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
-
|
| 113 |
-
[More Information Needed]
|
| 114 |
-
|
| 115 |
-
#### Factors
|
| 116 |
-
|
| 117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
-
|
| 119 |
-
[More Information Needed]
|
| 120 |
-
|
| 121 |
-
#### Metrics
|
| 122 |
-
|
| 123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
-
|
| 125 |
-
[More Information Needed]
|
| 126 |
-
|
| 127 |
-
### Results
|
| 128 |
-
|
| 129 |
-
[More Information Needed]
|
| 130 |
-
|
| 131 |
-
#### Summary
|
| 132 |
|
|
|
|
| 133 |
|
|
|
|
| 134 |
|
| 135 |
-
|
|
|
|
| 136 |
|
| 137 |
-
|
|
|
|
|
|
|
| 138 |
|
| 139 |
-
|
| 140 |
|
| 141 |
-
##
|
| 142 |
|
| 143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
|
| 145 |
-
|
| 146 |
|
| 147 |
-
|
| 148 |
-
- **Hours used:** [More Information Needed]
|
| 149 |
-
- **Cloud Provider:** [More Information Needed]
|
| 150 |
-
- **Compute Region:** [More Information Needed]
|
| 151 |
-
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
|
| 153 |
-
##
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
|
| 155 |
-
|
| 156 |
|
| 157 |
-
|
|
|
|
|
|
|
|
|
|
| 158 |
|
| 159 |
-
|
| 160 |
|
| 161 |
-
|
| 162 |
|
| 163 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
|
| 165 |
-
|
| 166 |
|
| 167 |
-
|
| 168 |
|
| 169 |
-
|
| 170 |
|
| 171 |
-
|
| 172 |
|
| 173 |
-
|
|
|
|
|
|
|
| 174 |
|
| 175 |
-
**BibTeX:**
|
| 176 |
|
| 177 |
-
|
| 178 |
|
| 179 |
-
|
| 180 |
|
| 181 |
-
|
| 182 |
|
| 183 |
-
|
| 184 |
|
| 185 |
-
|
|
|
|
|
|
|
| 186 |
|
| 187 |
-
|
| 188 |
|
| 189 |
-
|
| 190 |
|
| 191 |
-
|
| 192 |
|
| 193 |
-
|
| 194 |
|
| 195 |
-
|
| 196 |
|
| 197 |
-
##
|
| 198 |
|
| 199 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
---
|
| 3 |
+
license: apache-2.0
|
| 4 |
+
language:
|
| 5 |
+
- en
|
| 6 |
+
- fr
|
| 7 |
+
- de
|
| 8 |
+
- es
|
| 9 |
+
- it
|
| 10 |
+
- nl
|
| 11 |
+
- pt
|
| 12 |
+
- sv
|
| 13 |
+
- da
|
| 14 |
+
base_model: lightonai/LightOnOCR-1B-1025
|
| 15 |
+
library_name: vllm
|
| 16 |
+
tags:
|
| 17 |
+
- ocr
|
| 18 |
+
- document-understanding
|
| 19 |
+
- vision-language
|
| 20 |
+
- pdf
|
| 21 |
+
- tables
|
| 22 |
+
- forms
|
| 23 |
---
|
| 24 |
|
| 25 |
+
# LightOnOCR-1B-1025
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
+
Full BF16 version of the model. We recommend this variant for further fine-tuning or research use.
|
| 28 |
|
| 29 |
+
**LightOnOCR-1B** is a compact, end-to-end vision–language model for Optical Character Recognition (OCR) and document understanding. It achieves state-of-the-art accuracy in its weight class while being several times faster and cheaper than larger general-purpose VLMs.
|
| 30 |
|
| 31 |
+
📝 **[Read the full blog post](https://huggingface.co/blog/lightonai/lightonocr/)**
|
| 32 |
|
| 33 |
+
**Highlights**
|
| 34 |
|
| 35 |
+
* ⚡ **Speed:** 5× faster than dots.ocr, 2× faster than PaddleOCR-VL-0.9B, 1.73× faster than DeepSeekOCR
|
| 36 |
+
* 💸 **Efficiency:** Processes 5.71 pages/s on a single H100 (~493k pages/day) for **<$0.01 per 1,000 pages**
|
| 37 |
+
* 🧠 **End-to-End:** Fully differentiable, no external OCR pipeline
|
| 38 |
+
* 🧾 **Versatile:** Handles tables, receipts, forms, multi-column layouts, and math notation
|
| 39 |
+
* 🌍 **Compact variants:** 32k and 16k vocab options for European languages
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
+
---
|
| 42 |
|
| 43 |
+
## Model Overview
|
| 44 |
|
| 45 |
+
**LightOnOCR** combines a high-performance Vision Transformer encoder with a lightweight text decoder distilled from high-quality open VLMs.
|
| 46 |
+
It is optimized for document parsing tasks, producing accurate, layout-aware text extraction from high-resolution pages.
|
| 47 |
|
| 48 |
+
* **Architecture:** ViT-based vision encoder + lean text decoder
|
| 49 |
+
* **Training Objective:** End-to-end OCR + layout-aware text generation
|
| 50 |
+
* **Performance:** Stable under rotation, skew, and low-contrast scans
|
| 51 |
|
| 52 |
+
---
|
| 53 |
|
| 54 |
+
## Benchmarks
|
| 55 |
|
| 56 |
+
| Model | ArXiv | Old Scans | Math | Tables | Multi-Column | Tiny Text | Base | Overall |
|
| 57 |
+
| :----------------- | :---: | :-------: | :--: | :----: | :----------: | :-------: | :--: | :-----: |
|
| 58 |
+
| [LightOnOCR-1B-1025](https://huggingface.co/lightonai/LightOnOCR-1B-1025) (151k vocab) | 81.4 | 71.6 | 76.4 | 35.2 | 80.0 | 88.7 | 99.5 | **76.1** |
|
| 59 |
+
| [LightOnOCR-1B-32k](https://huggingface.co/lightonai/LightOnOCR-0.9B-32k-1025) (32k vocab) | 80.6 | 66.2 | 73.5 | 33.5 | 71.2 | 87.6 | 99.5 | **73.1** |
|
| 60 |
+
| [LightOnOCR-1B-16k](https://huggingface.co/lightonai/LightOnOCR-0.9B-16k-1025) (16k vocab) | 82.3 | 72.9 | 75.3 | 33.5 | 78.6 | 85.1 | 99.8 | **75.4** |
|
| 61 |
|
| 62 |
+
All benchmarks evaluated using standardized LightOnOCR inference via **vLLM** on the LightOn internal OCR test suite (2025-10).
|
| 63 |
|
| 64 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
+
## Installation
|
| 67 |
+
|
| 68 |
+
```bash
|
| 69 |
+
|
| 70 |
+
uv venv --python 3.12 --seed
|
| 71 |
+
source .venv/bin/activate
|
| 72 |
+
|
| 73 |
+
uv pip install -U vllm \
|
| 74 |
+
--torch-backend=auto \
|
| 75 |
+
--extra-index-url https://wheels.vllm.ai/nightly \
|
| 76 |
+
--prerelease=allow
|
| 77 |
+
|
| 78 |
+
uv pip install pypdfium2 pillow requests
|
| 79 |
+
```
|
| 80 |
+
|
| 81 |
+
## Start Server
|
| 82 |
+
|
| 83 |
+
```bash
|
| 84 |
+
vllm serve lightonai/LightOnOCR-0.9B-32k-1025 \
|
| 85 |
+
--limit-mm-per-prompt '{"image": 1}' \
|
| 86 |
+
--async-scheduling
|
| 87 |
+
```
|
| 88 |
+
|
| 89 |
+
## PDF Inference
|
| 90 |
+
|
| 91 |
+
```python
|
| 92 |
+
import base64
|
| 93 |
+
import requests
|
| 94 |
+
import pypdfium2 as pdfium
|
| 95 |
+
import io
|
| 96 |
+
|
| 97 |
+
ENDPOINT = "http://localhost:8000/v1/chat/completions"
|
| 98 |
+
MODEL = "lightonai/LightOnOCR-0.9B-32k-1025"
|
| 99 |
+
|
| 100 |
+
# Download PDF from arXiv
|
| 101 |
+
pdf_url = "https://arxiv.org/pdf/2412.13663"
|
| 102 |
+
pdf_data = requests.get(pdf_url).content
|
| 103 |
+
|
| 104 |
+
# Open PDF and convert first page to image
|
| 105 |
+
pdf = pdfium.PdfDocument(pdf_data)
|
| 106 |
+
page = pdf[0]
|
| 107 |
+
# Render at 300 DPI (scale factor = 300/72 ≈ 4.17)
|
| 108 |
+
pil_image = page.render(scale=4.17).to_pil()
|
| 109 |
+
|
| 110 |
+
# Convert to base64
|
| 111 |
+
buffer = io.BytesIO()
|
| 112 |
+
pil_image.save(buffer, format="PNG")
|
| 113 |
+
image_base64 = base64.b64encode(buffer.getvalue()).decode('utf-8')
|
| 114 |
+
|
| 115 |
+
# Make request
|
| 116 |
+
payload = {
|
| 117 |
+
"model": MODEL,
|
| 118 |
+
"messages": [{
|
| 119 |
+
"role": "user",
|
| 120 |
+
"content": [{
|
| 121 |
+
"type": "image_url",
|
| 122 |
+
"image_url": {"url": f"data:image/png;base64,{image_base64}"}
|
| 123 |
+
}]
|
| 124 |
+
}],
|
| 125 |
+
"max_tokens": 6500,
|
| 126 |
+
"temperature": 0.2,
|
| 127 |
+
"top_p": 0.9,
|
| 128 |
+
}
|
| 129 |
+
|
| 130 |
+
response = requests.post(ENDPOINT, json=payload)
|
| 131 |
+
text = response.json()['choices'][0]['message']['content']
|
| 132 |
+
print(text)
|
| 133 |
+
```
|
| 134 |
+
---
|
| 135 |
|
| 136 |
+
## Rendering and Preprocessing Tips
|
| 137 |
|
| 138 |
+
* Render PDFs to **PNG** or **JPEG** at a target longest dimension of **1280–1300 px**
|
| 139 |
+
* Maintain aspect ratio to preserve text geometry
|
| 140 |
+
* LightOnOCR is robust to moderate skew; heavy rotation correction is optional
|
| 141 |
+
* Use one image per page; batching supported by vLLM
|
| 142 |
|
| 143 |
+
---
|
| 144 |
|
| 145 |
+
## Variants
|
| 146 |
|
| 147 |
+
| Variant | Description |
|
| 148 |
+
| :--------------------------------------------------------------------------------- | :-------------------------------------------- |
|
| 149 |
+
| **[LightOnOCR-1B-1025](https://huggingface.co/lightonai/LightOnOCR-1B-1025)** | Full multilingual model (default) |
|
| 150 |
+
| **[LightOnOCR-1B-32k](https://huggingface.co/lightonai/LightOnOCR-0.9B-32k-1025)** | Compact vocabulary optimized for EU languages |
|
| 151 |
+
| **[LightOnOCR-1B-16k](https://huggingface.co/lightonai/LightOnOCR-0.9B-16k-1025)** | Ultra-fast variant for Latin scripts |
|
| 152 |
|
| 153 |
+
---
|
| 154 |
|
| 155 |
+
## Fine-tuning
|
| 156 |
|
| 157 |
+
**Transformers integration is coming soon for training.**
|
| 158 |
|
| 159 |
+
LightOnOCR is fully differentiable and supports:
|
| 160 |
|
| 161 |
+
* LoRA / QLoRA fine-tuning
|
| 162 |
+
* Domain adaptation (receipts, scientific articles, forms, etc.)
|
| 163 |
+
* Multilingual fine-tuning with task-specific corpora
|
| 164 |
|
|
|
|
| 165 |
|
| 166 |
+
Example fine-tuning configurations will be released alongside the dataset.
|
| 167 |
|
| 168 |
+
---
|
| 169 |
|
| 170 |
+
## Data
|
| 171 |
|
| 172 |
+
Trained on a diverse large-scale PDF corpus covering:
|
| 173 |
|
| 174 |
+
* Scientific papers, books, receipts, invoices, tables, forms, and handwritten text
|
| 175 |
+
* Multiple languages (Latin alphabet dominant)
|
| 176 |
+
* Real and synthetic document scans
|
| 177 |
|
| 178 |
+
The dataset will be released under an open license.
|
| 179 |
|
| 180 |
+
---
|
| 181 |
|
| 182 |
+
## License
|
| 183 |
|
| 184 |
+
Apache License 2.0
|
| 185 |
|
| 186 |
+
---
|
| 187 |
|
| 188 |
+
## Citation
|
| 189 |
|
| 190 |
+
```
|
| 191 |
+
@misc{lightonocr2025,
|
| 192 |
+
title = {LightOnOCR-1B: End-to-End and Efficient Domain-Specific Vision-Language Models for OCR},
|
| 193 |
+
author = {LightOn},
|
| 194 |
+
year = {2025},
|
| 195 |
+
howpublished = {\url{https://huggingface.co/lightonai/LightOnOCR-1B-1025}}
|
| 196 |
+
}
|
| 197 |
+
```
|