Bapt120 commited on
Commit
e5efa29
·
verified ·
1 Parent(s): 816ab0f

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +156 -158
README.md CHANGED
@@ -1,199 +1,197 @@
 
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
 
78
- ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
 
82
- [More Information Needed]
83
 
84
- ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
 
 
133
 
 
134
 
135
- ## Model Examination [optional]
 
136
 
137
- <!-- Relevant interpretability work for the model goes here -->
 
 
138
 
139
- [More Information Needed]
140
 
141
- ## Environmental Impact
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
 
 
 
 
144
 
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
154
 
155
- ### Model Architecture and Objective
156
 
157
- [More Information Needed]
 
 
 
158
 
159
- ### Compute Infrastructure
160
 
161
- [More Information Needed]
162
 
163
- #### Hardware
 
 
 
 
164
 
165
- [More Information Needed]
166
 
167
- #### Software
168
 
169
- [More Information Needed]
170
 
171
- ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
 
 
174
 
175
- **BibTeX:**
176
 
177
- [More Information Needed]
178
 
179
- **APA:**
180
 
181
- [More Information Needed]
182
 
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
 
 
186
 
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
 
 
 
 
 
 
1
+
2
  ---
3
+ license: apache-2.0
4
+ language:
5
+ - en
6
+ - fr
7
+ - de
8
+ - es
9
+ - it
10
+ - nl
11
+ - pt
12
+ - sv
13
+ - da
14
+ base_model: lightonai/LightOnOCR-1B-1025
15
+ library_name: vllm
16
+ tags:
17
+ - ocr
18
+ - document-understanding
19
+ - vision-language
20
+ - pdf
21
+ - tables
22
+ - forms
23
  ---
24
 
25
+ # LightOnOCR-1B-1025
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
 
27
+ Full BF16 version of the model. We recommend this variant for further fine-tuning or research use.
28
 
29
+ **LightOnOCR-1B** is a compact, end-to-end vision–language model for Optical Character Recognition (OCR) and document understanding. It achieves state-of-the-art accuracy in its weight class while being several times faster and cheaper than larger general-purpose VLMs.
30
 
31
+ 📝 **[Read the full blog post](https://huggingface.co/blog/lightonai/lightonocr/)**
32
 
33
+ **Highlights**
34
 
35
+ * **Speed:** faster than dots.ocr, faster than PaddleOCR-VL-0.9B, 1.73× faster than DeepSeekOCR
36
+ * 💸 **Efficiency:** Processes 5.71 pages/s on a single H100 (~493k pages/day) for **<$0.01 per 1,000 pages**
37
+ * 🧠 **End-to-End:** Fully differentiable, no external OCR pipeline
38
+ * 🧾 **Versatile:** Handles tables, receipts, forms, multi-column layouts, and math notation
39
+ * 🌍 **Compact variants:** 32k and 16k vocab options for European languages
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
 
41
+ ---
42
 
43
+ ## Model Overview
44
 
45
+ **LightOnOCR** combines a high-performance Vision Transformer encoder with a lightweight text decoder distilled from high-quality open VLMs.
46
+ It is optimized for document parsing tasks, producing accurate, layout-aware text extraction from high-resolution pages.
47
 
48
+ * **Architecture:** ViT-based vision encoder + lean text decoder
49
+ * **Training Objective:** End-to-end OCR + layout-aware text generation
50
+ * **Performance:** Stable under rotation, skew, and low-contrast scans
51
 
52
+ ---
53
 
54
+ ## Benchmarks
55
 
56
+ | Model | ArXiv | Old Scans | Math | Tables | Multi-Column | Tiny Text | Base | Overall |
57
+ | :----------------- | :---: | :-------: | :--: | :----: | :----------: | :-------: | :--: | :-----: |
58
+ | [LightOnOCR-1B-1025](https://huggingface.co/lightonai/LightOnOCR-1B-1025) (151k vocab) | 81.4 | 71.6 | 76.4 | 35.2 | 80.0 | 88.7 | 99.5 | **76.1** |
59
+ | [LightOnOCR-1B-32k](https://huggingface.co/lightonai/LightOnOCR-0.9B-32k-1025) (32k vocab) | 80.6 | 66.2 | 73.5 | 33.5 | 71.2 | 87.6 | 99.5 | **73.1** |
60
+ | [LightOnOCR-1B-16k](https://huggingface.co/lightonai/LightOnOCR-0.9B-16k-1025) (16k vocab) | 82.3 | 72.9 | 75.3 | 33.5 | 78.6 | 85.1 | 99.8 | **75.4** |
61
 
62
+ All benchmarks evaluated using standardized LightOnOCR inference via **vLLM** on the LightOn internal OCR test suite (2025-10).
63
 
64
+ ---
 
 
 
 
65
 
66
+ ## Installation
67
+
68
+ ```bash
69
+
70
+ uv venv --python 3.12 --seed
71
+ source .venv/bin/activate
72
+
73
+ uv pip install -U vllm \
74
+ --torch-backend=auto \
75
+ --extra-index-url https://wheels.vllm.ai/nightly \
76
+ --prerelease=allow
77
+
78
+ uv pip install pypdfium2 pillow requests
79
+ ```
80
+
81
+ ## Start Server
82
+
83
+ ```bash
84
+ vllm serve lightonai/LightOnOCR-0.9B-32k-1025 \
85
+ --limit-mm-per-prompt '{"image": 1}' \
86
+ --async-scheduling
87
+ ```
88
+
89
+ ## PDF Inference
90
+
91
+ ```python
92
+ import base64
93
+ import requests
94
+ import pypdfium2 as pdfium
95
+ import io
96
+
97
+ ENDPOINT = "http://localhost:8000/v1/chat/completions"
98
+ MODEL = "lightonai/LightOnOCR-0.9B-32k-1025"
99
+
100
+ # Download PDF from arXiv
101
+ pdf_url = "https://arxiv.org/pdf/2412.13663"
102
+ pdf_data = requests.get(pdf_url).content
103
+
104
+ # Open PDF and convert first page to image
105
+ pdf = pdfium.PdfDocument(pdf_data)
106
+ page = pdf[0]
107
+ # Render at 300 DPI (scale factor = 300/72 ≈ 4.17)
108
+ pil_image = page.render(scale=4.17).to_pil()
109
+
110
+ # Convert to base64
111
+ buffer = io.BytesIO()
112
+ pil_image.save(buffer, format="PNG")
113
+ image_base64 = base64.b64encode(buffer.getvalue()).decode('utf-8')
114
+
115
+ # Make request
116
+ payload = {
117
+ "model": MODEL,
118
+ "messages": [{
119
+ "role": "user",
120
+ "content": [{
121
+ "type": "image_url",
122
+ "image_url": {"url": f"data:image/png;base64,{image_base64}"}
123
+ }]
124
+ }],
125
+ "max_tokens": 6500,
126
+ "temperature": 0.2,
127
+ "top_p": 0.9,
128
+ }
129
+
130
+ response = requests.post(ENDPOINT, json=payload)
131
+ text = response.json()['choices'][0]['message']['content']
132
+ print(text)
133
+ ```
134
+ ---
135
 
136
+ ## Rendering and Preprocessing Tips
137
 
138
+ * Render PDFs to **PNG** or **JPEG** at a target longest dimension of **1280–1300 px**
139
+ * Maintain aspect ratio to preserve text geometry
140
+ * LightOnOCR is robust to moderate skew; heavy rotation correction is optional
141
+ * Use one image per page; batching supported by vLLM
142
 
143
+ ---
144
 
145
+ ## Variants
146
 
147
+ | Variant | Description |
148
+ | :--------------------------------------------------------------------------------- | :-------------------------------------------- |
149
+ | **[LightOnOCR-1B-1025](https://huggingface.co/lightonai/LightOnOCR-1B-1025)** | Full multilingual model (default) |
150
+ | **[LightOnOCR-1B-32k](https://huggingface.co/lightonai/LightOnOCR-0.9B-32k-1025)** | Compact vocabulary optimized for EU languages |
151
+ | **[LightOnOCR-1B-16k](https://huggingface.co/lightonai/LightOnOCR-0.9B-16k-1025)** | Ultra-fast variant for Latin scripts |
152
 
153
+ ---
154
 
155
+ ## Fine-tuning
156
 
157
+ **Transformers integration is coming soon for training.**
158
 
159
+ LightOnOCR is fully differentiable and supports:
160
 
161
+ * LoRA / QLoRA fine-tuning
162
+ * Domain adaptation (receipts, scientific articles, forms, etc.)
163
+ * Multilingual fine-tuning with task-specific corpora
164
 
 
165
 
166
+ Example fine-tuning configurations will be released alongside the dataset.
167
 
168
+ ---
169
 
170
+ ## Data
171
 
172
+ Trained on a diverse large-scale PDF corpus covering:
173
 
174
+ * Scientific papers, books, receipts, invoices, tables, forms, and handwritten text
175
+ * Multiple languages (Latin alphabet dominant)
176
+ * Real and synthetic document scans
177
 
178
+ The dataset will be released under an open license.
179
 
180
+ ---
181
 
182
+ ## License
183
 
184
+ Apache License 2.0
185
 
186
+ ---
187
 
188
+ ## Citation
189
 
190
+ ```
191
+ @misc{lightonocr2025,
192
+ title = {LightOnOCR-1B: End-to-End and Efficient Domain-Specific Vision-Language Models for OCR},
193
+ author = {LightOn},
194
+ year = {2025},
195
+ howpublished = {\url{https://huggingface.co/lightonai/LightOnOCR-1B-1025}}
196
+ }
197
+ ```