logasanjeev commited on
Commit
34eaa53
·
verified ·
1 Parent(s): f68271b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -5
README.md CHANGED
@@ -156,7 +156,7 @@ model-index:
156
  source:
157
  name: Kaggle Evaluation Notebook
158
  url: >-
159
- https://www.kaggle.com/code/ravindranlogasanjeev/evaluation-logasanjeev-emotion-analyzer-bert/notebook
160
  ---
161
 
162
  # Emotion Analyzer Bert
@@ -176,7 +176,7 @@ Fine-tuned [BERT-base-uncased](https://huggingface.co/bert-base-uncased) on [GoE
176
 
177
  ## Try It Out
178
 
179
- For accurate predictions with optimized thresholds, use the [Gradio demo](https://logasanjeev-emotion-analyzer-bert-demo.hf.space). The demo now includes preprocessed text and the top 5 predicted emotions, in addition to thresholded predictions. Example predictions:
180
 
181
  - **Input**: "I’m thrilled to win this award! 😄"
182
  - **Output**: `excitement: 0.5836, joy: 0.5290`
@@ -263,7 +263,7 @@ import os
263
  from huggingface_hub import hf_hub_download
264
  from importlib import import_module
265
 
266
- repo_id = "logasanjeev/emotion-analyzer-bert"
267
  local_file = hf_hub_download(repo_id=repo_id, filename="inference.py")
268
 
269
  current_dir = os.getcwd()
@@ -330,7 +330,7 @@ import os
330
  from huggingface_hub import hf_hub_download
331
  from importlib import import_module
332
 
333
- repo_id = "logasanjeev/emotion-analyzer-bert"
334
  local_file = hf_hub_download(repo_id=repo_id, filename="onnx_inference.py")
335
 
336
  current_dir = os.getcwd()
@@ -407,7 +407,7 @@ def preprocess_text(text):
407
  text = text.lower()
408
  return text
409
 
410
- repo_id = "logasanjeev/emotion-analyzer-bert"
411
  model = BertForSequenceClassification.from_pretrained(repo_id)
412
  tokenizer = BertTokenizer.from_pretrained(repo_id)
413
 
 
156
  source:
157
  name: Kaggle Evaluation Notebook
158
  url: >-
159
+ https://www.kaggle.com/code/ravindranlogasanjeev/evaluation-logasanjeev-emotions-analyzer-bert/notebook
160
  ---
161
 
162
  # Emotion Analyzer Bert
 
176
 
177
  ## Try It Out
178
 
179
+ For accurate predictions with optimized thresholds, use the [Gradio demo](https://logasanjeev-emotions-analyzer-bert-demo.hf.space). The demo now includes preprocessed text and the top 5 predicted emotions, in addition to thresholded predictions. Example predictions:
180
 
181
  - **Input**: "I’m thrilled to win this award! 😄"
182
  - **Output**: `excitement: 0.5836, joy: 0.5290`
 
263
  from huggingface_hub import hf_hub_download
264
  from importlib import import_module
265
 
266
+ repo_id = "logasanjeev/emotions-analyzer-bert"
267
  local_file = hf_hub_download(repo_id=repo_id, filename="inference.py")
268
 
269
  current_dir = os.getcwd()
 
330
  from huggingface_hub import hf_hub_download
331
  from importlib import import_module
332
 
333
+ repo_id = "logasanjeev/emotions-analyzer-bert"
334
  local_file = hf_hub_download(repo_id=repo_id, filename="onnx_inference.py")
335
 
336
  current_dir = os.getcwd()
 
407
  text = text.lower()
408
  return text
409
 
410
+ repo_id = "logasanjeev/emotions-analyzer-bert"
411
  model = BertForSequenceClassification.from_pretrained(repo_id)
412
  tokenizer = BertTokenizer.from_pretrained(repo_id)
413