For login and popup you just need to handle those scenarios in playwright.
You will need to know how the website you want to scrape implements those mechanisms. Its usually fairly different for each website
For login and popup you just need to handle those scenarios in playwright.
You will need to know how the website you want to scrape implements those mechanisms. Its usually fairly different for each website
@ decorator in ChatGPT. Once the function is selected, the model will either extract or improve your prompt (depending on how you ask).async def query_web_scraper(url: str) -> dict:
scraper = WebScraper(headless=False)
return await scraper.query_page_content(url)# First API call: Send the query and function description to the model
response = ollama.chat(
model=model,
messages=messages,
tools=[
{
'type': 'function',
'function': {
'name': 'query_web_scraper',
'description': 'Scrapes the content of a web page and returns the structured JSON object with titles, articles, and associated links.',
'parameters': {
'type': 'object',
'properties': {
'url': {
'type': 'string',
'description': 'The URL of the web page to scrape.',
},
},
'required': ['url'],
},
},
},
]
)docker pull apostacyh/vllm:lmcache-0.1.0model=mistralai/Mistral-7B-Instruct-v0.2 # Replace with your model name
sudo docker run --runtime nvidia --gpus '"device=0"' \
-v <Huggingface cache dir on your local machine>:/root/.cache/huggingface \
-p 8000:8000 \
--env "HF_TOKEN=<Your huggingface access token>" \
--ipc=host \
--network=host \
apostacyh/vllm:lmcache-0.1.0 \
--model $model --gpu-memory-utilization 0.6 --port 8000 \
--lmcache-config-file /lmcache/LMCache/examples/example-local.yaml# The second vLLM instance listens at port 8001
model=mistralai/Mistral-7B-Instruct-v0.2 # Replace with your model name
sudo docker run --runtime nvidia --gpus '"device=1"' \
-v <Huggingface cache dir on your local machine>:/root/.cache/huggingface \
-p 8001:8001 \
--env "HF_TOKEN=<Your huggingface token>" \
--ipc=host \
--network=host \
apostacyh/vllm:lmcache-0.1.0 \
--model $model --gpu-memory-utilization 0.7 --port 8001 \
--lmcache-config-file /lmcache/LMCache/examples/example.yamldef formatting_prompts_func(examples):
convos = examples["conversations"]
texts = []
mapper = {"system": "system\n", "human": "\nuser\n", "gpt": "\nassistant\n"}
end_mapper = {"system": "", "human": "", "gpt": ""}
for convo in convos:
text = "".join(f"{mapper[(turn := x['from'])]} {x['value']}\n{end_mapper[turn]}" for x in convo)
texts.append(f"{text}{EOS_TOKEN}")
return {"text": texts}
dataset = dataset.map(formatting_prompts_func, batched=True)
print(dataset['text'][8])thanks for letting me know. I have updated the post with the correct link https://colab.research.google.com/drive/1l9zh_VX0X4ylbzpGckCjH5yEflFsLW04?usp=sharing
TLDR: BioLORD-2023 is a series of semantic language models for the biomedical domain, capable of representing clinical concepts and sentences in a semantic space aligned with human preferences. Our new multilingual version supports 50+ languages and is further finetuned on 7 European languages. These models were trained contrastively and through distillations, using a corpus unifying in the same latent space the concept names of biomedical concepts and their descriptions. For concepts which didn't have a description written by humans in UMLS, we use information contained in the SnomedCT knowledge graph and the capabilities of ChatGPT to generate synthetic data and improve our results.