louisun commited on
Commit
794be33
·
verified ·
1 Parent(s): 1381138

(Trained with Unsloth)

Browse files
config.json ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "DeepseekOCRForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "auto_map": {
8
+ "AutoConfig": "modeling_deepseekocr.DeepseekOCRConfig",
9
+ "AutoModel": "modeling_deepseekocr.DeepseekOCRForCausalLM"
10
+ },
11
+ "aux_loss_alpha": 0.001,
12
+ "bos_token_id": 0,
13
+ "candidate_resolutions": [
14
+ [
15
+ 1024,
16
+ 1024
17
+ ]
18
+ ],
19
+ "torch_dtype": "float16",
20
+ "eos_token_id": 1,
21
+ "first_k_dense_replace": 1,
22
+ "global_view_pos": "head",
23
+ "head_dim": 128,
24
+ "hidden_act": "silu",
25
+ "hidden_size": 1280,
26
+ "initializer_range": 0.02,
27
+ "intermediate_size": 6848,
28
+ "kv_lora_rank": null,
29
+ "language_config": {
30
+ "architectures": [
31
+ "DeepseekV2ForCausalLM"
32
+ ],
33
+ "auto_map": {
34
+ "AutoConfig": "configuration_deepseekv2.DeepseekV2Config",
35
+ "AutoModel": "modeling_deepseek.DeepseekV2Model",
36
+ "AutoModelForCausalLM": "modeling_deepseek.DeepseekV2ForCausalLM"
37
+ },
38
+ "bos_token_id": 0,
39
+ "eos_token_id": 1,
40
+ "first_k_dense_replace": 1,
41
+ "hidden_size": 1280,
42
+ "intermediate_size": 6848,
43
+ "kv_lora_rank": null,
44
+ "lm_head": true,
45
+ "max_position_embeddings": 8192,
46
+ "moe_intermediate_size": 896,
47
+ "n_group": 1,
48
+ "n_routed_experts": 64,
49
+ "n_shared_experts": 2,
50
+ "num_attention_heads": 10,
51
+ "num_experts_per_tok": 6,
52
+ "num_hidden_layers": 12,
53
+ "num_key_value_heads": 10,
54
+ "q_lora_rank": null,
55
+ "qk_nope_head_dim": 0,
56
+ "qk_rope_head_dim": 0,
57
+ "rm_head": false,
58
+ "topk_group": 1,
59
+ "topk_method": "greedy",
60
+ "torch_dtype": "bfloat16",
61
+ "use_mla": false,
62
+ "v_head_dim": 0,
63
+ "vocab_size": 129280
64
+ },
65
+ "lm_head": true,
66
+ "max_position_embeddings": 8192,
67
+ "mlp_bias": false,
68
+ "model_type": "DeepseekOCR",
69
+ "moe_intermediate_size": 896,
70
+ "n_group": 1,
71
+ "n_routed_experts": 64,
72
+ "n_shared_experts": 2,
73
+ "norm_topk_prob": false,
74
+ "num_attention_heads": 10,
75
+ "num_experts_per_tok": 6,
76
+ "num_hidden_layers": 12,
77
+ "num_key_value_heads": 10,
78
+ "pad_token_id": 2,
79
+ "projector_config": {
80
+ "input_dim": 2048,
81
+ "model_type": "mlp_projector",
82
+ "n_embed": 1280,
83
+ "projector_type": "linear"
84
+ },
85
+ "q_lora_rank": null,
86
+ "qk_nope_head_dim": 0,
87
+ "qk_rope_head_dim": 0,
88
+ "rm_head": false,
89
+ "rms_norm_eps": 1e-06,
90
+ "rope_scaling": null,
91
+ "rope_theta": 10000.0,
92
+ "routed_scaling_factor": 1.0,
93
+ "seq_aux": true,
94
+ "tie_word_embeddings": false,
95
+ "tile_tag": "2D",
96
+ "topk_group": 1,
97
+ "topk_method": "greedy",
98
+ "transformers_version": "4.56.2",
99
+ "unsloth_version": "2025.11.1",
100
+ "use_cache": true,
101
+ "use_mla": false,
102
+ "v_head_dim": 0,
103
+ "vision_config": {
104
+ "image_size": 1024,
105
+ "mlp_ratio": 3.7362,
106
+ "model_name": "deeplip_b_l",
107
+ "model_type": "vision",
108
+ "width": {
109
+ "clip-l-14-224": {
110
+ "heads": 16,
111
+ "image_size": 224,
112
+ "layers": 24,
113
+ "patch_size": 14,
114
+ "width": 1024
115
+ },
116
+ "sam_vit_b": {
117
+ "downsample_channels": [
118
+ 512,
119
+ 1024
120
+ ],
121
+ "global_attn_indexes": [
122
+ 2,
123
+ 5,
124
+ 8,
125
+ 11
126
+ ],
127
+ "heads": 12,
128
+ "layers": 12,
129
+ "width": 768
130
+ }
131
+ }
132
+ },
133
+ "vocab_size": 129280
134
+ }
conversation.py ADDED
@@ -0,0 +1,280 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ From https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py
3
+ """
4
+
5
+ import dataclasses
6
+ from enum import IntEnum, auto
7
+ from typing import Any, Dict, List
8
+
9
+
10
+ class SeparatorStyle(IntEnum):
11
+ """Separator styles."""
12
+
13
+ DeepSeek = auto()
14
+ DeepSeekV2 = auto()
15
+ PLAIN = auto()
16
+ ALIGNMENT = auto()
17
+
18
+
19
+ @dataclasses.dataclass
20
+ class Conversation:
21
+ """A class that manages prompt templates and keeps all conversation history."""
22
+
23
+ # The name of this template
24
+ name: str
25
+ # The template of the system prompt
26
+ system_template: str = "{system_message}"
27
+ # The system message
28
+ system_message: str = ""
29
+ # The names of two roles
30
+ roles: List[str] = (("USER", "ASSISTANT"),)
31
+ # All messages. Each item is (role, message).
32
+ messages: List[List[str]] = ()
33
+ # The number of few shot examples
34
+ offset: int = 0
35
+ # The separator style and configurations
36
+ sep_style: SeparatorStyle = SeparatorStyle.DeepSeek
37
+ sep: str = "\n"
38
+ sep2: str = None
39
+ # Stop criteria (the default one is EOS token)
40
+ stop_str: str = None
41
+ # Stops generation if meeting any token in this list
42
+ stop_token_ids: List[int] = None
43
+
44
+ def get_prompt(self) -> str:
45
+ """Get the prompt for generation."""
46
+ system_prompt = self.system_template.format(system_message=self.system_message)
47
+ if self.sep_style == SeparatorStyle.DeepSeek:
48
+ seps = [self.sep, self.sep2]
49
+ if system_prompt == "" or system_prompt is None:
50
+ ret = ""
51
+ else:
52
+ ret = system_prompt + seps[0]
53
+ for i, (role, message) in enumerate(self.messages):
54
+ if message:
55
+ ret += role + ": " + message + seps[i % 2]
56
+ else:
57
+ ret += role + ":"
58
+ return ret
59
+ elif self.sep_style == SeparatorStyle.DeepSeekV2:
60
+ seps = [self.sep, self.sep2]
61
+ if system_prompt == "" or system_prompt is None:
62
+ ret = ""
63
+ else:
64
+ ret = system_prompt + seps[0]
65
+ for i, (role, message) in enumerate(self.messages):
66
+ if message:
67
+ if role == "User":
68
+ ret += "<|sft▁begin|>\n" + message + self.sep #<|sft▁begin|>User Input<|sft▁end|>\nResponse<|end▁of▁sentence|>
69
+ else:
70
+ ret += message + self.sep2
71
+ else:
72
+ ret = ret
73
+ return ret
74
+
75
+ elif self.sep_style == SeparatorStyle.PLAIN:
76
+ seps = [self.sep, self.sep2]
77
+ ret = ""
78
+ for i, (role, message) in enumerate(self.messages):
79
+ if message:
80
+ if type(message) is tuple:
81
+ message, _, _ = message
82
+ if i % 2 == 0:
83
+ ret += message + seps[i % 2]
84
+ else:
85
+ ret += message + seps[i % 2]
86
+ else:
87
+ ret += ""
88
+ return ret
89
+ elif self.sep_style == SeparatorStyle.ALIGNMENT:
90
+ seps = [self.sep, self.sep2]
91
+ ret = ""
92
+ for i, (role, message) in enumerate(self.messages):
93
+ if message:
94
+ if type(message) is tuple:
95
+ message, _, _ = message
96
+ if i % 2 == 0:
97
+ ret += '<image>\n' + seps[i % 2]
98
+ else:
99
+ ret += message + seps[i % 2]
100
+ else:
101
+ ret += ""
102
+ return ret
103
+ else:
104
+ raise ValueError(f"Invalid style: {self.sep_style}")
105
+
106
+ def set_system_message(self, system_message: str):
107
+ """Set the system message."""
108
+ self.system_message = system_message
109
+
110
+ def append_message(self, role: str, message: str):
111
+ """Append a new message."""
112
+ self.messages.append([role, message])
113
+
114
+ def update_last_message(self, message: str):
115
+ """Update the last output.
116
+
117
+ The last message is typically set to be None when constructing the prompt,
118
+ so we need to update it in-place after getting the response from a model.
119
+ """
120
+ self.messages[-1][1] = message
121
+
122
+ def reset_message(self):
123
+ """Reset a new message."""
124
+ self.messages = []
125
+
126
+ def to_gradio_chatbot(self):
127
+ """Convert the conversation to gradio chatbot format."""
128
+ ret = []
129
+ for i, (role, msg) in enumerate(self.messages[self.offset :]):
130
+ if i % 2 == 0:
131
+ ret.append([msg, None])
132
+ else:
133
+ ret[-1][-1] = msg
134
+ return ret
135
+
136
+ def to_openai_api_messages(self):
137
+ """Convert the conversation to OpenAI chat completion format."""
138
+ system_prompt = self.system_template.format(system_message=self.system_message)
139
+ ret = [{"role": "system", "content": system_prompt}]
140
+
141
+ for i, (_, msg) in enumerate(self.messages[self.offset :]):
142
+ if i % 2 == 0:
143
+ ret.append({"role": "user", "content": msg})
144
+ else:
145
+ if msg is not None:
146
+ ret.append({"role": "assistant", "content": msg})
147
+ return ret
148
+
149
+ def copy(self):
150
+ return Conversation(
151
+ name=self.name,
152
+ system_template=self.system_template,
153
+ system_message=self.system_message,
154
+ roles=self.roles,
155
+ messages=[[x, y] for x, y in self.messages],
156
+ offset=self.offset,
157
+ sep_style=self.sep_style,
158
+ sep=self.sep,
159
+ sep2=self.sep2,
160
+ stop_str=self.stop_str,
161
+ stop_token_ids=self.stop_token_ids,
162
+ )
163
+
164
+ def dict(self):
165
+ return {
166
+ "template_name": self.name,
167
+ "system_message": self.system_message,
168
+ "roles": self.roles,
169
+ "messages": self.messages,
170
+ "offset": self.offset,
171
+ }
172
+
173
+
174
+ # A global registry for all conversation templates
175
+ conv_templates: Dict[str, Conversation] = {}
176
+
177
+
178
+ def register_conv_template(template: Conversation, override: bool = False):
179
+ """Register a new conversation template."""
180
+ if not override:
181
+ assert template.name not in conv_templates, f"{template.name} has been registered."
182
+
183
+ conv_templates[template.name] = template
184
+
185
+
186
+ def get_conv_template(name: str) -> Conversation:
187
+ """Get a conversation template."""
188
+ return conv_templates[name].copy()
189
+
190
+
191
+ register_conv_template(
192
+ Conversation(
193
+ name="deepseek",
194
+ system_template="{system_message}",
195
+ # system_message="You are a helpful assistant. Please answer truthfully and write out your "
196
+ # "thinking step by step to be sure you get the right answer.",
197
+ system_message="",
198
+ roles=("<|User|>", "<|Assistant|>"),
199
+ messages=(),
200
+ offset=0,
201
+ sep_style=SeparatorStyle.DeepSeek,
202
+ sep="\n\n",
203
+ sep2="<|end▁of▁sentence|>",
204
+ stop_token_ids=[100001],
205
+ stop_str=["User:", "<|end▁of▁sentence|>"]
206
+ )
207
+ )
208
+ register_conv_template(
209
+ Conversation(
210
+ name="deepseekv2",
211
+ system_template="{system_message}",
212
+ # system_message="You are a helpful assistant. Please answer truthfully and write out your "
213
+ # "thinking step by step to be sure you get the right answer.",
214
+ system_message="",
215
+ roles=("<|User|>", "<|Assistant|>"),
216
+ messages=(),
217
+ offset=0,
218
+ sep_style=SeparatorStyle.DeepSeek,
219
+ sep="",
220
+ sep2="<|end▁of▁sentence|>",
221
+ stop_token_ids=[100001],
222
+ stop_str=["User:", "<|end▁of▁sentence|>"]
223
+ )
224
+ )
225
+
226
+
227
+ register_conv_template(
228
+ Conversation(
229
+ name="plain",
230
+ system_template="",
231
+ system_message="",
232
+ roles=("", ""),
233
+ messages=(),
234
+ offset=0,
235
+ sep_style=SeparatorStyle.PLAIN,
236
+ sep="",
237
+ sep2="",
238
+ stop_token_ids=[100001],
239
+ stop_str=['</s>'],
240
+ )
241
+ )
242
+
243
+
244
+ register_conv_template(
245
+ Conversation(
246
+ name="alignment",
247
+ system_template="",
248
+ system_message="",
249
+ roles=("", ""),
250
+ messages=(),
251
+ offset=0,
252
+ sep_style=SeparatorStyle.ALIGNMENT,
253
+ sep="",
254
+ sep2="",
255
+ stop_token_ids=[100001],
256
+ stop_str=['</s>'],
257
+ )
258
+ )
259
+
260
+
261
+ if __name__ == "__main__":
262
+ print("deepseek template:")
263
+ conv = get_conv_template("deepseek")
264
+ conv.append_message(conv.roles[0], "Hello!")
265
+ conv.append_message(conv.roles[1], "Hi! This is Tony.")
266
+ conv.append_message(conv.roles[0], "Who are you?")
267
+ conv.append_message(conv.roles[1], "I am a helpful assistant.")
268
+ conv.append_message(conv.roles[0], "How are you?")
269
+ conv.append_message(conv.roles[1], None)
270
+ print(conv.get_prompt())
271
+
272
+ print("deepseekv2 template:")
273
+ conv = get_conv_template("deepseekv2")
274
+ conv.append_message(conv.roles[0], "Hello!")
275
+ conv.append_message(conv.roles[1], "Hi! This is Tony.")
276
+ conv.append_message(conv.roles[0], "Who are you?")
277
+ conv.append_message(conv.roles[1], "I am a helpful assistant.")
278
+ conv.append_message(conv.roles[0], "How are you?")
279
+ conv.append_message(conv.roles[1], None)
280
+ print(conv.get_prompt())
deepencoder.py ADDED
@@ -0,0 +1,1058 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+ import torch
3
+ import torch.nn.functional as F
4
+ import copy
5
+
6
+ from contextlib import nullcontext
7
+ import math
8
+ from typing import Optional, Tuple
9
+ # from megatron.model import LayerNorm
10
+
11
+ from einops import rearrange
12
+ from easydict import EasyDict as adict
13
+
14
+
15
+ from typing import Optional, Tuple, Type
16
+ from functools import partial
17
+
18
+
19
+
20
+ class MlpProjector(nn.Module):
21
+
22
+ def __init__(self, cfg):
23
+
24
+ super().__init__()
25
+
26
+ self.cfg = cfg
27
+
28
+ if cfg.projector_type == "identity":
29
+ modules = nn.Identity()
30
+
31
+ elif cfg.projector_type == "linear":
32
+ modules = nn.Linear(cfg.input_dim, cfg.n_embed)
33
+
34
+ elif cfg.projector_type == "mlp_gelu":
35
+ mlp_depth = cfg.get("depth", 1)
36
+ modules = [nn.Linear(cfg.input_dim, cfg.n_embed)]
37
+ for _ in range(1, mlp_depth):
38
+ modules.append(nn.GELU())
39
+ modules.append(nn.Linear(cfg.n_embed, cfg.n_embed))
40
+ modules = nn.Sequential(*modules)
41
+
42
+ elif cfg.projector_type == "normlayer_downsample_mlp_gelu":
43
+ mlp_depth = cfg.get("depth", 1)
44
+ mlp_ratio = cfg.get("mlp_ratio", 1)
45
+ modules = [
46
+ nn.LayerNorm(cfg.input_dim * cfg.downsample_ratio * cfg.downsample_ratio),
47
+ nn.Linear(cfg.input_dim * cfg.downsample_ratio * cfg.downsample_ratio, cfg.n_embed * mlp_ratio)
48
+ ]
49
+ for _ in range(1, mlp_depth - 1):
50
+ modules.append(nn.GELU())
51
+ modules.append(nn.Linear(cfg.n_embed * mlp_ratio, cfg.n_embed * mlp_ratio))
52
+ modules.append(nn.GELU())
53
+ modules.append(nn.Linear(cfg.n_embed * mlp_ratio, cfg.n_embed))
54
+ modules = nn.Sequential(*modules)
55
+
56
+ elif cfg.projector_type == "downsample_mlp_gelu":
57
+ mlp_depth = cfg.get("depth", 1)
58
+ mlp_ratio = cfg.get("mlp_ratio", 1)
59
+ modules = [nn.Linear(cfg.input_dim * cfg.downsample_ratio * cfg.downsample_ratio, cfg.n_embed * mlp_ratio)]
60
+ for _ in range(1, mlp_depth - 1):
61
+ modules.append(nn.GELU())
62
+ modules.append(nn.Linear(cfg.n_embed * mlp_ratio, cfg.n_embed * mlp_ratio))
63
+ modules.append(nn.GELU())
64
+ modules.append(nn.Linear(cfg.n_embed * mlp_ratio, cfg.n_embed))
65
+ modules = nn.Sequential(*modules)
66
+
67
+ elif cfg.projector_type == "low_high_hybrid_split_mlp_gelu":
68
+ mlp_depth = cfg.get("depth", 1)
69
+ self.high_up_proj = nn.Linear(cfg.input_dim, cfg.n_embed // 2)
70
+ self.low_up_proj = nn.Linear(cfg.input_dim, cfg.n_embed // 2)
71
+
72
+ modules = []
73
+ for _ in range(1, mlp_depth):
74
+ modules.append(nn.GELU())
75
+ modules.append(nn.Linear(cfg.n_embed, cfg.n_embed))
76
+ modules = nn.Sequential(*modules)
77
+
78
+ elif cfg.projector_type == "hybrid_split_feature_mlp_gelu":
79
+ mlp_depth = cfg.get("depth", 1)
80
+ channel_div = cfg.get("channel_div", 0.5)
81
+ self.high_up_proj = nn.Linear(cfg.input_dim[0], int(cfg.n_embed * channel_div))
82
+ self.low_up_proj = nn.Linear(cfg.input_dim[1], cfg.n_embed - int(cfg.n_embed * channel_div))
83
+
84
+ modules = []
85
+ for _ in range(1, mlp_depth):
86
+ modules.append(nn.GELU())
87
+ modules.append(nn.Linear(cfg.n_embed, cfg.n_embed))
88
+ modules = nn.Sequential(*modules)
89
+
90
+ elif cfg.projector_type == "low_high_split_mlp_gelu":
91
+ mlp_depth = cfg.get("depth", 1)
92
+ modules = []
93
+ for _ in range(1, mlp_depth):
94
+ modules.append(nn.GELU())
95
+ modules.append(nn.Linear(cfg.n_embed // 2, cfg.n_embed // 2))
96
+ modules = nn.Sequential(*modules)
97
+ self.high_layers = nn.Sequential(*modules)
98
+ self.low_layers = copy.deepcopy(modules)
99
+
100
+ else:
101
+ raise ValueError(f"Unknown projector type: {cfg.projector_type}")
102
+
103
+ if cfg.get("token_pooling", False):
104
+ self.token_pooling_layer = nn.Linear(cfg.input_dim * 4, cfg.input_dim)
105
+
106
+ if cfg.get("conv_fusion_high_low_features", False):
107
+ self.fusion_layer = nn.Linear(cfg.input_dim, cfg.input_dim)
108
+ self.layers = modules
109
+
110
+ def forward(self, x):
111
+ if self.cfg.get("token_pooling", False):
112
+ batch_size, wxh, channels = x.shape
113
+ w = h = int(wxh**0.5)
114
+ x = x.view(batch_size, w, h, channels)
115
+ x = x.permute(0, 3, 1, 2)
116
+ # import ipdb; ipdb.set_trace()
117
+ patches = x.unfold(2, 2, 2).unfold(3, 2, 2)
118
+ batch_size, channels, h_patches, w_patches, _, _ = patches.size()
119
+ # 在通道维度上拼接
120
+ patches = patches.contiguous().view(batch_size, channels, h_patches * w_patches, -1)
121
+
122
+ # 通过线性层
123
+ patches = patches.permute(0, 2, 1, 3).contiguous()
124
+ patches = patches.view(batch_size, h_patches * w_patches, channels * 4)
125
+
126
+ x = self.token_pooling_layer(patches)
127
+
128
+ if self.cfg.get("conv_fusion_high_low_features", False):
129
+ x = self.fusion_layer(x[:, 0]) + x[:, 1]
130
+
131
+ if self.cfg.projector_type == 'low_high_hybrid_split_mlp_gelu':
132
+ high_x, low_x = x[0], x[1]
133
+ high_x = self.high_up_proj(high_x)
134
+ low_x = self.low_up_proj(low_x)
135
+ x = torch.concat([high_x, low_x], dim=-1)
136
+
137
+ if self.cfg.projector_type == 'hybrid_split_feature_mlp_gelu':
138
+ high_x = x[...,:self.cfg.input_dim[0]]
139
+ low_x = x[...,self.cfg.input_dim[0]:]
140
+ high_x = self.high_up_proj(high_x)
141
+ low_x = self.low_up_proj(low_x)
142
+ x = torch.concat([high_x, low_x], dim=-1)
143
+
144
+ if self.cfg.projector_type == 'low_high_split_mlp_gelu':
145
+ high_x, low_x = x[0], x[1]
146
+ high_x = self.high_layers(high_x)
147
+ low_x = self.low_layers(low_x)
148
+ x = torch.concat([high_x, low_x], dim=-1)
149
+ return x
150
+
151
+ if self.cfg.projector_type == 'downsample_mlp_gelu' or self.cfg.projector_type == 'normlayer_downsample_mlp_gelu':
152
+ bs, hw, input_dim = x.shape
153
+ h = w = int((hw) ** 0.5)
154
+
155
+ """compute padding"""
156
+ if h % self.cfg.downsample_ratio:
157
+ pad = self.cfg.downsample_ratio - h % self.cfg.downsample_ratio
158
+ else:
159
+ pad = 0
160
+ x = x.reshape(bs, h, w, input_dim)
161
+ if pad > 0:
162
+ x = F.pad(x, (0, 0, 0, pad, 0, pad), "constant", 0)
163
+
164
+ """4 to 1 concat"""
165
+ x = x.permute(0, 3, 1, 2) # B, C, H, W
166
+ x = F.unfold(x, kernel_size=self.cfg.downsample_ratio, stride=self.cfg.downsample_ratio, padding=0) # B, C*4, HW // 4
167
+ x = x.permute(0, 2, 1)
168
+
169
+ return self.layers(x)
170
+
171
+ @staticmethod
172
+ def get_flops_per_sample(cfg):
173
+ if cfg.projector_type == "linear":
174
+ fwd = 2 * cfg.input_dim * cfg.n_embed
175
+
176
+ elif "mlp_gelu" in cfg.projector_type :
177
+ mlp_depth = cfg.get("depth", 1)
178
+ downsample_ratio = cfg.get("downsample_ratio", 1)
179
+ input_dim = sum(cfg.input_dim) if isinstance(cfg.input_dim, list) else cfg.input_dim
180
+ input_dim = input_dim * downsample_ratio * downsample_ratio
181
+ fwd = 2 * input_dim * cfg.n_embed + (mlp_depth - 1) * 2 * cfg.n_embed * cfg.n_embed
182
+ else:
183
+ fwd = 0
184
+
185
+ return fwd * 3
186
+
187
+
188
+ #===================clip============================================================
189
+
190
+ class LayerNormfp32(torch.nn.LayerNorm):
191
+ """Subclass torch's LayerNorm to handle fp16."""
192
+
193
+ def forward(self, x: torch.Tensor):
194
+ orig_type = x.dtype
195
+ ret = super().forward(x.type(torch.float32))
196
+ return ret.type(orig_type)
197
+
198
+
199
+ def get_abs_pos(abs_pos, tgt_size):
200
+ # abs_pos: L, C
201
+ # tgt_size: M
202
+ # return: M, C
203
+
204
+ # print(tgt_size)
205
+ # print(abs_pos.shape)
206
+ # exit()
207
+ dim = abs_pos.size(-1)
208
+ # print(dim)
209
+ abs_pos_new = abs_pos.squeeze(0)
210
+ cls_token, old_pos_embed = abs_pos_new[:1], abs_pos_new[1:]
211
+
212
+
213
+
214
+ src_size = int(math.sqrt(abs_pos_new.shape[0] - 1))
215
+ tgt_size = int(math.sqrt(tgt_size))
216
+ dtype = abs_pos.dtype
217
+
218
+ if src_size != tgt_size:
219
+ old_pos_embed = old_pos_embed.view(1, src_size, src_size, dim).permute(0, 3, 1,
220
+ 2).contiguous()
221
+ old_pos_embed = old_pos_embed.to(torch.float32)
222
+ new_pos_embed = F.interpolate(
223
+ old_pos_embed,
224
+ size=(tgt_size, tgt_size),
225
+ mode='bicubic',
226
+ antialias=True,
227
+ align_corners=False,
228
+ ).to(dtype)
229
+ new_pos_embed = new_pos_embed.permute(0, 2, 3, 1)
230
+ new_pos_embed = new_pos_embed.view(tgt_size * tgt_size, dim)
231
+ vision_pos_embed = torch.cat([cls_token, new_pos_embed], dim=0)
232
+ vision_pos_embed = vision_pos_embed.view(1, tgt_size * tgt_size + 1, dim)
233
+ return vision_pos_embed
234
+ else:
235
+ return abs_pos
236
+
237
+ @torch.jit.script
238
+ def quick_gelu(x):
239
+ return x * torch.sigmoid(1.702 * x)
240
+
241
+
242
+
243
+ class CLIPVisionEmbeddings(nn.Module):
244
+ def __init__(self, hidden_size=1024, image_size=224, patch_size=14, num_channels=3):
245
+ super().__init__()
246
+ self.embed_dim = hidden_size
247
+ self.image_size = image_size
248
+ self.patch_size = patch_size
249
+
250
+ self.class_embedding = torch.nn.Parameter(torch.randn(self.embed_dim))
251
+
252
+ self.patch_embedding = torch.nn.Conv2d(
253
+ in_channels=num_channels,
254
+ out_channels=self.embed_dim,
255
+ kernel_size=self.patch_size,
256
+ stride=self.patch_size,
257
+ bias=False,
258
+ )
259
+
260
+ self.num_patches = (self.image_size // self.patch_size) ** 2
261
+ self.num_positions = self.num_patches + 1
262
+ self.position_embedding = torch.nn.Embedding(self.num_positions, self.embed_dim)
263
+ self.register_buffer(
264
+ "position_ids", torch.arange(self.num_positions).expand((1, -1))
265
+ )
266
+
267
+ def forward(self, pixel_values, patch_embeds):
268
+ batch_size = pixel_values.shape[0]
269
+ # patch_embeds = self.patch_embedding(
270
+ # pixel_values
271
+ # ) # shape = [*, width, grid, grid]
272
+
273
+
274
+ if patch_embeds is not None:
275
+ patch_embeds = patch_embeds
276
+ # print(patch_embeds.shape)
277
+ else:
278
+ patch_embeds = self.patch_embedding(pixel_values)
279
+ # print(111111)
280
+ # shape = [*, width, grid, grid]
281
+ # patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
282
+
283
+ patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
284
+
285
+
286
+ class_embeds = self.class_embedding.expand(batch_size, 1, -1)
287
+ embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
288
+
289
+ # x = torch.cat([cls_token, x], dim=1)
290
+ embeddings = embeddings + get_abs_pos(self.position_embedding(self.position_ids), embeddings.size(1))
291
+ # embeddings = embeddings + self.position_embedding(self.position_ids)
292
+ return embeddings
293
+
294
+
295
+ class NoTPFeedForward(nn.Module):
296
+ def __init__(
297
+ self,
298
+ cfg,
299
+ dim: int,
300
+ hidden_dim: int,
301
+ ):
302
+ super().__init__()
303
+
304
+ self.fc1 = torch.nn.Linear(dim, hidden_dim, bias=True)
305
+ self.fc2 = torch.nn.Linear(hidden_dim, dim, bias=True)
306
+
307
+ def forward(self, x):
308
+ output = self.fc2(quick_gelu(self.fc1(x)))
309
+ return output
310
+
311
+
312
+
313
+
314
+ class NoTPAttention(torch.nn.Module):
315
+ def __init__(self, cfg):
316
+ super().__init__()
317
+ self.num_heads = cfg.num_attention_heads
318
+ self.n_local_heads = cfg.num_attention_heads
319
+ self.head_dim = cfg.hidden_size // cfg.num_attention_heads
320
+ self.max_seq_len = cfg.seq_length
321
+ self.use_flash_attention = cfg.use_flash_attn
322
+
323
+ self.qkv_proj = torch.nn.Linear(cfg.hidden_size, cfg.hidden_size * 3, bias=True)
324
+ self.out_proj = torch.nn.Linear(cfg.hidden_size, cfg.hidden_size, bias=True)
325
+
326
+ # self.core_attention = CoreAttention(cfg, AttnType.self_attn)
327
+
328
+ self.attn_drop = cfg.attention_dropout
329
+
330
+ def forward(
331
+ self,
332
+ x: torch.Tensor,
333
+ ):
334
+ bsz, seqlen, _ = x.shape
335
+ xqkv = self.qkv_proj(x)
336
+ xqkv = xqkv.view(bsz, seqlen, 3, self.num_heads, self.head_dim)
337
+
338
+ if self.use_flash_attention:
339
+
340
+ xq, xk, xv = torch.split(xqkv, 1, dim=2)
341
+ xq = xq.squeeze(2)
342
+ xk = xk.squeeze(2)
343
+ xv = xv.squeeze(2)
344
+ # xq, xk, xv = xqkv[:, :, 0, ...], xqkv[:, :, 1, ...], xqkv[:, :, 2, ...]
345
+
346
+ # (B, num_head, S, head_size)
347
+ xq = xq.permute(0, 2, 1, 3)
348
+ xk = xk.permute(0, 2, 1, 3)
349
+ xv = xv.permute(0, 2, 1, 3)
350
+ # with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False):
351
+ output = torch.nn.functional.scaled_dot_product_attention(xq, xk, xv, attn_mask=None)
352
+ output = output.permute(0, 2, 1, 3).reshape(bsz, seqlen, -1)
353
+ # output = output.permute(0, 2, 1, 3).contiguous().view(bsz, seqlen, -1)
354
+ else:
355
+ # print(22222)
356
+ xq, xk, xv = torch.split(xqkv, 1, dim=2)
357
+ xq = xq.squeeze(2)
358
+ xk = xk.squeeze(2)
359
+ xv = xv.squeeze(2)
360
+ # xq, xk, xv = xqkv[:, :, 0, ...], xqkv[:, :, 1, ...], xqkv[:, :, 2, ...]
361
+
362
+ # (B, num_head, S, head_size)
363
+ xq = xq.permute(0, 2, 1, 3)
364
+ xk = xk.permute(0, 2, 1, 3)
365
+ xv = xv.permute(0, 2, 1, 3)
366
+ # with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False):
367
+ output = torch.nn.functional.scaled_dot_product_attention(xq, xk, xv, attn_mask=None)
368
+ output = output.permute(0, 2, 1, 3).reshape(bsz, seqlen, -1)
369
+ # output = output.permute(0, 2, 1, 3).contiguous().view(bsz, seqlen, -1)
370
+ output = self.out_proj(output)
371
+ return output
372
+
373
+ class NoTPTransformerBlock(nn.Module):
374
+ def __init__(self, cfg, layer_id: int, multiple_of=256):
375
+ super().__init__()
376
+
377
+ self.n_heads = cfg.num_attention_heads
378
+ self.dim = cfg.hidden_size
379
+ self.head_dim = cfg.hidden_size // cfg.num_attention_heads
380
+ self.self_attn = NoTPAttention(cfg)
381
+ self.mlp = NoTPFeedForward(
382
+ cfg, dim=cfg.hidden_size, hidden_dim=cfg.ffn_hidden_size
383
+ )
384
+ self.layer_id = layer_id
385
+ self.layer_norm1 = torch.nn.LayerNorm(
386
+ cfg.hidden_size, eps=cfg.layernorm_epsilon
387
+ )
388
+ self.layer_norm2 = torch.nn.LayerNorm(
389
+ cfg.hidden_size, eps=cfg.layernorm_epsilon
390
+ )
391
+
392
+ def forward(self, x: torch.Tensor):
393
+ residual = self.self_attn.forward(self.layer_norm1(x))
394
+ h = x + residual
395
+ out = h + self.mlp.forward(self.layer_norm2(h))
396
+ return out
397
+
398
+
399
+ class NoTPTransformer(nn.Module):
400
+ def __init__(self, cfg):
401
+ super().__init__()
402
+
403
+ self.cfg = cfg
404
+ # self.recompute_list = self.cfg.get("recompute_list", [])
405
+ self.num_layers = cfg.num_layers # _get_num_layers(cfg)
406
+
407
+ self.layers = torch.nn.ModuleList()
408
+ for layer_id in range(self.num_layers):
409
+ self.layers.append(
410
+ NoTPTransformerBlock(
411
+ cfg,
412
+ layer_id + 1,
413
+ )
414
+ )
415
+
416
+ def forward(
417
+ self,
418
+ hidden_states,
419
+ ):
420
+
421
+ for lid, layer in enumerate(self.layers):
422
+ # if lid in self.recompute_list:
423
+ # def custom(layer_id):
424
+ # def custom_forward(*args, **kwargs):
425
+ # x_ = self.layers[layer_id](*args, **kwargs)
426
+ # return x_
427
+
428
+ # return custom_forward
429
+
430
+ # assert hidden_states.requires_grad == True, logger.warning(
431
+ # "When using recalculation, the input must have grad fn"
432
+ # )
433
+ # hidden_states = tensor_parallel.checkpoint(
434
+ # custom(lid),
435
+ # False,
436
+ # hidden_states.contiguous()
437
+ # )
438
+ # else:
439
+ hidden_states = layer(hidden_states)
440
+
441
+ return hidden_states
442
+
443
+
444
+ # from megatron.core.tensor_parallel.layers import non_tensor_paralleled, local_dp_reduce, local_dp_scatter
445
+
446
+ class VitModel(nn.Module):
447
+ def __init__(
448
+ self,
449
+ cfg,
450
+ freeze_embed=False,
451
+ freeze_pre_norm=False
452
+ ) -> None:
453
+ super().__init__()
454
+
455
+ self.embeddings = CLIPVisionEmbeddings(hidden_size=cfg.hidden_size, image_size=cfg.image_size, patch_size=cfg.patch_size)
456
+
457
+ if freeze_embed:
458
+ for name, param in self.embeddings.named_parameters():
459
+ param.requires_grad = False
460
+
461
+ self.transformer = NoTPTransformer(cfg=cfg)
462
+
463
+ if cfg.get("fp32norm", False):
464
+ logger.info("Load fp32 layernorm for ViT.")
465
+ self.pre_layrnorm = LayerNormfp32(
466
+ cfg.hidden_size,
467
+ eps=cfg.get("pre_layernorm_epsilon", 1e-5),
468
+ )
469
+ else:
470
+ self.pre_layrnorm = torch.nn.LayerNorm(
471
+ cfg.hidden_size,
472
+ eps=cfg.get("pre_layernorm_epsilon", 1e-5),
473
+ )
474
+
475
+ # self.pre_layrnorm = RMSNorm(
476
+ # cfg.hidden_size,
477
+ # eps=cfg.get("pre_layernorm_epsilon", 1e-5),
478
+ # sequence_parallel=False,
479
+ # use_fp32=True,
480
+ # use_optimus=True,
481
+ # )
482
+
483
+ if freeze_pre_norm:
484
+ for name, param in self.pre_layrnorm.named_parameters():
485
+ param.requires_grad = False
486
+
487
+ for p in self.parameters():
488
+ p.micro_dp = True
489
+
490
+ def set_input_tensor(self, input_tensor):
491
+ if not isinstance(input_tensor, list):
492
+ input_tensor = [input_tensor]
493
+ self.transformer.set_input_tensor(input_tensor[0])
494
+
495
+ def __str__(self) -> str:
496
+ return "open_clip"
497
+
498
+ def forward(
499
+ self,
500
+ x,
501
+ patch_embeds
502
+ ):
503
+ x = self.embeddings(x, patch_embeds)
504
+ hidden_states = self.pre_layrnorm(x)
505
+
506
+ # hidden_states, dis = local_dp_scatter(hidden_states)
507
+ output = self.transformer(hidden_states)
508
+
509
+ # output = local_dp_reduce(output, dis)
510
+
511
+ return output
512
+
513
+
514
+ vit_model_cfg = adict(
515
+ num_layers=24,
516
+ hidden_size=1024,
517
+ num_heads = 16,
518
+ num_attention_heads=16,
519
+ ffn_hidden_size=4096,
520
+ seq_length=256,
521
+ max_position_embeddings=256,
522
+ use_flash_attn=False,
523
+ understand_projector_stride=2,
524
+ hidden_dropout = 0.0,
525
+ attention_dropout = 0.0,
526
+ no_persist_layer_norm = False,
527
+ layernorm_epsilon = 1e-5,
528
+ pre_layernorm_epsilon = 1e-5,
529
+ image_size = 224,
530
+ patch_size = 14,
531
+ recompute_list = []
532
+ )
533
+
534
+ def build_clip_l():
535
+ return VitModel(
536
+ cfg=vit_model_cfg,
537
+ freeze_embed=False,
538
+ freeze_pre_norm=False,
539
+ )
540
+
541
+
542
+
543
+
544
+
545
+ #=========================Sam-Vary=================================
546
+
547
+
548
+ def get_abs_pos_sam(abs_pos, tgt_size):
549
+
550
+ dtype = abs_pos.dtype
551
+
552
+ src_size = abs_pos.size(1)
553
+
554
+ if src_size != tgt_size:
555
+ old_pos_embed = abs_pos.permute(0, 3, 1, 2)
556
+ old_pos_embed = old_pos_embed.to(torch.float32)
557
+ new_pos_embed = F.interpolate(
558
+ old_pos_embed,
559
+ size=(tgt_size, tgt_size),
560
+ mode='bicubic',
561
+ antialias=True,
562
+ align_corners=False,
563
+ ).to(dtype)
564
+ new_pos_embed = new_pos_embed.permute(0, 2, 3, 1)
565
+ return new_pos_embed
566
+ else:
567
+ return abs_pos
568
+
569
+
570
+
571
+
572
+ class MLPBlock(nn.Module):
573
+ def __init__(
574
+ self,
575
+ embedding_dim: int,
576
+ mlp_dim: int,
577
+ act: Type[nn.Module] = nn.GELU,
578
+ ) -> None:
579
+ super().__init__()
580
+ self.lin1 = nn.Linear(embedding_dim, mlp_dim)
581
+ self.lin2 = nn.Linear(mlp_dim, embedding_dim)
582
+ self.act = act()
583
+
584
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
585
+ return self.lin2(self.act(self.lin1(x)))
586
+
587
+
588
+ # From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa
589
+ # Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119 # noqa
590
+ class LayerNorm2d(nn.Module):
591
+ def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
592
+ super().__init__()
593
+ self.weight = nn.Parameter(torch.ones(num_channels))
594
+ self.bias = nn.Parameter(torch.zeros(num_channels))
595
+ self.eps = eps
596
+
597
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
598
+ u = x.mean(1, keepdim=True)
599
+ s = (x - u).pow(2).mean(1, keepdim=True)
600
+ x = (x - u) / torch.sqrt(s + self.eps)
601
+ x = self.weight[:, None, None] * x + self.bias[:, None, None]
602
+ return x
603
+
604
+
605
+ # This class and its supporting functions below lightly adapted from the ViTDet backbone available at: https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/vit.py # noqa
606
+ class ImageEncoderViT(nn.Module):
607
+ def __init__(
608
+ self,
609
+ img_size: int = 1024,
610
+ patch_size: int = 16,
611
+ in_chans: int = 3,
612
+ embed_dim: int = 768,
613
+ depth: int = 12,
614
+ num_heads: int = 12,
615
+ mlp_ratio: float = 4.0,
616
+ out_chans: int = 256,
617
+ qkv_bias: bool = True,
618
+ norm_layer: Type[nn.Module] = nn.LayerNorm,
619
+ act_layer: Type[nn.Module] = nn.GELU,
620
+ use_abs_pos: bool = True,
621
+ use_rel_pos: bool = False,
622
+ rel_pos_zero_init: bool = True,
623
+ window_size: int = 0,
624
+ global_attn_indexes: Tuple[int, ...] = (),
625
+ ) -> None:
626
+ """
627
+ Args:
628
+ img_size (int): Input image size.
629
+ patch_size (int): Patch size.
630
+ in_chans (int): Number of input image channels.
631
+ embed_dim (int): Patch embedding dimension.
632
+ depth (int): Depth of ViT.
633
+ num_heads (int): Number of attention heads in each ViT block.
634
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
635
+ qkv_bias (bool): If True, add a learnable bias to query, key, value.
636
+ norm_layer (nn.Module): Normalization layer.
637
+ act_layer (nn.Module): Activation layer.
638
+ use_abs_pos (bool): If True, use absolute positional embeddings.
639
+ use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
640
+ rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
641
+ window_size (int): Window size for window attention blocks.
642
+ global_attn_indexes (list): Indexes for blocks using global attention.
643
+ """
644
+ super().__init__()
645
+ self.img_size = img_size
646
+
647
+ self.patch_embed = PatchEmbed(
648
+ kernel_size=(patch_size, patch_size),
649
+ stride=(patch_size, patch_size),
650
+ in_chans=in_chans,
651
+ embed_dim=embed_dim,
652
+ )
653
+
654
+ self.pos_embed: Optional[nn.Parameter] = None
655
+ if use_abs_pos:
656
+ # Initialize absolute positional embedding with pretrain image size.
657
+ self.pos_embed = nn.Parameter(
658
+ torch.zeros(1, img_size // patch_size, img_size // patch_size, embed_dim)
659
+ )
660
+
661
+ self.blocks = nn.ModuleList()
662
+ for i in range(depth):
663
+ block = Block(
664
+ dim=embed_dim,
665
+ num_heads=num_heads,
666
+ mlp_ratio=mlp_ratio,
667
+ qkv_bias=qkv_bias,
668
+ norm_layer=norm_layer,
669
+ act_layer=act_layer,
670
+ use_rel_pos=use_rel_pos,
671
+ rel_pos_zero_init=rel_pos_zero_init,
672
+ window_size=window_size if i not in global_attn_indexes else 0,
673
+ input_size=(img_size // patch_size, img_size // patch_size),
674
+ )
675
+ self.blocks.append(block)
676
+
677
+ self.neck = nn.Sequential(
678
+ nn.Conv2d(
679
+ embed_dim,
680
+ out_chans,
681
+ kernel_size=1,
682
+ bias=False,
683
+ ),
684
+ LayerNorm2d(out_chans),
685
+ nn.Conv2d(
686
+ out_chans,
687
+ out_chans,
688
+ kernel_size=3,
689
+ padding=1,
690
+ bias=False,
691
+ ),
692
+ LayerNorm2d(out_chans),
693
+ )
694
+
695
+ self.net_2 = nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1, bias=False)
696
+ self.net_3 = nn.Conv2d(512, 1024, kernel_size=3, stride=2, padding=1, bias=False)
697
+
698
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
699
+ x = self.patch_embed(x)
700
+ if self.pos_embed is not None:
701
+ # x = x + self.pos_embed
702
+ x = x + get_abs_pos_sam(self.pos_embed, x.size(1))
703
+
704
+ for blk in self.blocks:
705
+ x = blk(x)
706
+
707
+ x = self.neck(x.permute(0, 3, 1, 2))
708
+ x2 = self.net_2(x)
709
+ x3 = self.net_3(x2.clone())
710
+
711
+ return x3
712
+
713
+
714
+ class Block(nn.Module):
715
+ """Transformer blocks with support of window attention and residual propagation blocks"""
716
+
717
+ def __init__(
718
+ self,
719
+ dim: int,
720
+ num_heads: int,
721
+ mlp_ratio: float = 4.0,
722
+ qkv_bias: bool = True,
723
+ norm_layer: Type[nn.Module] = nn.LayerNorm,
724
+ act_layer: Type[nn.Module] = nn.GELU,
725
+ use_rel_pos: bool = False,
726
+ rel_pos_zero_init: bool = True,
727
+ window_size: int = 0,
728
+ input_size: Optional[Tuple[int, int]] = None,
729
+ ) -> None:
730
+ """
731
+ Args:
732
+ dim (int): Number of input channels.
733
+ num_heads (int): Number of attention heads in each ViT block.
734
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
735
+ qkv_bias (bool): If True, add a learnable bias to query, key, value.
736
+ norm_layer (nn.Module): Normalization layer.
737
+ act_layer (nn.Module): Activation layer.
738
+ use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
739
+ rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
740
+ window_size (int): Window size for window attention blocks. If it equals 0, then
741
+ use global attention.
742
+ input_size (tuple(int, int) or None): Input resolution for calculating the relative
743
+ positional parameter size.
744
+ """
745
+ super().__init__()
746
+ self.norm1 = norm_layer(dim)
747
+ self.attn = Attention(
748
+ dim,
749
+ num_heads=num_heads,
750
+ qkv_bias=qkv_bias,
751
+ use_rel_pos=use_rel_pos,
752
+ rel_pos_zero_init=rel_pos_zero_init,
753
+ input_size=input_size if window_size == 0 else (window_size, window_size),
754
+ )
755
+
756
+ self.norm2 = norm_layer(dim)
757
+ self.mlp = MLPBlock(embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer)
758
+
759
+ self.window_size = window_size
760
+
761
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
762
+ shortcut = x
763
+ x = self.norm1(x)
764
+ # Window partition
765
+ if self.window_size > 0:
766
+ H, W = x.shape[1], x.shape[2]
767
+ x, pad_hw = window_partition(x, self.window_size)
768
+
769
+ x = self.attn(x)
770
+ # Reverse window partition
771
+ if self.window_size > 0:
772
+ x = window_unpartition(x, self.window_size, pad_hw, (H, W))
773
+
774
+ x = shortcut + x
775
+ x = x + self.mlp(self.norm2(x))
776
+
777
+ return x
778
+
779
+
780
+ class Attention(nn.Module):
781
+ """Multi-head Attention block with relative position embeddings."""
782
+
783
+ def __init__(
784
+ self,
785
+ dim: int,
786
+ num_heads: int = 8,
787
+ qkv_bias: bool = True,
788
+ use_rel_pos: bool = False,
789
+ rel_pos_zero_init: bool = True,
790
+ input_size: Optional[Tuple[int, int]] = None,
791
+ ) -> None:
792
+ """
793
+ Args:
794
+ dim (int): Number of input channels.
795
+ num_heads (int): Number of attention heads.
796
+ qkv_bias (bool): If True, add a learnable bias to query, key, value.
797
+ rel_pos (bool): If True, add relative positional embeddings to the attention map.
798
+ rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
799
+ input_size (tuple(int, int) or None): Input resolution for calculating the relative
800
+ positional parameter size.
801
+ """
802
+ super().__init__()
803
+ self.num_heads = num_heads
804
+ head_dim = dim // num_heads
805
+ self.scale = head_dim**-0.5
806
+
807
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
808
+ self.proj = nn.Linear(dim, dim)
809
+
810
+ self.use_rel_pos = use_rel_pos
811
+ if self.use_rel_pos:
812
+ assert (
813
+ input_size is not None
814
+ ), "Input size must be provided if using relative positional encoding."
815
+ # initialize relative positional embeddings
816
+ self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim))
817
+ self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))
818
+
819
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
820
+ B, H, W, _ = x.shape
821
+ # qkv with shape (3, B, nHead, H * W, C)
822
+ qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
823
+ # q, k, v with shape (B * nHead, H * W, C)
824
+ q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0)
825
+
826
+ rel_h, rel_w = None, None
827
+ if self.use_rel_pos:
828
+ rel_h, rel_w = add_decomposed_rel_pos(q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W))
829
+
830
+ q = q.view(B, self.num_heads, H * W, -1)
831
+ k = k.view(B, self.num_heads, H * W, -1)
832
+ v = v.view(B, self.num_heads, H * W, -1)
833
+
834
+ if self.use_rel_pos:
835
+ rel_h = rel_h.view(B, self.num_heads, rel_h.size(1), rel_h.size(2), rel_h.size(3))
836
+ rel_w = rel_w.view(B, self.num_heads, rel_w.size(1), rel_w.size(2), rel_w.size(3))
837
+ attn_bias = (rel_h + rel_w).view(B, self.num_heads, rel_h.size(2), rel_h.size(3) * rel_w.size(4))
838
+ x = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=attn_bias)
839
+ # x = _attention_rel_h_rel_w(q, k, v, rel_h, rel_w)
840
+ else:
841
+ x = torch.nn.functional.scaled_dot_product_attention(q, k, v)
842
+
843
+ x = x.view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1)
844
+
845
+ x = self.proj(x)
846
+
847
+ return x
848
+
849
+
850
+ def window_partition(x: torch.Tensor, window_size: int) -> Tuple[torch.Tensor, Tuple[int, int]]:
851
+ """
852
+ Partition into non-overlapping windows with padding if needed.
853
+ Args:
854
+ x (tensor): input tokens with [B, H, W, C].
855
+ window_size (int): window size.
856
+
857
+ Returns:
858
+ windows: windows after partition with [B * num_windows, window_size, window_size, C].
859
+ (Hp, Wp): padded height and width before partition
860
+ """
861
+ B, H, W, C = x.shape
862
+
863
+ pad_h = (window_size - H % window_size) % window_size
864
+ pad_w = (window_size - W % window_size) % window_size
865
+ if pad_h > 0 or pad_w > 0:
866
+ x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
867
+ Hp, Wp = H + pad_h, W + pad_w
868
+
869
+ x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
870
+ windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
871
+ return windows, (Hp, Wp)
872
+
873
+
874
+ def window_unpartition(
875
+ windows: torch.Tensor, window_size: int, pad_hw: Tuple[int, int], hw: Tuple[int, int]
876
+ ) -> torch.Tensor:
877
+ """
878
+ Window unpartition into original sequences and removing padding.
879
+ Args:
880
+ windows (tensor): input tokens with [B * num_windows, window_size, window_size, C].
881
+ window_size (int): window size.
882
+ pad_hw (Tuple): padded height and width (Hp, Wp).
883
+ hw (Tuple): original height and width (H, W) before padding.
884
+
885
+ Returns:
886
+ x: unpartitioned sequences with [B, H, W, C].
887
+ """
888
+ Hp, Wp = pad_hw
889
+ H, W = hw
890
+ B = windows.shape[0] // (Hp * Wp // window_size // window_size)
891
+ x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1)
892
+ x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)
893
+
894
+ if Hp > H or Wp > W:
895
+ x = x[:, :H, :W, :].contiguous()
896
+ return x
897
+
898
+
899
+ def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor:
900
+ """
901
+ Get relative positional embeddings according to the relative positions of
902
+ query and key sizes.
903
+ Args:
904
+ q_size (int): size of query q.
905
+ k_size (int): size of key k.
906
+ rel_pos (Tensor): relative position embeddings (L, C).
907
+
908
+ Returns:
909
+ Extracted positional embeddings according to relative positions.
910
+ """
911
+ max_rel_dist = int(2 * max(q_size, k_size) - 1)
912
+ # Interpolate rel pos if needed.
913
+ if rel_pos.shape[0] != max_rel_dist:
914
+ # Interpolate rel pos.
915
+ dtype = rel_pos.dtype
916
+ rel_pos = rel_pos.to(torch.float32)
917
+ rel_pos_resized = F.interpolate(
918
+ rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1),
919
+ size=max_rel_dist,
920
+ mode="linear",
921
+ ).to(dtype)
922
+ rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0)
923
+ else:
924
+ rel_pos_resized = rel_pos
925
+
926
+ # Scale the coords with short length if shapes for q and k are different.
927
+ q_coords = torch.arange(q_size, device=rel_pos.device)[:, None] * max(k_size / q_size, 1.0)
928
+ k_coords = torch.arange(k_size, device=rel_pos.device)[None, :] * max(q_size / k_size, 1.0)
929
+ relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)
930
+
931
+ return rel_pos_resized[relative_coords.long()]
932
+
933
+
934
+ def add_decomposed_rel_pos(
935
+ q: torch.Tensor,
936
+ rel_pos_h: torch.Tensor,
937
+ rel_pos_w: torch.Tensor,
938
+ q_size: Tuple[int, int],
939
+ k_size: Tuple[int, int],
940
+ ) -> torch.Tensor:
941
+ """
942
+ Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`.
943
+ https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py # noqa B950
944
+ Args:
945
+ q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C).
946
+ rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis.
947
+ rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis.
948
+ q_size (Tuple): spatial sequence size of query q with (q_h, q_w).
949
+ k_size (Tuple): spatial sequence size of key k with (k_h, k_w).
950
+
951
+ Returns:
952
+ attn (Tensor): attention map with added relative positional embeddings.
953
+ """
954
+ q_h, q_w = q_size
955
+ k_h, k_w = k_size
956
+ Rh = get_rel_pos(q_h, k_h, rel_pos_h)
957
+ Rw = get_rel_pos(q_w, k_w, rel_pos_w)
958
+
959
+ B, _, dim = q.shape
960
+ r_q = q.reshape(B, q_h, q_w, dim)
961
+ rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh)
962
+ rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw)
963
+ rel_h = rel_h.unsqueeze(-1)
964
+ rel_w = rel_w.unsqueeze(-2)
965
+ rel_h = rel_h.reshape(B, q_h * q_w, k_h, 1)
966
+ rel_w = rel_w.reshape(B, q_h * q_w, 1, k_w)
967
+
968
+ return rel_h, rel_w
969
+
970
+
971
+ class PatchEmbed(nn.Module):
972
+ """
973
+ Image to Patch Embedding.
974
+ """
975
+
976
+ def __init__(
977
+ self,
978
+ kernel_size: Tuple[int, int] = (16, 16),
979
+ stride: Tuple[int, int] = (16, 16),
980
+ padding: Tuple[int, int] = (0, 0),
981
+ in_chans: int = 3,
982
+ embed_dim: int = 768,
983
+ ) -> None:
984
+ """
985
+ Args:
986
+ kernel_size (Tuple): kernel size of the projection layer.
987
+ stride (Tuple): stride of the projection layer.
988
+ padding (Tuple): padding size of the projection layer.
989
+ in_chans (int): Number of input image channels.
990
+ embed_dim (int): Patch embedding dimension.
991
+ """
992
+ super().__init__()
993
+
994
+ self.proj = nn.Conv2d(
995
+ in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding
996
+ )
997
+
998
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
999
+ x = self.proj(x)
1000
+ # B C H W -> B H W C
1001
+ x = x.permute(0, 2, 3, 1)
1002
+ return x
1003
+
1004
+
1005
+ def build_sam_vit_b(checkpoint=None):
1006
+ return _build_sam(
1007
+ encoder_embed_dim=768,
1008
+ encoder_depth=12,
1009
+ encoder_num_heads=12,
1010
+ encoder_global_attn_indexes=[2, 5, 8, 11],
1011
+ checkpoint=checkpoint,
1012
+ )
1013
+
1014
+ def build_sam_fast_vit_b(checkpoint=None, compile_mode='max-autotune', dtype=torch.bfloat16):
1015
+ image_encoder = build_sam_vit_b(checkpoint).eval().to(dtype)
1016
+ # sam = _apply_eval_dtype_sam(sam, dtype)
1017
+ image_encoder = torch.compile(image_encoder, mode=compile_mode)
1018
+ return image_encoder
1019
+
1020
+
1021
+ def _build_sam(
1022
+ encoder_embed_dim,
1023
+ encoder_depth,
1024
+ encoder_num_heads,
1025
+ encoder_global_attn_indexes,
1026
+ checkpoint=None,
1027
+ ):
1028
+ prompt_embed_dim = 256
1029
+ image_size = 1024
1030
+ vit_patch_size = 16
1031
+ image_embedding_size = image_size // vit_patch_size
1032
+ image_encoder=ImageEncoderViT(
1033
+ depth=encoder_depth,
1034
+ embed_dim=encoder_embed_dim,
1035
+ img_size=image_size,
1036
+ mlp_ratio=4,
1037
+ norm_layer=partial(torch.nn.LayerNorm, eps=1e-6),
1038
+ num_heads=encoder_num_heads,
1039
+ patch_size=vit_patch_size,
1040
+ qkv_bias=True,
1041
+ use_rel_pos=True,
1042
+ global_attn_indexes=encoder_global_attn_indexes,
1043
+ window_size=14,
1044
+ out_chans=prompt_embed_dim,
1045
+ )
1046
+ image_encoder.eval()
1047
+ if checkpoint is not None:
1048
+ # with open(checkpoint, "rb") as f:
1049
+ state_dict = torch.load(checkpoint)
1050
+ # print(state_dict.keys())
1051
+ # for key in state_dict:
1052
+ # image_encoder.load_state_dict({k[14:]: v for k, v in state_dict.items() if 'image_encoder' in k}, strict=False)
1053
+ # ocr-anyting
1054
+ # image_encoder.load_state_dict(state_dict, strict=True)
1055
+ # tob
1056
+ image_encoder.load_state_dict({k[30:]: v for k, v in state_dict.items() if 'vision_tower_high' in k}, strict=True)
1057
+ print(checkpoint)
1058
+ return image_encoder
modeling_deepseekocr.py ADDED
@@ -0,0 +1,1043 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # MIT License modified from prithivMLmods/DeepSeek-OCR-Latest-BF16.I64
2
+ import os
3
+ import math
4
+ import re
5
+ from tqdm import tqdm
6
+ from abc import ABC
7
+ from typing import List, Optional, Tuple, Union
8
+
9
+ from addict import Dict
10
+ from PIL import Image, ImageOps, ImageDraw, ImageFont
11
+ import numpy as np
12
+
13
+ import torch
14
+ import torch.nn as nn
15
+ from torch.nn import CrossEntropyLoss
16
+ from torchvision import transforms
17
+
18
+ from transformers.cache_utils import Cache
19
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
20
+ from transformers import DeepseekV2Model, DeepseekV2ForCausalLM
21
+ from transformers import DeepseekV2Config
22
+ from transformers.models.deepseek_v2.modeling_deepseek_v2 import (
23
+ DeepseekV2Attention, DeepseekV2MLP, DeepseekV2MoE, DeepseekV2RMSNorm, DeepseekV2DecoderLayer)
24
+ from transformers.models.llama.modeling_llama import LlamaAttention, LlamaRotaryEmbedding
25
+ from transformers import TextStreamer
26
+ from .deepencoder import build_sam_vit_b, build_clip_l, MlpProjector
27
+ from .conversation import get_conv_template
28
+
29
+ torch_dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
30
+
31
+ def load_image(image_path):
32
+
33
+ try:
34
+ image = Image.open(image_path)
35
+
36
+ corrected_image = ImageOps.exif_transpose(image)
37
+
38
+ return corrected_image
39
+
40
+ except Exception as e:
41
+ print(f"error: {e}")
42
+ try:
43
+ return Image.open(image_path)
44
+ except:
45
+ return None
46
+
47
+
48
+ def re_match(text):
49
+ pattern = r'(<\|ref\|>(.*?)<\|/ref\|><\|det\|>(.*?)<\|/det\|>)'
50
+ matches = re.findall(pattern, text, re.DOTALL)
51
+
52
+ # pattern1 = r'<\|ref\|>.*?<\|/ref\|>\n'
53
+ # new_text1 = re.sub(pattern1, '', text, flags=re.DOTALL)
54
+
55
+ mathes_image = []
56
+ mathes_other = []
57
+ for a_match in matches:
58
+ if '<|ref|>image<|/ref|>' in a_match[0]:
59
+ mathes_image.append(a_match[0])
60
+ else:
61
+ mathes_other.append(a_match[0])
62
+ return matches, mathes_image, mathes_other
63
+
64
+
65
+ def extract_coordinates_and_label(ref_text, image_width, image_height):
66
+
67
+ try:
68
+ label_type = ref_text[1]
69
+ cor_list = eval(ref_text[2])
70
+ except Exception as e:
71
+ print(e)
72
+ return None
73
+
74
+ return (label_type, cor_list)
75
+
76
+
77
+ def draw_bounding_boxes(image, refs, ouput_path):
78
+
79
+ image_width, image_height = image.size
80
+
81
+ img_draw = image.copy()
82
+ draw = ImageDraw.Draw(img_draw)
83
+
84
+ overlay = Image.new('RGBA', img_draw.size, (0, 0, 0, 0))
85
+ draw2 = ImageDraw.Draw(overlay)
86
+
87
+ # try:
88
+ # except IOError:
89
+ # try:
90
+ # font = ImageFont.truetype("DejaVuSans.ttf", 20)
91
+ # except IOError:
92
+ font = ImageFont.load_default()
93
+
94
+ img_idx = 0
95
+
96
+ for i, ref in enumerate(refs):
97
+ try:
98
+ result = extract_coordinates_and_label(ref, image_width, image_height)
99
+ if result:
100
+ label_type, points_list = result
101
+
102
+ color = (np.random.randint(0, 200), np.random.randint(0, 200), np.random.randint(0, 255))
103
+
104
+ color_a = color + (20, )
105
+ for points in points_list:
106
+ x1, y1, x2, y2 = points
107
+
108
+ x1 = int(x1 / 999 * image_width)
109
+ y1 = int(y1 / 999 * image_height)
110
+
111
+ x2 = int(x2 / 999 * image_width)
112
+ y2 = int(y2 / 999 * image_height)
113
+
114
+ if label_type == 'image':
115
+ try:
116
+ cropped = image.crop((x1, y1, x2, y2))
117
+ cropped.save(f"{ouput_path}/images/{img_idx}.jpg")
118
+ except Exception as e:
119
+ print(e)
120
+ pass
121
+ img_idx += 1
122
+
123
+ try:
124
+ if label_type == 'title':
125
+ draw.rectangle([x1, y1, x2, y2], outline=color, width=4)
126
+ draw2.rectangle([x1, y1, x2, y2], fill=color_a, outline=(0, 0, 0, 0), width=1)
127
+ else:
128
+ draw.rectangle([x1, y1, x2, y2], outline=color, width=2)
129
+ draw2.rectangle([x1, y1, x2, y2], fill=color_a, outline=(0, 0, 0, 0), width=1)
130
+ text_x = x1
131
+ text_y = max(0, y1 - 15)
132
+
133
+
134
+ text_bbox = draw.textbbox((0, 0), label_type, font=font)
135
+ text_width = text_bbox[2] - text_bbox[0]
136
+ text_height = text_bbox[3] - text_bbox[1]
137
+ draw.rectangle([text_x, text_y, text_x + text_width, text_y + text_height],
138
+ fill=(255, 255, 255, 30))
139
+
140
+ draw.text((text_x, text_y), label_type, font=font, fill=color)
141
+ except:
142
+ pass
143
+ except:
144
+ continue
145
+ img_draw.paste(overlay, (0, 0), overlay)
146
+ return img_draw
147
+
148
+
149
+ def process_image_with_refs(image, ref_texts, output_path):
150
+
151
+ result_image = draw_bounding_boxes(image, ref_texts, output_path)
152
+
153
+ return result_image
154
+
155
+
156
+
157
+
158
+
159
+ def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
160
+ best_ratio_diff = float('inf')
161
+ best_ratio = (1, 1)
162
+ area = width * height
163
+ for ratio in target_ratios:
164
+ target_aspect_ratio = ratio[0] / ratio[1]
165
+ ratio_diff = abs(aspect_ratio - target_aspect_ratio)
166
+ if ratio_diff < best_ratio_diff:
167
+ best_ratio_diff = ratio_diff
168
+ best_ratio = ratio
169
+ elif ratio_diff == best_ratio_diff:
170
+ if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
171
+ best_ratio = ratio
172
+ # print(f'width: {width}, height: {height}, best_ratio: {best_ratio}')
173
+ return best_ratio
174
+
175
+
176
+ def dynamic_preprocess(image, min_num=2, max_num=9, image_size=640, use_thumbnail=False):
177
+ orig_width, orig_height = image.size
178
+ aspect_ratio = orig_width / orig_height
179
+
180
+ # calculate the existing image aspect ratio
181
+ target_ratios = set(
182
+ (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
183
+ i * j <= max_num and i * j >= min_num)
184
+ # print(target_ratios)
185
+ target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
186
+
187
+ # find the closest aspect ratio to the target
188
+ target_aspect_ratio = find_closest_aspect_ratio(
189
+ aspect_ratio, target_ratios, orig_width, orig_height, image_size)
190
+
191
+ # print(target_aspect_ratio)
192
+ # calculate the target width and height
193
+ target_width = image_size * target_aspect_ratio[0]
194
+ target_height = image_size * target_aspect_ratio[1]
195
+ blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
196
+
197
+ # resize the image
198
+ resized_img = image.resize((target_width, target_height))
199
+ processed_images = []
200
+ for i in range(blocks):
201
+ box = (
202
+ (i % (target_width // image_size)) * image_size,
203
+ (i // (target_width // image_size)) * image_size,
204
+ ((i % (target_width // image_size)) + 1) * image_size,
205
+ ((i // (target_width // image_size)) + 1) * image_size
206
+ )
207
+ # split the image
208
+ split_img = resized_img.crop(box)
209
+ processed_images.append(split_img)
210
+ assert len(processed_images) == blocks
211
+ if use_thumbnail and len(processed_images) != 1:
212
+ thumbnail_img = image.resize((image_size, image_size))
213
+ processed_images.append(thumbnail_img)
214
+ return processed_images, target_aspect_ratio
215
+
216
+
217
+
218
+ def normalize_transform(mean, std):
219
+ if mean is None and std is None:
220
+ transform = None
221
+ elif mean is None and std is not None:
222
+ mean = [0.] * len(std)
223
+ transform = transforms.Normalize(mean=mean, std=std)
224
+ elif mean is not None and std is None:
225
+ std = [1.] * len(mean)
226
+ transform = transforms.Normalize(mean=mean, std=std)
227
+ else:
228
+ transform = transforms.Normalize(mean=mean, std=std)
229
+
230
+ return transform
231
+
232
+
233
+
234
+ def format_messages(
235
+ conversations: List[Dict[str, str]],
236
+ sft_format: str = "deepseek",
237
+ system_prompt: str = "",
238
+ ):
239
+ """
240
+ Applies the SFT template to conversation.
241
+
242
+ Args:
243
+ conversations (List[Dict]): A List of messages.
244
+ sft_format (str, optional): The format of the SFT template to use. Defaults to "deepseek".
245
+ system_prompt (str, optional): The system prompt to use in the SFT template. Defaults to "".
246
+
247
+ Returns:
248
+ sft_prompt (str): The formatted text.
249
+ """
250
+
251
+ conv = get_conv_template(sft_format)
252
+ conv.set_system_message(system_prompt)
253
+ for message in conversations:
254
+ conv.append_message(message["role"], message["content"].strip())
255
+ sft_prompt = conv.get_prompt().strip()
256
+
257
+ return sft_prompt
258
+
259
+
260
+ def text_encode(tokenizer, text: str, bos: bool = True, eos: bool = False):
261
+ t = tokenizer.encode(text, add_special_tokens=False)
262
+ bos_id = 0
263
+ eos_id = 1
264
+ if bos:
265
+ t = [bos_id] + t
266
+ if eos:
267
+ t = t + [eos_id]
268
+
269
+ return t
270
+
271
+ def load_pil_images(conversations: List[Dict[str, str]]) -> List[Image.Image]:
272
+ """
273
+
274
+ Args:
275
+ conversations (List[Dict[str, str]]): the conversations with a list of messages. An example is :
276
+ [
277
+ {
278
+ "role": "User",
279
+ "content": "<image_placeholder>\nExtract all information from this image and convert them into markdown format.",
280
+ "images": ["./examples/table_datasets.png"]
281
+ },
282
+ {"role": "Assistant", "content": ""},
283
+ ]
284
+
285
+ Returns:
286
+ pil_images (List[PIL.Image.Image]): the list of PIL images.
287
+
288
+ """
289
+
290
+ pil_images = []
291
+
292
+ for message in conversations:
293
+ if "images" not in message:
294
+ continue
295
+
296
+ for image_path in message["images"]:
297
+ # print('----------------')
298
+ # print(image_path)
299
+ # print('----------------')
300
+ # exit()
301
+
302
+ # pil_img = Image.open(image_path)
303
+ pil_img = load_image(image_path)
304
+ pil_img = pil_img.convert("RGB")
305
+ pil_images.append(pil_img)
306
+
307
+ return pil_images
308
+
309
+
310
+ class BaseTransform(ABC):
311
+
312
+ def set_rng(self, *args, **kwargs):
313
+ pass
314
+
315
+ def __call__(self, *args, **kwargs) -> torch.Tensor:
316
+ pass
317
+
318
+ @property
319
+ def default_shape(self):
320
+ raise NotImplementedError
321
+
322
+
323
+ class BasicImageTransform(BaseTransform):
324
+ def __init__(
325
+ self,
326
+ mean: Optional[Tuple[float, float, float]] = (0.5, 0.5, 0.5),
327
+ std: Optional[Tuple[float, float, float]] = (0.5, 0.5, 0.5),
328
+ normalize: bool = True
329
+ ):
330
+ self.mean = mean
331
+ self.std = std
332
+
333
+ transform_pipelines = [
334
+ transforms.ToTensor()
335
+ ]
336
+
337
+ normalize = normalize_transform(mean, std) if normalize else nn.Identity()
338
+ if normalize is not None:
339
+ transform_pipelines.append(normalize)
340
+
341
+ self.transform = transforms.Compose(transform_pipelines)
342
+
343
+ def __call__(self, x):
344
+ x = self.transform(x)
345
+ return x
346
+
347
+ class NoEOSTextStreamer(TextStreamer):
348
+ def on_finalized_text(self, text: str, stream_end: bool = False):
349
+
350
+ eos_text = self.tokenizer.decode([self.tokenizer.eos_token_id], skip_special_tokens=False)
351
+ text = text.replace(eos_text, "\n")
352
+ print(text, flush=True, end="")
353
+
354
+
355
+ def decoder_layer_init(self, config: DeepseekV2Config, layer_idx: int):
356
+ nn.Module.__init__(self)
357
+ self.hidden_size = config.hidden_size
358
+
359
+ if config.use_mla:
360
+ self.self_attn = DeepseekV2Attention(config=config, layer_idx=layer_idx)
361
+ else:
362
+ config.head_dim = config.hidden_size // config.num_attention_heads
363
+ self.self_attn = LlamaAttention(config, layer_idx)
364
+ self.mlp = DeepseekV2MoE(config) if layer_idx >= config.first_k_dense_replace else DeepseekV2MLP(config)
365
+
366
+ self.input_layernorm = DeepseekV2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
367
+ self.post_attention_layernorm = DeepseekV2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
368
+
369
+
370
+ DeepseekV2DecoderLayer.__init__ = decoder_layer_init
371
+
372
+ class DeepseekOCRConfig(DeepseekV2Config):
373
+ model_type = "DeepseekOCR"
374
+
375
+ class DeepseekOCRModel(DeepseekV2Model):
376
+ config_class = DeepseekOCRConfig
377
+
378
+ def __init__(self, config: DeepseekV2Config):
379
+ super(DeepseekOCRModel, self).__init__(config)
380
+
381
+ self.sam_model = build_sam_vit_b()
382
+ self.vision_model = build_clip_l()
383
+ # self.conv_2 = nn.Conv2d(in_channels=1024, out_channels=2048, kernel_size=2, stride=2)
384
+ n_embed = 1280
385
+ self.projector = MlpProjector(Dict(projector_type="linear", input_dim=2048, n_embed=n_embed))
386
+ embed_std = 1 / torch.sqrt(torch.tensor(n_embed, dtype=torch.float32))
387
+ self.image_newline = nn.Parameter(torch.randn(n_embed) * embed_std)
388
+ self.view_seperator = nn.Parameter(torch.randn(n_embed) * embed_std)
389
+
390
+ self.rotary_emb = LlamaRotaryEmbedding(config=config)
391
+
392
+ def forward(
393
+ self,
394
+ input_ids: torch.LongTensor = None,
395
+ attention_mask: Optional[torch.Tensor] = None,
396
+ position_ids: Optional[torch.LongTensor] = None,
397
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
398
+ inputs_embeds: Optional[torch.FloatTensor] = None,
399
+ use_cache: Optional[bool] = None,
400
+ output_attentions: Optional[bool] = None,
401
+ output_hidden_states: Optional[bool] = None,
402
+ images: Optional[torch.FloatTensor] = None,
403
+ images_seq_mask: Optional[torch.FloatTensor] = None,
404
+ images_spatial_crop: Optional[torch.FloatTensor] = None,
405
+ return_dict: Optional[bool] = None,
406
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
407
+
408
+
409
+
410
+ if inputs_embeds is None:
411
+ # inputs_embeds = self.embed_tokens(input_ids)
412
+ inputs_embeds = self.get_input_embeddings()(input_ids)
413
+
414
+ inputs_embeds = inputs_embeds.clone()
415
+
416
+ sam_model = getattr(self, 'sam_model', None)
417
+ # sam_model = self.sam_model
418
+ vision_model = getattr(self, 'vision_model', None)
419
+
420
+
421
+
422
+ if sam_model is not None and (input_ids.shape[1] != 1 or self.training) and torch.sum(images[0][1]).item() != 0:
423
+
424
+ idx = 0
425
+
426
+ # sam_model = torch.jit.script(sam_model)
427
+
428
+ # start_time = time.time()
429
+ for image, crop_shape in zip(images, images_spatial_crop):
430
+ images_in_this_batch = []
431
+
432
+ patches = image[0]
433
+ image_ori = image[1]
434
+
435
+ with torch.no_grad():
436
+ # with torch.inference_mode():
437
+
438
+ if torch.sum(patches).item() != 0:
439
+ # P, C, H, W = patches.shape
440
+ crop_flag = 1
441
+ local_features_1 = sam_model(patches)
442
+
443
+ local_features_2 = vision_model(patches, local_features_1)
444
+ # vit_time = time.time()
445
+ local_features = torch.cat((local_features_2[:, 1:], local_features_1.flatten(2).permute(0, 2, 1)), dim=-1)
446
+ local_features = self.projector(local_features)
447
+
448
+
449
+ global_features_1 = sam_model(image_ori)
450
+ global_features_2 = vision_model(image_ori, global_features_1)
451
+ global_features = torch.cat((global_features_2[:, 1:], global_features_1.flatten(2).permute(0, 2, 1)), dim=-1)
452
+ global_features = self.projector(global_features)
453
+
454
+ print('=====================')
455
+ print('BASE: ', global_features.shape)
456
+ print('PATCHES: ', local_features.shape)
457
+ print('=====================')
458
+
459
+ _, hw, n_dim = global_features.shape
460
+ h = w = int(hw ** 0.5)
461
+
462
+ _2, hw2, n_dim2 = local_features.shape
463
+ h2 = w2 = int(hw2 ** 0.5)
464
+
465
+ width_crop_num, height_crop_num = crop_shape[0], crop_shape[1]
466
+
467
+ global_features = global_features.view(h, w, n_dim)
468
+
469
+ global_features = torch.cat(
470
+ [global_features, self.image_newline[None, None, :].expand(h, 1, n_dim)], dim=1
471
+ )
472
+
473
+ global_features = global_features.view(-1, n_dim)
474
+
475
+
476
+ local_features = local_features.view(height_crop_num, width_crop_num, h2, w2, n_dim2).permute(0, 2, 1, 3, 4).reshape(height_crop_num*h2, width_crop_num*w2, n_dim2)
477
+ local_features = torch.cat(
478
+ [local_features, self.image_newline[None, None, :].expand(height_crop_num * h2, 1, n_dim2)], dim=1
479
+ )
480
+ local_features = local_features.view(-1, n_dim2)
481
+
482
+ global_local_features = torch.cat([local_features, global_features, self.view_seperator[None, :]], dim=0)
483
+
484
+ # end_time = time.time()
485
+
486
+ # print('sam: ', sam_time - start_time)
487
+ # print('vit: ', vit_time - sam_time)
488
+ # print('all: ', end_time - start_time)
489
+
490
+ # exit()
491
+
492
+ else:
493
+ global_features_1 = sam_model(image_ori)
494
+ global_features_2 = vision_model(image_ori, global_features_1)
495
+ global_features = torch.cat((global_features_2[:, 1:], global_features_1.flatten(2).permute(0, 2, 1)), dim=-1)
496
+ global_features = self.projector(global_features)
497
+ _, hw, n_dim = global_features.shape
498
+ h = w = int(hw ** 0.5)
499
+
500
+
501
+ global_features = global_features.view(h, w, n_dim)
502
+
503
+ global_features = torch.cat(
504
+ [global_features, self.image_newline[None, None, :].expand(h, 1, n_dim)], dim=1
505
+ )
506
+
507
+ global_features = global_features.view(-1, n_dim)
508
+
509
+ global_local_features = torch.cat([global_features, self.view_seperator[None, :]], dim=0)
510
+
511
+ images_in_this_batch.append(global_local_features)
512
+
513
+
514
+ if images_in_this_batch:
515
+ images_in_this_batch = torch.cat(images_in_this_batch, dim=0)
516
+ images_in_this_batch = images_in_this_batch.to(
517
+ device=inputs_embeds.device, dtype=inputs_embeds.dtype
518
+ )
519
+ mask = images_seq_mask[idx].unsqueeze(-1).to(inputs_embeds.device) # bool [T, 1]
520
+ updated_row = inputs_embeds[idx].masked_scatter(mask, images_in_this_batch)
521
+ inputs_embeds[idx] = updated_row
522
+
523
+ idx += 1
524
+
525
+ return super(DeepseekOCRModel, self).forward(
526
+ input_ids=None, attention_mask=attention_mask, past_key_values=past_key_values,
527
+ inputs_embeds=inputs_embeds, use_cache=use_cache, position_ids = position_ids,
528
+ output_attentions=output_attentions, output_hidden_states=output_hidden_states,
529
+ return_dict=return_dict
530
+ )
531
+
532
+
533
+ class DeepseekOCRForCausalLM(DeepseekV2ForCausalLM):
534
+
535
+ config_class = DeepseekOCRConfig
536
+ # supports_gradient_checkpointing = True
537
+
538
+ def __init__(self, config):
539
+ super(DeepseekV2ForCausalLM, self).__init__(config)
540
+ self.model = DeepseekOCRModel(config)
541
+
542
+ self.vocab_size = config.vocab_size
543
+
544
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
545
+
546
+ # Initialize weights and apply final processing
547
+ self.post_init()
548
+
549
+ def get_model(self):
550
+ return self.model
551
+
552
+
553
+ def forward(
554
+ self,
555
+ input_ids: torch.LongTensor = None,
556
+ attention_mask: Optional[torch.Tensor] = None,
557
+ position_ids: Optional[torch.LongTensor] = None,
558
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
559
+ inputs_embeds: Optional[torch.FloatTensor] = None,
560
+ labels: Optional[torch.LongTensor] = None,
561
+ use_cache: Optional[bool] = None,
562
+ output_attentions: Optional[bool] = None,
563
+ output_hidden_states: Optional[bool] = None,
564
+ images: Optional[torch.FloatTensor] = None,
565
+ images_seq_mask: Optional[torch.FloatTensor] = None,
566
+ images_spatial_crop: Optional[torch.FloatTensor] = None,
567
+ return_dict: Optional[bool] = None,
568
+
569
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
570
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
571
+ output_hidden_states = (
572
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
573
+ )
574
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
575
+
576
+
577
+
578
+ outputs = self.model(
579
+ input_ids=input_ids,
580
+ past_key_values=past_key_values,
581
+ attention_mask=attention_mask,
582
+ position_ids=position_ids,
583
+ inputs_embeds=inputs_embeds,
584
+ use_cache=use_cache,
585
+ output_attentions=output_attentions,
586
+ output_hidden_states=output_hidden_states,
587
+ images=images,
588
+ images_seq_mask = images_seq_mask,
589
+ images_spatial_crop = images_spatial_crop,
590
+ return_dict=return_dict
591
+
592
+ )
593
+
594
+ hidden_states = outputs[0]
595
+ logits = self.lm_head(hidden_states)
596
+ logits = logits.float()
597
+
598
+ # logits
599
+
600
+ loss = None
601
+ if labels is not None:
602
+ # Shift so that tokens < n predict n
603
+ shift_logits = logits[..., :-1, :].contiguous()
604
+ shift_labels = labels[..., 1:].contiguous()
605
+ # Flatten the tokens
606
+ loss_fct = CrossEntropyLoss()
607
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
608
+ shift_labels = shift_labels.view(-1)
609
+ # Enable model parallelism
610
+ shift_labels = shift_labels.to(shift_logits.device)
611
+ loss = loss_fct(shift_logits, shift_labels)
612
+
613
+ if not return_dict:
614
+ output = (logits,) + outputs[1:]
615
+ return (loss,) + output if loss is not None else output
616
+
617
+ return CausalLMOutputWithPast(
618
+ loss=loss,
619
+ logits=logits,
620
+ past_key_values=outputs.past_key_values,
621
+ hidden_states=outputs.hidden_states,
622
+ attentions=outputs.attentions,
623
+ )
624
+
625
+
626
+ def prepare_inputs_for_generation(
627
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
628
+ ):
629
+ # Omit tokens covered by past_key_values
630
+ past_length = 0
631
+ if past_key_values is not None:
632
+ if isinstance(past_key_values, Cache):
633
+ cache_length = past_key_values.get_seq_length()
634
+ past_length = past_key_values.get_seq_length()
635
+ max_cache_length = None
636
+ else:
637
+ cache_length = past_length = past_key_values[0][0].shape[2]
638
+ max_cache_length = None
639
+
640
+ # Keep only the unprocessed tokens:
641
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
642
+ # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
643
+ # input)
644
+ if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
645
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
646
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
647
+ # input_ids based on the past_length.
648
+ elif past_length < input_ids.shape[1]:
649
+ input_ids = input_ids[:, past_length:]
650
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
651
+
652
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
653
+ if (
654
+ max_cache_length is not None
655
+ and attention_mask is not None
656
+ and cache_length + input_ids.shape[1] > max_cache_length
657
+ ):
658
+ attention_mask = attention_mask[:, -max_cache_length:]
659
+
660
+ position_ids = kwargs.get("position_ids", None)
661
+ if attention_mask is not None and position_ids is None:
662
+ # create position_ids on the fly for batch generation
663
+ position_ids = attention_mask.long().cumsum(-1) - 1
664
+ position_ids.masked_fill_(attention_mask == 0, 1)
665
+ if past_key_values:
666
+ position_ids = position_ids[:, -input_ids.shape[1] :]
667
+
668
+ # if self.generation_config.cache_implementation == "static":
669
+ # # generation with static cache
670
+ # cache_position = kwargs.get("cache_position", None)
671
+ # if cache_position is None:
672
+ # past_length = 0
673
+ # else:
674
+ # past_length = cache_position[-1] + 1
675
+ # input_ids = input_ids[:, past_length:]
676
+ # position_ids = position_ids[:, past_length:]
677
+
678
+ # TODO @gante we should only keep a `cache_position` in generate, and do +=1.
679
+ # same goes for position ids. Could also help with continued generation.
680
+ cache_position = torch.arange(past_length, past_length + position_ids.shape[-1], device=position_ids.device)
681
+
682
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
683
+ if inputs_embeds is not None and past_key_values is None:
684
+ model_inputs = {"inputs_embeds": inputs_embeds}
685
+ else:
686
+ model_inputs = {"input_ids": input_ids}
687
+
688
+ model_inputs.update(
689
+ {
690
+ "position_ids": position_ids,
691
+ "past_key_values": past_key_values,
692
+ "use_cache": kwargs.get("use_cache"),
693
+ "attention_mask": attention_mask,
694
+ "images": kwargs.get("images", None),
695
+ "images_seq_mask": kwargs.get("images_seq_mask", None),
696
+ "images_spatial_crop": kwargs.get("images_spatial_crop", None),
697
+ }
698
+ )
699
+ return model_inputs
700
+
701
+
702
+ def disable_torch_init(self):
703
+ """
704
+ Disable the redundant torch default initialization to accelerate model creation.
705
+ """
706
+ import torch
707
+ setattr(torch.nn.Linear, "reset_parameters", lambda self: None)
708
+ setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None)
709
+
710
+
711
+
712
+ def infer(self, tokenizer, prompt='', image_file='', output_path = '', base_size=1024, image_size=640, crop_mode=True, test_compress=False, save_results=False, eval_mode=False):
713
+ self.disable_torch_init()
714
+
715
+ os.makedirs(output_path, exist_ok=True)
716
+ os.makedirs(f'{output_path}/images', exist_ok=True)
717
+
718
+ if prompt and image_file:
719
+ conversation = [
720
+ {
721
+ "role": "<|User|>",
722
+ # "content": "<image>\n<|grounding|>Given the layout of the image. ",
723
+ "content": f'{prompt}',
724
+ # "content": "君不见黄河之水天上来的下一句是什么?",
725
+ # "content": "<image>\nFree OCR. ",
726
+ # "content": "<image>\nParse the figure. ",
727
+ # "content": "<image>\nExtract the text in the image. ",
728
+ "images": [f'{image_file}'],
729
+ },
730
+ {"role": "<|Assistant|>", "content": ""},
731
+ ]
732
+
733
+ elif prompt:
734
+ conversation = [
735
+ {
736
+ "role": "<|User|>",
737
+ # "content": "<image>\n<|grounding|>Given the layout of the image. ",
738
+ "content": f'{prompt}',
739
+ # "content": "君不见黄河之水天上来的下一句是什么?",
740
+ # "content": "<image>\nFree OCR. ",
741
+ # "content": "<image>\nParse the figure. ",
742
+ # "content": "<image>\nExtract the text in the image. ",
743
+ # "images": [f'{image_file}'],
744
+ },
745
+ {"role": "<|Assistant|>", "content": ""},
746
+ ]
747
+ else:
748
+ assert False, f'prompt is none!'
749
+
750
+ prompt = format_messages(conversations=conversation, sft_format='plain', system_prompt='')
751
+
752
+ patch_size = 16
753
+ downsample_ratio = 4
754
+ images = load_pil_images(conversation)
755
+
756
+ valid_img_tokens = 0
757
+ ratio = 1
758
+
759
+ image_draw = images[0].copy()
760
+
761
+ w,h = image_draw.size
762
+ # print(w, h)
763
+ ratio = 1 - ((max(w, h) - min(w, h)) / (max(w, h)))
764
+
765
+
766
+ image_transform=BasicImageTransform(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), normalize=True)
767
+ images_seq_mask = []
768
+
769
+ image_token = '<image>'
770
+ image_token_id = 128815
771
+ text_splits = prompt.split(image_token)
772
+
773
+ images_list, images_crop_list, images_seq_mask = [], [], []
774
+ tokenized_str = []
775
+ images_spatial_crop = []
776
+ for text_sep, image in zip(text_splits, images):
777
+
778
+ tokenized_sep = text_encode(tokenizer, text_sep, bos=False, eos=False)
779
+ tokenized_str += tokenized_sep
780
+ images_seq_mask += [False] * len(tokenized_sep)
781
+
782
+ if crop_mode:
783
+
784
+ if image.size[0] <= 640 and image.size[1] <= 640:
785
+ crop_ratio = [1, 1]
786
+
787
+ else:
788
+ if crop_mode:
789
+ # best_width, best_height = select_best_resolution(image.size, self.candidate_resolutions)
790
+ images_crop_raw, crop_ratio = dynamic_preprocess(image)
791
+ else:
792
+ # best_width, best_height = self.image_size, self.image_size
793
+ crop_ratio = [1, 1]
794
+
795
+ """process the global view"""
796
+ # image = image.resize((base_size, base_size))
797
+ global_view = ImageOps.pad(image, (base_size, base_size),
798
+ color=tuple(int(x * 255) for x in image_transform.mean))
799
+
800
+ if base_size == 1024:
801
+ valid_img_tokens += int(256 * ratio)
802
+ elif base_size == 1280:
803
+ valid_img_tokens += int(400 * ratio)
804
+ # elif base_size == 640:
805
+ # valid_img_tokens += int(100 * ratio)
806
+
807
+
808
+
809
+
810
+
811
+ images_list.append(image_transform(global_view).to(torch_dtype))
812
+
813
+ # global_view_tensor = image_transform(global_view).to(torch_dtype)
814
+
815
+ width_crop_num, height_crop_num = crop_ratio
816
+
817
+ images_spatial_crop.append([width_crop_num, height_crop_num])
818
+
819
+
820
+ if width_crop_num > 1 or height_crop_num > 1:
821
+ """process the local views"""
822
+
823
+ for i in range(len(images_crop_raw)):
824
+ images_crop_list.append(image_transform(images_crop_raw[i]).to(torch_dtype))
825
+
826
+ if image_size == 640:
827
+ valid_img_tokens += len(images_crop_list) * 100
828
+
829
+ num_queries = math.ceil((image_size // patch_size) / downsample_ratio)
830
+ num_queries_base = math.ceil((base_size // patch_size) / downsample_ratio)
831
+
832
+
833
+
834
+ """add image tokens"""
835
+
836
+
837
+
838
+ tokenized_image = ([image_token_id] * num_queries_base + [image_token_id]) * num_queries_base
839
+ tokenized_image += [image_token_id]
840
+ if width_crop_num > 1 or height_crop_num > 1:
841
+ tokenized_image += ([image_token_id] * (num_queries * width_crop_num) + [image_token_id]) * (
842
+ num_queries * height_crop_num)
843
+ tokenized_str += tokenized_image
844
+ images_seq_mask += [True] * len(tokenized_image)
845
+ # num_image_tokens.append(len(tokenized_image))
846
+
847
+ else:
848
+ # best_width, best_height = self.image_size, self.image_size
849
+ # print(image.size, (best_width, best_height)) # check the select_best_resolutions func
850
+
851
+ """process the global view"""
852
+ if image_size <= 640:
853
+ print('directly resize')
854
+ image = image.resize((image_size, image_size))
855
+ # else:
856
+ global_view = ImageOps.pad(image, (image_size, image_size),
857
+ color=tuple(int(x * 255) for x in image_transform.mean))
858
+ images_list.append(image_transform(global_view).to(torch_dtype))
859
+
860
+ if base_size == 1024:
861
+ valid_img_tokens += int(256 * ratio)
862
+ elif base_size == 1280:
863
+ valid_img_tokens += int(400 * ratio)
864
+ elif base_size == 640:
865
+ valid_img_tokens += int(100 * 1)
866
+ elif base_size == 512:
867
+ valid_img_tokens += int(64 * 1)
868
+
869
+ width_crop_num, height_crop_num = 1, 1
870
+
871
+ images_spatial_crop.append([width_crop_num, height_crop_num])
872
+
873
+
874
+ """add image tokens"""
875
+ num_queries = math.ceil((image_size // patch_size) / downsample_ratio)
876
+
877
+ tokenized_image = ([image_token_id] * num_queries + [image_token_id]) * num_queries
878
+ tokenized_image += [image_token_id]
879
+ # tokenized_image += ([self.image_token_id] * (num_queries * width_crop_num) + [self.image_token_id]) * (
880
+ # num_queries * height_crop_num)
881
+ tokenized_str += tokenized_image
882
+ images_seq_mask += [True] * len(tokenized_image)
883
+ # num_image_tokens.append(len(tokenized_image))
884
+
885
+
886
+ """process the last text split"""
887
+ tokenized_sep = text_encode(tokenizer, text_splits[-1], bos=False, eos=False)
888
+ tokenized_str += tokenized_sep
889
+ images_seq_mask += [False] * len(tokenized_sep)
890
+
891
+ """add the bos tokens"""
892
+ bos_id = 0
893
+ tokenized_str = [bos_id] + tokenized_str
894
+ images_seq_mask = [False] + images_seq_mask
895
+
896
+
897
+
898
+ input_ids = torch.LongTensor(tokenized_str)
899
+
900
+ images_seq_mask = torch.tensor(images_seq_mask, dtype=torch.bool)
901
+
902
+
903
+ if len(images_list) == 0:
904
+ images_ori = torch.zeros((1, 3, image_size, image_size))
905
+ images_spatial_crop = torch.zeros((1, 2), dtype=torch.long)
906
+ images_crop = torch.zeros((1, 3, base_size, base_size))
907
+
908
+ else:
909
+ images_ori = torch.stack(images_list, dim=0)
910
+ images_spatial_crop = torch.tensor(images_spatial_crop, dtype=torch.long)
911
+ if images_crop_list:
912
+ images_crop = torch.stack(images_crop_list, dim=0)
913
+ else:
914
+ images_crop = torch.zeros((1, 3, base_size, base_size))
915
+
916
+
917
+
918
+ if not eval_mode:
919
+ streamer = NoEOSTextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=False)
920
+ with torch.autocast("cuda", dtype=torch_dtype):
921
+ with torch.no_grad():
922
+ output_ids = self.generate(
923
+ input_ids.unsqueeze(0).cuda(),
924
+ images=[(images_crop.cuda(), images_ori.cuda())],
925
+ images_seq_mask = images_seq_mask.unsqueeze(0).cuda(),
926
+ images_spatial_crop = images_spatial_crop,
927
+ # do_sample=False,
928
+ # num_beams = 1,
929
+ temperature=0.0,
930
+ eos_token_id=tokenizer.eos_token_id,
931
+ streamer=streamer,
932
+ max_new_tokens=8192,
933
+ no_repeat_ngram_size = 20,
934
+ use_cache = True
935
+ )
936
+
937
+ else:
938
+ with torch.autocast("cuda", dtype=torch_dtype):
939
+ with torch.no_grad():
940
+ output_ids = self.generate(
941
+ input_ids.unsqueeze(0).cuda(),
942
+ images=[(images_crop.cuda(), images_ori.cuda())],
943
+ images_seq_mask = images_seq_mask.unsqueeze(0).cuda(),
944
+ images_spatial_crop = images_spatial_crop,
945
+ # do_sample=False,
946
+ # num_beams = 1,
947
+ temperature=0.0,
948
+ eos_token_id=tokenizer.eos_token_id,
949
+ max_new_tokens=8192,
950
+ no_repeat_ngram_size = 35,
951
+ use_cache = True
952
+ )
953
+
954
+
955
+ if '<image>' in conversation[0]['content'] and eval_mode:
956
+ outputs = tokenizer.decode(output_ids[0, input_ids.unsqueeze(0).cuda().shape[1]:])
957
+ stop_str = '<|end▁of▁sentence|>'
958
+ if outputs.endswith(stop_str):
959
+ outputs = outputs[:-len(stop_str)]
960
+ # re_match
961
+ outputs = outputs.strip()
962
+
963
+ return outputs
964
+
965
+ if '<image>' in conversation[0]['content'] and test_compress:
966
+ outputs = tokenizer.decode(output_ids[0, input_ids.unsqueeze(0).cuda().shape[1]:])
967
+ pure_texts_outputs_token_length = len(text_encode(tokenizer, outputs, bos=False, eos=False))
968
+ print('='*50)
969
+ print('image size: ', (w, h))
970
+ print('valid image tokens: ', int(valid_img_tokens))
971
+ print('output texts tokens (valid): ', pure_texts_outputs_token_length)
972
+ print('compression ratio: ', round(pure_texts_outputs_token_length/valid_img_tokens, 2))
973
+ print('='*50)
974
+
975
+
976
+ if '<image>' in conversation[0]['content'] and save_results:
977
+ outputs = tokenizer.decode(output_ids[0, input_ids.unsqueeze(0).cuda().shape[1]:])
978
+ stop_str = '<|end▁of▁sentence|>'
979
+
980
+ print('='*15 + 'save results:' + '='*15)
981
+
982
+ # # # # conv.messages[-1][-1] = outputs
983
+ if outputs.endswith(stop_str):
984
+ outputs = outputs[:-len(stop_str)]
985
+ outputs = outputs.strip()
986
+
987
+ matches_ref, matches_images, mathes_other = re_match(outputs)
988
+ # print(matches_ref)
989
+ result = process_image_with_refs(image_draw, matches_ref, output_path)
990
+
991
+
992
+ for idx, a_match_image in enumerate(tqdm(matches_images, desc="image")):
993
+ outputs = outputs.replace(a_match_image, '![](images/' + str(idx) + '.jpg)\n')
994
+
995
+ for idx, a_match_other in enumerate(tqdm(mathes_other, desc="other")):
996
+ outputs = outputs.replace(a_match_other, '').replace('\\coloneqq', ':=').replace('\\eqqcolon', '=:')
997
+
998
+
999
+ # if 'structural formula' in conversation[0]['content']:
1000
+ # outputs = '<smiles>' + outputs + '</smiles>'
1001
+ with open(f'{output_path}/result.mmd', 'w', encoding = 'utf-8') as afile:
1002
+ afile.write(outputs)
1003
+
1004
+ if 'line_type' in outputs:
1005
+ import matplotlib.pyplot as plt
1006
+ lines = eval(outputs)['Line']['line']
1007
+
1008
+ line_type = eval(outputs)['Line']['line_type']
1009
+ # print(lines)
1010
+
1011
+ endpoints = eval(outputs)['Line']['line_endpoint']
1012
+
1013
+ fig, ax = plt.subplots(figsize=(3,3), dpi=200)
1014
+ ax.set_xlim(-15, 15)
1015
+ ax.set_ylim(-15, 15)
1016
+
1017
+ for idx, line in enumerate(lines):
1018
+ try:
1019
+ p0 = eval(line.split(' -- ')[0])
1020
+ p1 = eval(line.split(' -- ')[-1])
1021
+
1022
+ if line_type[idx] == '--':
1023
+ ax.plot([p0[0], p1[0]], [p0[1], p1[1]], linewidth=0.8, color='k')
1024
+ else:
1025
+ ax.plot([p0[0], p1[0]], [p0[1], p1[1]], linewidth = 0.8, color = 'k')
1026
+
1027
+ ax.scatter(p0[0], p0[1], s=5, color = 'k')
1028
+ ax.scatter(p1[0], p1[1], s=5, color = 'k')
1029
+ except:
1030
+ pass
1031
+
1032
+ for endpoint in endpoints:
1033
+
1034
+ label = endpoint.split(': ')[0]
1035
+ (x, y) = eval(endpoint.split(': ')[1])
1036
+ ax.annotate(label, (x, y), xytext=(1, 1), textcoords='offset points',
1037
+ fontsize=5, fontweight='light')
1038
+
1039
+
1040
+ plt.savefig(f'{output_path}/geo.jpg')
1041
+ plt.close()
1042
+
1043
+ result.save(f"{output_path}/result_with_boxes.jpg")
special_tokens_map.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|User|>",
4
+ "<|Assistant|>"
5
+ ],
6
+ "bos_token": {
7
+ "content": "<|begin▁of▁sentence|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "eos_token": {
14
+ "content": "<|end▁of▁sentence|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ },
20
+ "pad_token": {
21
+ "content": "<|▁pad▁|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false
26
+ }
27
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff