magiccodingman commited on
Commit
91b390b
·
1 Parent(s): 2d6f4c3

new variant found

Browse files
Files changed (44) hide show
  1. Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_f16-router_gate_emb_f16/llamabench.txt +11 -0
  2. Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_f16-router_gate_emb_f16/perplexity_code.txt +189 -0
  3. Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_f16-router_gate_emb_f16/perplexity_general.txt +189 -0
  4. Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_f16-router_gate_emb_f16/perplexity_math.txt +189 -0
  5. Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_f16-router_gate_emb_f16/ppl_corpus_code.txt +0 -0
  6. Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_f16-router_gate_emb_f16/ppl_corpus_general.txt +0 -0
  7. Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_f16-router_gate_emb_f16/ppl_corpus_math.txt +0 -0
  8. Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_f16-router_gate_emb_q6_k/llamabench.txt +11 -0
  9. Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_f16-router_gate_emb_q6_k/perplexity_code.txt +190 -0
  10. Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_f16-router_gate_emb_q6_k/perplexity_general.txt +190 -0
  11. Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_f16-router_gate_emb_q6_k/perplexity_math.txt +190 -0
  12. Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_f16-router_gate_emb_q6_k/ppl_corpus_code.txt +0 -0
  13. Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_f16-router_gate_emb_q6_k/ppl_corpus_general.txt +0 -0
  14. Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_f16-router_gate_emb_q6_k/ppl_corpus_math.txt +0 -0
  15. Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_mxfp4-embd_f16/llamabench.txt +11 -0
  16. Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_mxfp4-embd_f16/perplexity_code.txt +190 -0
  17. Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_mxfp4-embd_f16/perplexity_general.txt +190 -0
  18. Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_mxfp4-embd_f16/perplexity_math.txt +190 -0
  19. Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_mxfp4-embd_f16/ppl_corpus_code.txt +0 -0
  20. Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_mxfp4-embd_f16/ppl_corpus_general.txt +0 -0
  21. Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_mxfp4-embd_f16/ppl_corpus_math.txt +0 -0
  22. Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_mxfp4-router_gate_emb_f16/llamabench.txt +11 -0
  23. Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_mxfp4-router_gate_emb_f16/perplexity_code.txt +190 -0
  24. Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_mxfp4-router_gate_emb_f16/perplexity_general.txt +190 -0
  25. Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_mxfp4-router_gate_emb_f16/perplexity_math.txt +190 -0
  26. Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_mxfp4-router_gate_emb_f16/ppl_corpus_code.txt +0 -0
  27. Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_mxfp4-router_gate_emb_f16/ppl_corpus_general.txt +0 -0
  28. Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_mxfp4-router_gate_emb_f16/ppl_corpus_math.txt +0 -0
  29. Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_q6_k-embd_f16/llamabench.txt +11 -0
  30. Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_q6_k-embd_f16/perplexity_code.txt +190 -0
  31. Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_q6_k-embd_f16/perplexity_general.txt +190 -0
  32. Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_q6_k-embd_f16/perplexity_math.txt +190 -0
  33. Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_q6_k-embd_f16/ppl_corpus_code.txt +0 -0
  34. Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_q6_k-embd_f16/ppl_corpus_general.txt +0 -0
  35. Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_q6_k-embd_f16/ppl_corpus_math.txt +0 -0
  36. Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_q6_k-router_gate_emb_f16/llamabench.txt +11 -0
  37. Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_q6_k-router_gate_emb_f16/perplexity_code.txt +190 -0
  38. Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_q6_k-router_gate_emb_f16/perplexity_general.txt +190 -0
  39. Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_q6_k-router_gate_emb_f16/perplexity_math.txt +190 -0
  40. Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_q6_k-router_gate_emb_f16/ppl_corpus_code.txt +0 -0
  41. Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_q6_k-router_gate_emb_f16/ppl_corpus_general.txt +0 -0
  42. Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_q6_k-router_gate_emb_f16/ppl_corpus_math.txt +0 -0
  43. README.md +135 -63
  44. granite-4.0-h-350m-unsloth-MXFP4_MOE-output_q6_k-router_gate_emb_f16.gguf +3 -0
Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_f16-router_gate_emb_f16/llamabench.txt ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
2
+ ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
3
+ ggml_cuda_init: found 2 CUDA devices:
4
+ Device 0: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
5
+ Device 1: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
6
+ | model | size | params | backend | ngl | test | t/s |
7
+ | ------------------------------ | ---------: | ---------: | ---------- | --: | --------------: | -------------------: |
8
+ | granitehybrid 350M MXFP4 MoE | 461.84 MiB | 340.33 M | CUDA | 35 | pp8 | 1618.73 ± 49.27 |
9
+ | granitehybrid 350M MXFP4 MoE | 461.84 MiB | 340.33 M | CUDA | 35 | tg128 | 286.08 ± 16.41 |
10
+
11
+ build: 92bb442ad (7040)
Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_f16-router_gate_emb_f16/perplexity_code.txt ADDED
@@ -0,0 +1,189 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
2
+ ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
3
+ ggml_cuda_init: found 2 CUDA devices:
4
+ Device 0: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
5
+ Device 1: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
6
+ build: 7040 (92bb442ad) with cc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 for x86_64-linux-gnu
7
+ llama_model_load_from_file_impl: using device CUDA0 (NVIDIA GeForce RTX 3090) (0000:01:00.0) - 21119 MiB free
8
+ llama_model_load_from_file_impl: using device CUDA1 (NVIDIA GeForce RTX 3090) (0000:03:00.0) - 23582 MiB free
9
+ llama_model_loader: loaded meta data with 48 key-value pairs and 402 tensors from /mnt/world8/AI/Models/granite-4.0-h-350m-unsloth/GGUF/MXFP4/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_f16-router_gate_emb_f16.gguf (version GGUF V3 (latest))
10
+ llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
11
+ llama_model_loader: - kv 0: general.architecture str = granitehybrid
12
+ llama_model_loader: - kv 1: general.type str = model
13
+ llama_model_loader: - kv 2: general.name str = Granite 4.0 H 350m Unsloth
14
+ llama_model_loader: - kv 3: general.finetune str = unsloth
15
+ llama_model_loader: - kv 4: general.basename str = granite-4.0-h
16
+ llama_model_loader: - kv 5: general.size_label str = 350M
17
+ llama_model_loader: - kv 6: general.license str = apache-2.0
18
+ llama_model_loader: - kv 7: general.base_model.count u32 = 1
19
+ llama_model_loader: - kv 8: general.base_model.0.name str = Granite 4.0 H 350m
20
+ llama_model_loader: - kv 9: general.base_model.0.organization str = Ibm Granite
21
+ llama_model_loader: - kv 10: general.base_model.0.repo_url str = https://huggingface.co/ibm-granite/gr...
22
+ llama_model_loader: - kv 11: general.tags arr[str,3] = ["language", "unsloth", "granite-4.0"]
23
+ llama_model_loader: - kv 12: granitehybrid.block_count u32 = 32
24
+ llama_model_loader: - kv 13: granitehybrid.context_length u32 = 1048576
25
+ llama_model_loader: - kv 14: granitehybrid.embedding_length u32 = 768
26
+ llama_model_loader: - kv 15: granitehybrid.feed_forward_length u32 = 2048
27
+ llama_model_loader: - kv 16: granitehybrid.attention.head_count u32 = 12
28
+ llama_model_loader: - kv 17: granitehybrid.attention.head_count_kv arr[i32,32] = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, ...
29
+ llama_model_loader: - kv 18: granitehybrid.rope.freq_base f32 = 10000.000000
30
+ llama_model_loader: - kv 19: granitehybrid.attention.layer_norm_rms_epsilon f32 = 0.000010
31
+ llama_model_loader: - kv 20: granitehybrid.expert_count u32 = 0
32
+ llama_model_loader: - kv 21: granitehybrid.expert_used_count u32 = 0
33
+ llama_model_loader: - kv 22: granitehybrid.vocab_size u32 = 100352
34
+ llama_model_loader: - kv 23: granitehybrid.rope.dimension_count u32 = 64
35
+ llama_model_loader: - kv 24: granitehybrid.attention.scale f32 = 0.015625
36
+ llama_model_loader: - kv 25: granitehybrid.embedding_scale f32 = 12.000000
37
+ llama_model_loader: - kv 26: granitehybrid.residual_scale f32 = 0.246000
38
+ llama_model_loader: - kv 27: granitehybrid.logit_scale f32 = 3.000000
39
+ llama_model_loader: - kv 28: granitehybrid.expert_shared_feed_forward_length u32 = 2048
40
+ llama_model_loader: - kv 29: granitehybrid.ssm.conv_kernel u32 = 4
41
+ llama_model_loader: - kv 30: granitehybrid.ssm.state_size u32 = 128
42
+ llama_model_loader: - kv 31: granitehybrid.ssm.group_count u32 = 1
43
+ llama_model_loader: - kv 32: granitehybrid.ssm.inner_size u32 = 1536
44
+ llama_model_loader: - kv 33: granitehybrid.ssm.time_step_rank u32 = 48
45
+ llama_model_loader: - kv 34: granitehybrid.rope.scaling.finetuned bool = false
46
+ llama_model_loader: - kv 35: tokenizer.ggml.model str = gpt2
47
+ llama_model_loader: - kv 36: tokenizer.ggml.pre str = dbrx
48
+ llama_model_loader: - kv 37: tokenizer.ggml.tokens arr[str,100352] = ["!", "\"", "#", "$", "%", "&", "'", ...
49
+ llama_model_loader: - kv 38: tokenizer.ggml.token_type arr[i32,100352] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
50
+ llama_model_loader: - kv 39: tokenizer.ggml.merges arr[str,100000] = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
51
+ llama_model_loader: - kv 40: tokenizer.ggml.bos_token_id u32 = 100257
52
+ llama_model_loader: - kv 41: tokenizer.ggml.eos_token_id u32 = 100257
53
+ llama_model_loader: - kv 42: tokenizer.ggml.unknown_token_id u32 = 100269
54
+ llama_model_loader: - kv 43: tokenizer.ggml.padding_token_id u32 = 100256
55
+ llama_model_loader: - kv 44: tokenizer.ggml.add_bos_token bool = false
56
+ llama_model_loader: - kv 45: tokenizer.chat_template str = {%- set tools_system_message_prefix =...
57
+ llama_model_loader: - kv 46: general.quantization_version u32 = 2
58
+ llama_model_loader: - kv 47: general.file_type u32 = 38
59
+ llama_model_loader: - type f32: 233 tensors
60
+ llama_model_loader: - type f16: 37 tensors
61
+ llama_model_loader: - type q8_0: 132 tensors
62
+ print_info: file format = GGUF V3 (latest)
63
+ print_info: file type = MXFP4 MoE
64
+ print_info: file size = 461.84 MiB (11.38 BPW)
65
+ load: printing all EOG tokens:
66
+ load: - 100257 ('<|end_of_text|>')
67
+ load: - 100261 ('<|fim_pad|>')
68
+ load: special tokens cache size = 96
69
+ load: token to piece cache size = 0.6152 MB
70
+ print_info: arch = granitehybrid
71
+ print_info: vocab_only = 0
72
+ print_info: n_ctx_train = 1048576
73
+ print_info: n_embd = 768
74
+ print_info: n_embd_inp = 768
75
+ print_info: n_layer = 32
76
+ print_info: n_head = 12
77
+ print_info: n_head_kv = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0]
78
+ print_info: n_rot = 64
79
+ print_info: n_swa = 0
80
+ print_info: is_swa_any = 0
81
+ print_info: n_embd_head_k = 64
82
+ print_info: n_embd_head_v = 64
83
+ print_info: n_gqa = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 3, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0]
84
+ print_info: n_embd_k_gqa = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 256, 0, 0, 0, 256, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 0, 0]
85
+ print_info: n_embd_v_gqa = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 256, 0, 0, 0, 256, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 0, 0]
86
+ print_info: f_norm_eps = 0.0e+00
87
+ print_info: f_norm_rms_eps = 1.0e-05
88
+ print_info: f_clamp_kqv = 0.0e+00
89
+ print_info: f_max_alibi_bias = 0.0e+00
90
+ print_info: f_logit_scale = 3.0e+00
91
+ print_info: f_attn_scale = 1.6e-02
92
+ print_info: n_ff = 2048
93
+ print_info: n_expert = 0
94
+ print_info: n_expert_used = 0
95
+ print_info: n_expert_groups = 0
96
+ print_info: n_group_used = 0
97
+ print_info: causal attn = 1
98
+ print_info: pooling type = 0
99
+ print_info: rope type = 0
100
+ print_info: rope scaling = linear
101
+ print_info: freq_base_train = 10000.0
102
+ print_info: freq_scale_train = 1
103
+ print_info: n_ctx_orig_yarn = 1048576
104
+ print_info: rope_finetuned = unknown
105
+ print_info: ssm_d_conv = 4
106
+ print_info: ssm_d_inner = 1536
107
+ print_info: ssm_d_state = 128
108
+ print_info: ssm_dt_rank = 48
109
+ print_info: ssm_n_group = 1
110
+ print_info: ssm_dt_b_c_rms = 0
111
+ print_info: model type = 350M
112
+ print_info: model params = 340.33 M
113
+ print_info: general.name = Granite 4.0 H 350m Unsloth
114
+ print_info: f_embedding_scale = 12.000000
115
+ print_info: f_residual_scale = 0.246000
116
+ print_info: f_attention_scale = 0.015625
117
+ print_info: n_ff_shexp = 2048
118
+ print_info: vocab type = BPE
119
+ print_info: n_vocab = 100352
120
+ print_info: n_merges = 100000
121
+ print_info: BOS token = 100257 '<|end_of_text|>'
122
+ print_info: EOS token = 100257 '<|end_of_text|>'
123
+ print_info: EOT token = 100257 '<|end_of_text|>'
124
+ print_info: UNK token = 100269 '<|unk|>'
125
+ print_info: PAD token = 100256 '<|pad|>'
126
+ print_info: LF token = 198 'Ċ'
127
+ print_info: FIM PRE token = 100258 '<|fim_prefix|>'
128
+ print_info: FIM SUF token = 100260 '<|fim_suffix|>'
129
+ print_info: FIM MID token = 100259 '<|fim_middle|>'
130
+ print_info: FIM PAD token = 100261 '<|fim_pad|>'
131
+ print_info: EOG token = 100257 '<|end_of_text|>'
132
+ print_info: EOG token = 100261 '<|fim_pad|>'
133
+ print_info: max token length = 256
134
+ load_tensors: loading model tensors, this can take a while... (mmap = true)
135
+ load_tensors: offloading 20 repeating layers to GPU
136
+ load_tensors: offloaded 20/33 layers to GPU
137
+ load_tensors: CPU_Mapped model buffer size = 265.94 MiB
138
+ load_tensors: CUDA0 model buffer size = 97.09 MiB
139
+ load_tensors: CUDA1 model buffer size = 98.83 MiB
140
+ ......................................................................
141
+ llama_context: constructing llama_context
142
+ llama_context: n_seq_max = 1
143
+ llama_context: n_ctx = 2048
144
+ llama_context: n_ctx_seq = 2048
145
+ llama_context: n_batch = 2048
146
+ llama_context: n_ubatch = 512
147
+ llama_context: causal_attn = 1
148
+ llama_context: flash_attn = auto
149
+ llama_context: kv_unified = false
150
+ llama_context: freq_base = 10000.0
151
+ llama_context: freq_scale = 1
152
+ llama_context: n_ctx_seq (2048) < n_ctx_train (1048576) -- the full capacity of the model will not be utilized
153
+ llama_context: CPU output buffer size = 0.38 MiB
154
+ llama_kv_cache: CPU KV buffer size = 2.00 MiB
155
+ llama_kv_cache: CUDA0 KV buffer size = 4.00 MiB
156
+ llama_kv_cache: CUDA1 KV buffer size = 2.00 MiB
157
+ llama_kv_cache: size = 8.00 MiB ( 2048 cells, 4 layers, 1/1 seqs), K (f16): 4.00 MiB, V (f16): 4.00 MiB
158
+ llama_memory_recurrent: CPU RS buffer size = 8.48 MiB
159
+ llama_memory_recurrent: CUDA0 RS buffer size = 6.16 MiB
160
+ llama_memory_recurrent: CUDA1 RS buffer size = 6.93 MiB
161
+ llama_memory_recurrent: size = 21.57 MiB ( 1 cells, 32 layers, 1 seqs), R (f32): 0.57 MiB, S (f32): 21.00 MiB
162
+ llama_context: Flash Attention was auto, set to enabled
163
+ llama_context: CUDA0 compute buffer size = 354.10 MiB
164
+ llama_context: CUDA1 compute buffer size = 22.39 MiB
165
+ llama_context: CUDA_Host compute buffer size = 18.34 MiB
166
+ llama_context: graph nodes = 1815
167
+ llama_context: graph splits = 182 (with bs=512), 41 (with bs=1)
168
+ common_init_from_params: added <|end_of_text|> logit bias = -inf
169
+ common_init_from_params: added <|fim_pad|> logit bias = -inf
170
+ common_init_from_params: setting dry_penalty_last_n to ctx_size = 2048
171
+ common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
172
+
173
+ system_info: n_threads = 16 (n_threads_batch = 16) / 32 | CUDA : ARCHS = 860 | USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | BMI2 = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | AVX512_BF16 = 1 | LLAMAFILE = 1 | OPENMP = 1 | REPACK = 1 |
174
+ perplexity: tokenizing the input ..
175
+ perplexity: tokenization took 122.013 ms
176
+ perplexity: calculating perplexity over 44 chunks, n_ctx=2048, batch_size=2048, n_seq=1
177
+ perplexity: 0.52 seconds per pass - ETA 0.37 minutes
178
+ [1]4.3826,[2]3.9809,[3]2.5707,[4]2.3680,[5]2.6033,[6]2.8480,[7]2.6996,[8]2.5077,[9]2.3051,[10]2.1368,[11]2.1196,[12]2.1460,[13]2.0577,[14]2.0376,[15]2.0782,[16]2.0125,[17]1.9874,[18]2.0058,[19]1.9662,[20]1.9310,[21]1.8981,[22]1.8832,[23]1.9121,[24]1.8857,[25]1.9047,[26]1.8728,[27]1.8596,[28]1.8513,[29]1.8970,[30]1.9135,[31]1.9123,[32]1.8881,[33]1.9116,[34]1.9038,[35]1.8850,[36]1.9163,[37]1.9227,[38]1.9207,[39]1.9422,[40]1.9397,[41]1.9327,[42]1.9567,[43]1.9653,[44]1.9546,
179
+ Final estimate: PPL = 1.9546 +/- 0.01751
180
+
181
+ llama_perf_context_print: load time = 221.21 ms
182
+ llama_perf_context_print: prompt eval time = 15337.30 ms / 90112 tokens ( 0.17 ms per token, 5875.35 tokens per second)
183
+ llama_perf_context_print: eval time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
184
+ llama_perf_context_print: total time = 16163.30 ms / 90113 tokens
185
+ llama_perf_context_print: graphs reused = 0
186
+ llama_memory_breakdown_print: | memory breakdown [MiB] | total free self model context compute unaccounted |
187
+ llama_memory_breakdown_print: | - CUDA0 (RTX 3090) | 24107 = 20511 + ( 461 = 97 + 10 + 354) + 3134 |
188
+ llama_memory_breakdown_print: | - CUDA1 (RTX 3090) | 24124 = 23372 + ( 130 = 98 + 8 + 22) + 621 |
189
+ llama_memory_breakdown_print: | - Host | 294 = 265 + 10 + 18 |
Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_f16-router_gate_emb_f16/perplexity_general.txt ADDED
@@ -0,0 +1,189 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
2
+ ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
3
+ ggml_cuda_init: found 2 CUDA devices:
4
+ Device 0: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
5
+ Device 1: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
6
+ build: 7040 (92bb442ad) with cc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 for x86_64-linux-gnu
7
+ llama_model_load_from_file_impl: using device CUDA0 (NVIDIA GeForce RTX 3090) (0000:01:00.0) - 21247 MiB free
8
+ llama_model_load_from_file_impl: using device CUDA1 (NVIDIA GeForce RTX 3090) (0000:03:00.0) - 23582 MiB free
9
+ llama_model_loader: loaded meta data with 48 key-value pairs and 402 tensors from /mnt/world8/AI/Models/granite-4.0-h-350m-unsloth/GGUF/MXFP4/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_f16-router_gate_emb_f16.gguf (version GGUF V3 (latest))
10
+ llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
11
+ llama_model_loader: - kv 0: general.architecture str = granitehybrid
12
+ llama_model_loader: - kv 1: general.type str = model
13
+ llama_model_loader: - kv 2: general.name str = Granite 4.0 H 350m Unsloth
14
+ llama_model_loader: - kv 3: general.finetune str = unsloth
15
+ llama_model_loader: - kv 4: general.basename str = granite-4.0-h
16
+ llama_model_loader: - kv 5: general.size_label str = 350M
17
+ llama_model_loader: - kv 6: general.license str = apache-2.0
18
+ llama_model_loader: - kv 7: general.base_model.count u32 = 1
19
+ llama_model_loader: - kv 8: general.base_model.0.name str = Granite 4.0 H 350m
20
+ llama_model_loader: - kv 9: general.base_model.0.organization str = Ibm Granite
21
+ llama_model_loader: - kv 10: general.base_model.0.repo_url str = https://huggingface.co/ibm-granite/gr...
22
+ llama_model_loader: - kv 11: general.tags arr[str,3] = ["language", "unsloth", "granite-4.0"]
23
+ llama_model_loader: - kv 12: granitehybrid.block_count u32 = 32
24
+ llama_model_loader: - kv 13: granitehybrid.context_length u32 = 1048576
25
+ llama_model_loader: - kv 14: granitehybrid.embedding_length u32 = 768
26
+ llama_model_loader: - kv 15: granitehybrid.feed_forward_length u32 = 2048
27
+ llama_model_loader: - kv 16: granitehybrid.attention.head_count u32 = 12
28
+ llama_model_loader: - kv 17: granitehybrid.attention.head_count_kv arr[i32,32] = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, ...
29
+ llama_model_loader: - kv 18: granitehybrid.rope.freq_base f32 = 10000.000000
30
+ llama_model_loader: - kv 19: granitehybrid.attention.layer_norm_rms_epsilon f32 = 0.000010
31
+ llama_model_loader: - kv 20: granitehybrid.expert_count u32 = 0
32
+ llama_model_loader: - kv 21: granitehybrid.expert_used_count u32 = 0
33
+ llama_model_loader: - kv 22: granitehybrid.vocab_size u32 = 100352
34
+ llama_model_loader: - kv 23: granitehybrid.rope.dimension_count u32 = 64
35
+ llama_model_loader: - kv 24: granitehybrid.attention.scale f32 = 0.015625
36
+ llama_model_loader: - kv 25: granitehybrid.embedding_scale f32 = 12.000000
37
+ llama_model_loader: - kv 26: granitehybrid.residual_scale f32 = 0.246000
38
+ llama_model_loader: - kv 27: granitehybrid.logit_scale f32 = 3.000000
39
+ llama_model_loader: - kv 28: granitehybrid.expert_shared_feed_forward_length u32 = 2048
40
+ llama_model_loader: - kv 29: granitehybrid.ssm.conv_kernel u32 = 4
41
+ llama_model_loader: - kv 30: granitehybrid.ssm.state_size u32 = 128
42
+ llama_model_loader: - kv 31: granitehybrid.ssm.group_count u32 = 1
43
+ llama_model_loader: - kv 32: granitehybrid.ssm.inner_size u32 = 1536
44
+ llama_model_loader: - kv 33: granitehybrid.ssm.time_step_rank u32 = 48
45
+ llama_model_loader: - kv 34: granitehybrid.rope.scaling.finetuned bool = false
46
+ llama_model_loader: - kv 35: tokenizer.ggml.model str = gpt2
47
+ llama_model_loader: - kv 36: tokenizer.ggml.pre str = dbrx
48
+ llama_model_loader: - kv 37: tokenizer.ggml.tokens arr[str,100352] = ["!", "\"", "#", "$", "%", "&", "'", ...
49
+ llama_model_loader: - kv 38: tokenizer.ggml.token_type arr[i32,100352] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
50
+ llama_model_loader: - kv 39: tokenizer.ggml.merges arr[str,100000] = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
51
+ llama_model_loader: - kv 40: tokenizer.ggml.bos_token_id u32 = 100257
52
+ llama_model_loader: - kv 41: tokenizer.ggml.eos_token_id u32 = 100257
53
+ llama_model_loader: - kv 42: tokenizer.ggml.unknown_token_id u32 = 100269
54
+ llama_model_loader: - kv 43: tokenizer.ggml.padding_token_id u32 = 100256
55
+ llama_model_loader: - kv 44: tokenizer.ggml.add_bos_token bool = false
56
+ llama_model_loader: - kv 45: tokenizer.chat_template str = {%- set tools_system_message_prefix =...
57
+ llama_model_loader: - kv 46: general.quantization_version u32 = 2
58
+ llama_model_loader: - kv 47: general.file_type u32 = 38
59
+ llama_model_loader: - type f32: 233 tensors
60
+ llama_model_loader: - type f16: 37 tensors
61
+ llama_model_loader: - type q8_0: 132 tensors
62
+ print_info: file format = GGUF V3 (latest)
63
+ print_info: file type = MXFP4 MoE
64
+ print_info: file size = 461.84 MiB (11.38 BPW)
65
+ load: printing all EOG tokens:
66
+ load: - 100257 ('<|end_of_text|>')
67
+ load: - 100261 ('<|fim_pad|>')
68
+ load: special tokens cache size = 96
69
+ load: token to piece cache size = 0.6152 MB
70
+ print_info: arch = granitehybrid
71
+ print_info: vocab_only = 0
72
+ print_info: n_ctx_train = 1048576
73
+ print_info: n_embd = 768
74
+ print_info: n_embd_inp = 768
75
+ print_info: n_layer = 32
76
+ print_info: n_head = 12
77
+ print_info: n_head_kv = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0]
78
+ print_info: n_rot = 64
79
+ print_info: n_swa = 0
80
+ print_info: is_swa_any = 0
81
+ print_info: n_embd_head_k = 64
82
+ print_info: n_embd_head_v = 64
83
+ print_info: n_gqa = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 3, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0]
84
+ print_info: n_embd_k_gqa = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 256, 0, 0, 0, 256, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 0, 0]
85
+ print_info: n_embd_v_gqa = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 256, 0, 0, 0, 256, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 0, 0]
86
+ print_info: f_norm_eps = 0.0e+00
87
+ print_info: f_norm_rms_eps = 1.0e-05
88
+ print_info: f_clamp_kqv = 0.0e+00
89
+ print_info: f_max_alibi_bias = 0.0e+00
90
+ print_info: f_logit_scale = 3.0e+00
91
+ print_info: f_attn_scale = 1.6e-02
92
+ print_info: n_ff = 2048
93
+ print_info: n_expert = 0
94
+ print_info: n_expert_used = 0
95
+ print_info: n_expert_groups = 0
96
+ print_info: n_group_used = 0
97
+ print_info: causal attn = 1
98
+ print_info: pooling type = 0
99
+ print_info: rope type = 0
100
+ print_info: rope scaling = linear
101
+ print_info: freq_base_train = 10000.0
102
+ print_info: freq_scale_train = 1
103
+ print_info: n_ctx_orig_yarn = 1048576
104
+ print_info: rope_finetuned = unknown
105
+ print_info: ssm_d_conv = 4
106
+ print_info: ssm_d_inner = 1536
107
+ print_info: ssm_d_state = 128
108
+ print_info: ssm_dt_rank = 48
109
+ print_info: ssm_n_group = 1
110
+ print_info: ssm_dt_b_c_rms = 0
111
+ print_info: model type = 350M
112
+ print_info: model params = 340.33 M
113
+ print_info: general.name = Granite 4.0 H 350m Unsloth
114
+ print_info: f_embedding_scale = 12.000000
115
+ print_info: f_residual_scale = 0.246000
116
+ print_info: f_attention_scale = 0.015625
117
+ print_info: n_ff_shexp = 2048
118
+ print_info: vocab type = BPE
119
+ print_info: n_vocab = 100352
120
+ print_info: n_merges = 100000
121
+ print_info: BOS token = 100257 '<|end_of_text|>'
122
+ print_info: EOS token = 100257 '<|end_of_text|>'
123
+ print_info: EOT token = 100257 '<|end_of_text|>'
124
+ print_info: UNK token = 100269 '<|unk|>'
125
+ print_info: PAD token = 100256 '<|pad|>'
126
+ print_info: LF token = 198 'Ċ'
127
+ print_info: FIM PRE token = 100258 '<|fim_prefix|>'
128
+ print_info: FIM SUF token = 100260 '<|fim_suffix|>'
129
+ print_info: FIM MID token = 100259 '<|fim_middle|>'
130
+ print_info: FIM PAD token = 100261 '<|fim_pad|>'
131
+ print_info: EOG token = 100257 '<|end_of_text|>'
132
+ print_info: EOG token = 100261 '<|fim_pad|>'
133
+ print_info: max token length = 256
134
+ load_tensors: loading model tensors, this can take a while... (mmap = true)
135
+ load_tensors: offloading 20 repeating layers to GPU
136
+ load_tensors: offloaded 20/33 layers to GPU
137
+ load_tensors: CPU_Mapped model buffer size = 265.94 MiB
138
+ load_tensors: CUDA0 model buffer size = 97.09 MiB
139
+ load_tensors: CUDA1 model buffer size = 98.83 MiB
140
+ ......................................................................
141
+ llama_context: constructing llama_context
142
+ llama_context: n_seq_max = 1
143
+ llama_context: n_ctx = 2048
144
+ llama_context: n_ctx_seq = 2048
145
+ llama_context: n_batch = 2048
146
+ llama_context: n_ubatch = 512
147
+ llama_context: causal_attn = 1
148
+ llama_context: flash_attn = auto
149
+ llama_context: kv_unified = false
150
+ llama_context: freq_base = 10000.0
151
+ llama_context: freq_scale = 1
152
+ llama_context: n_ctx_seq (2048) < n_ctx_train (1048576) -- the full capacity of the model will not be utilized
153
+ llama_context: CPU output buffer size = 0.38 MiB
154
+ llama_kv_cache: CPU KV buffer size = 2.00 MiB
155
+ llama_kv_cache: CUDA0 KV buffer size = 4.00 MiB
156
+ llama_kv_cache: CUDA1 KV buffer size = 2.00 MiB
157
+ llama_kv_cache: size = 8.00 MiB ( 2048 cells, 4 layers, 1/1 seqs), K (f16): 4.00 MiB, V (f16): 4.00 MiB
158
+ llama_memory_recurrent: CPU RS buffer size = 8.48 MiB
159
+ llama_memory_recurrent: CUDA0 RS buffer size = 6.16 MiB
160
+ llama_memory_recurrent: CUDA1 RS buffer size = 6.93 MiB
161
+ llama_memory_recurrent: size = 21.57 MiB ( 1 cells, 32 layers, 1 seqs), R (f32): 0.57 MiB, S (f32): 21.00 MiB
162
+ llama_context: Flash Attention was auto, set to enabled
163
+ llama_context: CUDA0 compute buffer size = 354.10 MiB
164
+ llama_context: CUDA1 compute buffer size = 22.39 MiB
165
+ llama_context: CUDA_Host compute buffer size = 18.34 MiB
166
+ llama_context: graph nodes = 1815
167
+ llama_context: graph splits = 182 (with bs=512), 41 (with bs=1)
168
+ common_init_from_params: added <|end_of_text|> logit bias = -inf
169
+ common_init_from_params: added <|fim_pad|> logit bias = -inf
170
+ common_init_from_params: setting dry_penalty_last_n to ctx_size = 2048
171
+ common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
172
+
173
+ system_info: n_threads = 16 (n_threads_batch = 16) / 32 | CUDA : ARCHS = 860 | USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | BMI2 = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | AVX512_BF16 = 1 | LLAMAFILE = 1 | OPENMP = 1 | REPACK = 1 |
174
+ perplexity: tokenizing the input ..
175
+ perplexity: tokenization took 39.223 ms
176
+ perplexity: calculating perplexity over 14 chunks, n_ctx=2048, batch_size=2048, n_seq=1
177
+ perplexity: 0.58 seconds per pass - ETA 0.13 minutes
178
+ [1]18.6243,[2]21.6400,[3]22.2933,[4]20.2232,[5]20.2199,[6]18.0090,[7]17.6263,[8]17.5788,[9]18.0953,[10]18.0725,[11]17.9160,[12]18.0402,[13]18.1147,[14]18.1532,
179
+ Final estimate: PPL = 18.1532 +/- 0.46672
180
+
181
+ llama_perf_context_print: load time = 258.27 ms
182
+ llama_perf_context_print: prompt eval time = 5276.13 ms / 28672 tokens ( 0.18 ms per token, 5434.29 tokens per second)
183
+ llama_perf_context_print: eval time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
184
+ llama_perf_context_print: total time = 5558.16 ms / 28673 tokens
185
+ llama_perf_context_print: graphs reused = 0
186
+ llama_memory_breakdown_print: | memory breakdown [MiB] | total free self model context compute unaccounted |
187
+ llama_memory_breakdown_print: | - CUDA0 (RTX 3090) | 24107 = 20511 + ( 461 = 97 + 10 + 354) + 3134 |
188
+ llama_memory_breakdown_print: | - CUDA1 (RTX 3090) | 24124 = 23372 + ( 130 = 98 + 8 + 22) + 621 |
189
+ llama_memory_breakdown_print: | - Host | 294 = 265 + 10 + 18 |
Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_f16-router_gate_emb_f16/perplexity_math.txt ADDED
@@ -0,0 +1,189 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
2
+ ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
3
+ ggml_cuda_init: found 2 CUDA devices:
4
+ Device 0: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
5
+ Device 1: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
6
+ build: 7040 (92bb442ad) with cc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 for x86_64-linux-gnu
7
+ llama_model_load_from_file_impl: using device CUDA0 (NVIDIA GeForce RTX 3090) (0000:01:00.0) - 21119 MiB free
8
+ llama_model_load_from_file_impl: using device CUDA1 (NVIDIA GeForce RTX 3090) (0000:03:00.0) - 23582 MiB free
9
+ llama_model_loader: loaded meta data with 48 key-value pairs and 402 tensors from /mnt/world8/AI/Models/granite-4.0-h-350m-unsloth/GGUF/MXFP4/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_f16-router_gate_emb_f16.gguf (version GGUF V3 (latest))
10
+ llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
11
+ llama_model_loader: - kv 0: general.architecture str = granitehybrid
12
+ llama_model_loader: - kv 1: general.type str = model
13
+ llama_model_loader: - kv 2: general.name str = Granite 4.0 H 350m Unsloth
14
+ llama_model_loader: - kv 3: general.finetune str = unsloth
15
+ llama_model_loader: - kv 4: general.basename str = granite-4.0-h
16
+ llama_model_loader: - kv 5: general.size_label str = 350M
17
+ llama_model_loader: - kv 6: general.license str = apache-2.0
18
+ llama_model_loader: - kv 7: general.base_model.count u32 = 1
19
+ llama_model_loader: - kv 8: general.base_model.0.name str = Granite 4.0 H 350m
20
+ llama_model_loader: - kv 9: general.base_model.0.organization str = Ibm Granite
21
+ llama_model_loader: - kv 10: general.base_model.0.repo_url str = https://huggingface.co/ibm-granite/gr...
22
+ llama_model_loader: - kv 11: general.tags arr[str,3] = ["language", "unsloth", "granite-4.0"]
23
+ llama_model_loader: - kv 12: granitehybrid.block_count u32 = 32
24
+ llama_model_loader: - kv 13: granitehybrid.context_length u32 = 1048576
25
+ llama_model_loader: - kv 14: granitehybrid.embedding_length u32 = 768
26
+ llama_model_loader: - kv 15: granitehybrid.feed_forward_length u32 = 2048
27
+ llama_model_loader: - kv 16: granitehybrid.attention.head_count u32 = 12
28
+ llama_model_loader: - kv 17: granitehybrid.attention.head_count_kv arr[i32,32] = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, ...
29
+ llama_model_loader: - kv 18: granitehybrid.rope.freq_base f32 = 10000.000000
30
+ llama_model_loader: - kv 19: granitehybrid.attention.layer_norm_rms_epsilon f32 = 0.000010
31
+ llama_model_loader: - kv 20: granitehybrid.expert_count u32 = 0
32
+ llama_model_loader: - kv 21: granitehybrid.expert_used_count u32 = 0
33
+ llama_model_loader: - kv 22: granitehybrid.vocab_size u32 = 100352
34
+ llama_model_loader: - kv 23: granitehybrid.rope.dimension_count u32 = 64
35
+ llama_model_loader: - kv 24: granitehybrid.attention.scale f32 = 0.015625
36
+ llama_model_loader: - kv 25: granitehybrid.embedding_scale f32 = 12.000000
37
+ llama_model_loader: - kv 26: granitehybrid.residual_scale f32 = 0.246000
38
+ llama_model_loader: - kv 27: granitehybrid.logit_scale f32 = 3.000000
39
+ llama_model_loader: - kv 28: granitehybrid.expert_shared_feed_forward_length u32 = 2048
40
+ llama_model_loader: - kv 29: granitehybrid.ssm.conv_kernel u32 = 4
41
+ llama_model_loader: - kv 30: granitehybrid.ssm.state_size u32 = 128
42
+ llama_model_loader: - kv 31: granitehybrid.ssm.group_count u32 = 1
43
+ llama_model_loader: - kv 32: granitehybrid.ssm.inner_size u32 = 1536
44
+ llama_model_loader: - kv 33: granitehybrid.ssm.time_step_rank u32 = 48
45
+ llama_model_loader: - kv 34: granitehybrid.rope.scaling.finetuned bool = false
46
+ llama_model_loader: - kv 35: tokenizer.ggml.model str = gpt2
47
+ llama_model_loader: - kv 36: tokenizer.ggml.pre str = dbrx
48
+ llama_model_loader: - kv 37: tokenizer.ggml.tokens arr[str,100352] = ["!", "\"", "#", "$", "%", "&", "'", ...
49
+ llama_model_loader: - kv 38: tokenizer.ggml.token_type arr[i32,100352] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
50
+ llama_model_loader: - kv 39: tokenizer.ggml.merges arr[str,100000] = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
51
+ llama_model_loader: - kv 40: tokenizer.ggml.bos_token_id u32 = 100257
52
+ llama_model_loader: - kv 41: tokenizer.ggml.eos_token_id u32 = 100257
53
+ llama_model_loader: - kv 42: tokenizer.ggml.unknown_token_id u32 = 100269
54
+ llama_model_loader: - kv 43: tokenizer.ggml.padding_token_id u32 = 100256
55
+ llama_model_loader: - kv 44: tokenizer.ggml.add_bos_token bool = false
56
+ llama_model_loader: - kv 45: tokenizer.chat_template str = {%- set tools_system_message_prefix =...
57
+ llama_model_loader: - kv 46: general.quantization_version u32 = 2
58
+ llama_model_loader: - kv 47: general.file_type u32 = 38
59
+ llama_model_loader: - type f32: 233 tensors
60
+ llama_model_loader: - type f16: 37 tensors
61
+ llama_model_loader: - type q8_0: 132 tensors
62
+ print_info: file format = GGUF V3 (latest)
63
+ print_info: file type = MXFP4 MoE
64
+ print_info: file size = 461.84 MiB (11.38 BPW)
65
+ load: printing all EOG tokens:
66
+ load: - 100257 ('<|end_of_text|>')
67
+ load: - 100261 ('<|fim_pad|>')
68
+ load: special tokens cache size = 96
69
+ load: token to piece cache size = 0.6152 MB
70
+ print_info: arch = granitehybrid
71
+ print_info: vocab_only = 0
72
+ print_info: n_ctx_train = 1048576
73
+ print_info: n_embd = 768
74
+ print_info: n_embd_inp = 768
75
+ print_info: n_layer = 32
76
+ print_info: n_head = 12
77
+ print_info: n_head_kv = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0]
78
+ print_info: n_rot = 64
79
+ print_info: n_swa = 0
80
+ print_info: is_swa_any = 0
81
+ print_info: n_embd_head_k = 64
82
+ print_info: n_embd_head_v = 64
83
+ print_info: n_gqa = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 3, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0]
84
+ print_info: n_embd_k_gqa = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 256, 0, 0, 0, 256, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 0, 0]
85
+ print_info: n_embd_v_gqa = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 256, 0, 0, 0, 256, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 0, 0]
86
+ print_info: f_norm_eps = 0.0e+00
87
+ print_info: f_norm_rms_eps = 1.0e-05
88
+ print_info: f_clamp_kqv = 0.0e+00
89
+ print_info: f_max_alibi_bias = 0.0e+00
90
+ print_info: f_logit_scale = 3.0e+00
91
+ print_info: f_attn_scale = 1.6e-02
92
+ print_info: n_ff = 2048
93
+ print_info: n_expert = 0
94
+ print_info: n_expert_used = 0
95
+ print_info: n_expert_groups = 0
96
+ print_info: n_group_used = 0
97
+ print_info: causal attn = 1
98
+ print_info: pooling type = 0
99
+ print_info: rope type = 0
100
+ print_info: rope scaling = linear
101
+ print_info: freq_base_train = 10000.0
102
+ print_info: freq_scale_train = 1
103
+ print_info: n_ctx_orig_yarn = 1048576
104
+ print_info: rope_finetuned = unknown
105
+ print_info: ssm_d_conv = 4
106
+ print_info: ssm_d_inner = 1536
107
+ print_info: ssm_d_state = 128
108
+ print_info: ssm_dt_rank = 48
109
+ print_info: ssm_n_group = 1
110
+ print_info: ssm_dt_b_c_rms = 0
111
+ print_info: model type = 350M
112
+ print_info: model params = 340.33 M
113
+ print_info: general.name = Granite 4.0 H 350m Unsloth
114
+ print_info: f_embedding_scale = 12.000000
115
+ print_info: f_residual_scale = 0.246000
116
+ print_info: f_attention_scale = 0.015625
117
+ print_info: n_ff_shexp = 2048
118
+ print_info: vocab type = BPE
119
+ print_info: n_vocab = 100352
120
+ print_info: n_merges = 100000
121
+ print_info: BOS token = 100257 '<|end_of_text|>'
122
+ print_info: EOS token = 100257 '<|end_of_text|>'
123
+ print_info: EOT token = 100257 '<|end_of_text|>'
124
+ print_info: UNK token = 100269 '<|unk|>'
125
+ print_info: PAD token = 100256 '<|pad|>'
126
+ print_info: LF token = 198 'Ċ'
127
+ print_info: FIM PRE token = 100258 '<|fim_prefix|>'
128
+ print_info: FIM SUF token = 100260 '<|fim_suffix|>'
129
+ print_info: FIM MID token = 100259 '<|fim_middle|>'
130
+ print_info: FIM PAD token = 100261 '<|fim_pad|>'
131
+ print_info: EOG token = 100257 '<|end_of_text|>'
132
+ print_info: EOG token = 100261 '<|fim_pad|>'
133
+ print_info: max token length = 256
134
+ load_tensors: loading model tensors, this can take a while... (mmap = true)
135
+ load_tensors: offloading 20 repeating layers to GPU
136
+ load_tensors: offloaded 20/33 layers to GPU
137
+ load_tensors: CPU_Mapped model buffer size = 265.94 MiB
138
+ load_tensors: CUDA0 model buffer size = 97.09 MiB
139
+ load_tensors: CUDA1 model buffer size = 98.83 MiB
140
+ ......................................................................
141
+ llama_context: constructing llama_context
142
+ llama_context: n_seq_max = 1
143
+ llama_context: n_ctx = 2048
144
+ llama_context: n_ctx_seq = 2048
145
+ llama_context: n_batch = 2048
146
+ llama_context: n_ubatch = 512
147
+ llama_context: causal_attn = 1
148
+ llama_context: flash_attn = auto
149
+ llama_context: kv_unified = false
150
+ llama_context: freq_base = 10000.0
151
+ llama_context: freq_scale = 1
152
+ llama_context: n_ctx_seq (2048) < n_ctx_train (1048576) -- the full capacity of the model will not be utilized
153
+ llama_context: CPU output buffer size = 0.38 MiB
154
+ llama_kv_cache: CPU KV buffer size = 2.00 MiB
155
+ llama_kv_cache: CUDA0 KV buffer size = 4.00 MiB
156
+ llama_kv_cache: CUDA1 KV buffer size = 2.00 MiB
157
+ llama_kv_cache: size = 8.00 MiB ( 2048 cells, 4 layers, 1/1 seqs), K (f16): 4.00 MiB, V (f16): 4.00 MiB
158
+ llama_memory_recurrent: CPU RS buffer size = 8.48 MiB
159
+ llama_memory_recurrent: CUDA0 RS buffer size = 6.16 MiB
160
+ llama_memory_recurrent: CUDA1 RS buffer size = 6.93 MiB
161
+ llama_memory_recurrent: size = 21.57 MiB ( 1 cells, 32 layers, 1 seqs), R (f32): 0.57 MiB, S (f32): 21.00 MiB
162
+ llama_context: Flash Attention was auto, set to enabled
163
+ llama_context: CUDA0 compute buffer size = 354.10 MiB
164
+ llama_context: CUDA1 compute buffer size = 22.39 MiB
165
+ llama_context: CUDA_Host compute buffer size = 18.34 MiB
166
+ llama_context: graph nodes = 1815
167
+ llama_context: graph splits = 182 (with bs=512), 41 (with bs=1)
168
+ common_init_from_params: added <|end_of_text|> logit bias = -inf
169
+ common_init_from_params: added <|fim_pad|> logit bias = -inf
170
+ common_init_from_params: setting dry_penalty_last_n to ctx_size = 2048
171
+ common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
172
+
173
+ system_info: n_threads = 16 (n_threads_batch = 16) / 32 | CUDA : ARCHS = 860 | USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | BMI2 = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | AVX512_BF16 = 1 | LLAMAFILE = 1 | OPENMP = 1 | REPACK = 1 |
174
+ perplexity: tokenizing the input ..
175
+ perplexity: tokenization took 34.345 ms
176
+ perplexity: calculating perplexity over 15 chunks, n_ctx=2048, batch_size=2048, n_seq=1
177
+ perplexity: 0.52 seconds per pass - ETA 0.12 minutes
178
+ [1]8.6838,[2]9.9176,[3]9.4843,[4]9.8298,[5]9.9730,[6]10.0492,[7]10.2116,[8]9.9103,[9]9.9652,[10]9.9791,[11]10.2135,[12]10.2943,[13]10.4160,[14]10.3885,[15]10.2881,
179
+ Final estimate: PPL = 10.2881 +/- 0.23163
180
+
181
+ llama_perf_context_print: load time = 212.69 ms
182
+ llama_perf_context_print: prompt eval time = 5367.04 ms / 30720 tokens ( 0.17 ms per token, 5723.82 tokens per second)
183
+ llama_perf_context_print: eval time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
184
+ llama_perf_context_print: total time = 5658.34 ms / 30721 tokens
185
+ llama_perf_context_print: graphs reused = 0
186
+ llama_memory_breakdown_print: | memory breakdown [MiB] | total free self model context compute unaccounted |
187
+ llama_memory_breakdown_print: | - CUDA0 (RTX 3090) | 24107 = 20511 + ( 461 = 97 + 10 + 354) + 3134 |
188
+ llama_memory_breakdown_print: | - CUDA1 (RTX 3090) | 24124 = 23372 + ( 130 = 98 + 8 + 22) + 621 |
189
+ llama_memory_breakdown_print: | - Host | 294 = 265 + 10 + 18 |
Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_f16-router_gate_emb_f16/ppl_corpus_code.txt ADDED
The diff for this file is too large to render. See raw diff
 
Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_f16-router_gate_emb_f16/ppl_corpus_general.txt ADDED
The diff for this file is too large to render. See raw diff
 
Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_f16-router_gate_emb_f16/ppl_corpus_math.txt ADDED
The diff for this file is too large to render. See raw diff
 
Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_f16-router_gate_emb_q6_k/llamabench.txt ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
2
+ ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
3
+ ggml_cuda_init: found 2 CUDA devices:
4
+ Device 0: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
5
+ Device 1: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
6
+ | model | size | params | backend | ngl | test | t/s |
7
+ | ------------------------------ | ---------: | ---------: | ---------- | --: | --------------: | -------------------: |
8
+ | granitehybrid 350M MXFP4 MoE | 318.51 MiB | 340.33 M | CUDA | 35 | pp8 | 1707.74 ± 48.03 |
9
+ | granitehybrid 350M MXFP4 MoE | 318.51 MiB | 340.33 M | CUDA | 35 | tg128 | 304.31 ± 9.14 |
10
+
11
+ build: 92bb442ad (7040)
Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_f16-router_gate_emb_q6_k/perplexity_code.txt ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
2
+ ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
3
+ ggml_cuda_init: found 2 CUDA devices:
4
+ Device 0: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
5
+ Device 1: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
6
+ build: 7040 (92bb442ad) with cc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 for x86_64-linux-gnu
7
+ llama_model_load_from_file_impl: using device CUDA0 (NVIDIA GeForce RTX 3090) (0000:01:00.0) - 21117 MiB free
8
+ llama_model_load_from_file_impl: using device CUDA1 (NVIDIA GeForce RTX 3090) (0000:03:00.0) - 23582 MiB free
9
+ llama_model_loader: loaded meta data with 48 key-value pairs and 402 tensors from /mnt/world8/AI/Models/granite-4.0-h-350m-unsloth/GGUF/MXFP4/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_f16-router_gate_emb_q6_k.gguf (version GGUF V3 (latest))
10
+ llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
11
+ llama_model_loader: - kv 0: general.architecture str = granitehybrid
12
+ llama_model_loader: - kv 1: general.type str = model
13
+ llama_model_loader: - kv 2: general.name str = Granite 4.0 H 350m Unsloth
14
+ llama_model_loader: - kv 3: general.finetune str = unsloth
15
+ llama_model_loader: - kv 4: general.basename str = granite-4.0-h
16
+ llama_model_loader: - kv 5: general.size_label str = 350M
17
+ llama_model_loader: - kv 6: general.license str = apache-2.0
18
+ llama_model_loader: - kv 7: general.base_model.count u32 = 1
19
+ llama_model_loader: - kv 8: general.base_model.0.name str = Granite 4.0 H 350m
20
+ llama_model_loader: - kv 9: general.base_model.0.organization str = Ibm Granite
21
+ llama_model_loader: - kv 10: general.base_model.0.repo_url str = https://huggingface.co/ibm-granite/gr...
22
+ llama_model_loader: - kv 11: general.tags arr[str,3] = ["language", "unsloth", "granite-4.0"]
23
+ llama_model_loader: - kv 12: granitehybrid.block_count u32 = 32
24
+ llama_model_loader: - kv 13: granitehybrid.context_length u32 = 1048576
25
+ llama_model_loader: - kv 14: granitehybrid.embedding_length u32 = 768
26
+ llama_model_loader: - kv 15: granitehybrid.feed_forward_length u32 = 2048
27
+ llama_model_loader: - kv 16: granitehybrid.attention.head_count u32 = 12
28
+ llama_model_loader: - kv 17: granitehybrid.attention.head_count_kv arr[i32,32] = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, ...
29
+ llama_model_loader: - kv 18: granitehybrid.rope.freq_base f32 = 10000.000000
30
+ llama_model_loader: - kv 19: granitehybrid.attention.layer_norm_rms_epsilon f32 = 0.000010
31
+ llama_model_loader: - kv 20: granitehybrid.expert_count u32 = 0
32
+ llama_model_loader: - kv 21: granitehybrid.expert_used_count u32 = 0
33
+ llama_model_loader: - kv 22: granitehybrid.vocab_size u32 = 100352
34
+ llama_model_loader: - kv 23: granitehybrid.rope.dimension_count u32 = 64
35
+ llama_model_loader: - kv 24: granitehybrid.attention.scale f32 = 0.015625
36
+ llama_model_loader: - kv 25: granitehybrid.embedding_scale f32 = 12.000000
37
+ llama_model_loader: - kv 26: granitehybrid.residual_scale f32 = 0.246000
38
+ llama_model_loader: - kv 27: granitehybrid.logit_scale f32 = 3.000000
39
+ llama_model_loader: - kv 28: granitehybrid.expert_shared_feed_forward_length u32 = 2048
40
+ llama_model_loader: - kv 29: granitehybrid.ssm.conv_kernel u32 = 4
41
+ llama_model_loader: - kv 30: granitehybrid.ssm.state_size u32 = 128
42
+ llama_model_loader: - kv 31: granitehybrid.ssm.group_count u32 = 1
43
+ llama_model_loader: - kv 32: granitehybrid.ssm.inner_size u32 = 1536
44
+ llama_model_loader: - kv 33: granitehybrid.ssm.time_step_rank u32 = 48
45
+ llama_model_loader: - kv 34: granitehybrid.rope.scaling.finetuned bool = false
46
+ llama_model_loader: - kv 35: tokenizer.ggml.model str = gpt2
47
+ llama_model_loader: - kv 36: tokenizer.ggml.pre str = dbrx
48
+ llama_model_loader: - kv 37: tokenizer.ggml.tokens arr[str,100352] = ["!", "\"", "#", "$", "%", "&", "'", ...
49
+ llama_model_loader: - kv 38: tokenizer.ggml.token_type arr[i32,100352] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
50
+ llama_model_loader: - kv 39: tokenizer.ggml.merges arr[str,100000] = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
51
+ llama_model_loader: - kv 40: tokenizer.ggml.bos_token_id u32 = 100257
52
+ llama_model_loader: - kv 41: tokenizer.ggml.eos_token_id u32 = 100257
53
+ llama_model_loader: - kv 42: tokenizer.ggml.unknown_token_id u32 = 100269
54
+ llama_model_loader: - kv 43: tokenizer.ggml.padding_token_id u32 = 100256
55
+ llama_model_loader: - kv 44: tokenizer.ggml.add_bos_token bool = false
56
+ llama_model_loader: - kv 45: tokenizer.chat_template str = {%- set tools_system_message_prefix =...
57
+ llama_model_loader: - kv 46: general.quantization_version u32 = 2
58
+ llama_model_loader: - kv 47: general.file_type u32 = 38
59
+ llama_model_loader: - type f32: 233 tensors
60
+ llama_model_loader: - type f16: 4 tensors
61
+ llama_model_loader: - type q8_0: 132 tensors
62
+ llama_model_loader: - type q6_K: 33 tensors
63
+ print_info: file format = GGUF V3 (latest)
64
+ print_info: file type = MXFP4 MoE
65
+ print_info: file size = 318.51 MiB (7.85 BPW)
66
+ load: printing all EOG tokens:
67
+ load: - 100257 ('<|end_of_text|>')
68
+ load: - 100261 ('<|fim_pad|>')
69
+ load: special tokens cache size = 96
70
+ load: token to piece cache size = 0.6152 MB
71
+ print_info: arch = granitehybrid
72
+ print_info: vocab_only = 0
73
+ print_info: n_ctx_train = 1048576
74
+ print_info: n_embd = 768
75
+ print_info: n_embd_inp = 768
76
+ print_info: n_layer = 32
77
+ print_info: n_head = 12
78
+ print_info: n_head_kv = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0]
79
+ print_info: n_rot = 64
80
+ print_info: n_swa = 0
81
+ print_info: is_swa_any = 0
82
+ print_info: n_embd_head_k = 64
83
+ print_info: n_embd_head_v = 64
84
+ print_info: n_gqa = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 3, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0]
85
+ print_info: n_embd_k_gqa = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 256, 0, 0, 0, 256, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 0, 0]
86
+ print_info: n_embd_v_gqa = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 256, 0, 0, 0, 256, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 0, 0]
87
+ print_info: f_norm_eps = 0.0e+00
88
+ print_info: f_norm_rms_eps = 1.0e-05
89
+ print_info: f_clamp_kqv = 0.0e+00
90
+ print_info: f_max_alibi_bias = 0.0e+00
91
+ print_info: f_logit_scale = 3.0e+00
92
+ print_info: f_attn_scale = 1.6e-02
93
+ print_info: n_ff = 2048
94
+ print_info: n_expert = 0
95
+ print_info: n_expert_used = 0
96
+ print_info: n_expert_groups = 0
97
+ print_info: n_group_used = 0
98
+ print_info: causal attn = 1
99
+ print_info: pooling type = 0
100
+ print_info: rope type = 0
101
+ print_info: rope scaling = linear
102
+ print_info: freq_base_train = 10000.0
103
+ print_info: freq_scale_train = 1
104
+ print_info: n_ctx_orig_yarn = 1048576
105
+ print_info: rope_finetuned = unknown
106
+ print_info: ssm_d_conv = 4
107
+ print_info: ssm_d_inner = 1536
108
+ print_info: ssm_d_state = 128
109
+ print_info: ssm_dt_rank = 48
110
+ print_info: ssm_n_group = 1
111
+ print_info: ssm_dt_b_c_rms = 0
112
+ print_info: model type = 350M
113
+ print_info: model params = 340.33 M
114
+ print_info: general.name = Granite 4.0 H 350m Unsloth
115
+ print_info: f_embedding_scale = 12.000000
116
+ print_info: f_residual_scale = 0.246000
117
+ print_info: f_attention_scale = 0.015625
118
+ print_info: n_ff_shexp = 2048
119
+ print_info: vocab type = BPE
120
+ print_info: n_vocab = 100352
121
+ print_info: n_merges = 100000
122
+ print_info: BOS token = 100257 '<|end_of_text|>'
123
+ print_info: EOS token = 100257 '<|end_of_text|>'
124
+ print_info: EOT token = 100257 '<|end_of_text|>'
125
+ print_info: UNK token = 100269 '<|unk|>'
126
+ print_info: PAD token = 100256 '<|pad|>'
127
+ print_info: LF token = 198 'Ċ'
128
+ print_info: FIM PRE token = 100258 '<|fim_prefix|>'
129
+ print_info: FIM SUF token = 100260 '<|fim_suffix|>'
130
+ print_info: FIM MID token = 100259 '<|fim_middle|>'
131
+ print_info: FIM PAD token = 100261 '<|fim_pad|>'
132
+ print_info: EOG token = 100257 '<|end_of_text|>'
133
+ print_info: EOG token = 100261 '<|fim_pad|>'
134
+ print_info: max token length = 256
135
+ load_tensors: loading model tensors, this can take a while... (mmap = true)
136
+ load_tensors: offloading 20 repeating layers to GPU
137
+ load_tensors: offloaded 20/33 layers to GPU
138
+ load_tensors: CPU_Mapped model buffer size = 158.00 MiB
139
+ load_tensors: CUDA0 model buffer size = 79.40 MiB
140
+ load_tensors: CUDA1 model buffer size = 81.14 MiB
141
+ ...................................................................................
142
+ llama_context: constructing llama_context
143
+ llama_context: n_seq_max = 1
144
+ llama_context: n_ctx = 2048
145
+ llama_context: n_ctx_seq = 2048
146
+ llama_context: n_batch = 2048
147
+ llama_context: n_ubatch = 512
148
+ llama_context: causal_attn = 1
149
+ llama_context: flash_attn = auto
150
+ llama_context: kv_unified = false
151
+ llama_context: freq_base = 10000.0
152
+ llama_context: freq_scale = 1
153
+ llama_context: n_ctx_seq (2048) < n_ctx_train (1048576) -- the full capacity of the model will not be utilized
154
+ llama_context: CPU output buffer size = 0.38 MiB
155
+ llama_kv_cache: CPU KV buffer size = 2.00 MiB
156
+ llama_kv_cache: CUDA0 KV buffer size = 4.00 MiB
157
+ llama_kv_cache: CUDA1 KV buffer size = 2.00 MiB
158
+ llama_kv_cache: size = 8.00 MiB ( 2048 cells, 4 layers, 1/1 seqs), K (f16): 4.00 MiB, V (f16): 4.00 MiB
159
+ llama_memory_recurrent: CPU RS buffer size = 8.48 MiB
160
+ llama_memory_recurrent: CUDA0 RS buffer size = 6.16 MiB
161
+ llama_memory_recurrent: CUDA1 RS buffer size = 6.93 MiB
162
+ llama_memory_recurrent: size = 21.57 MiB ( 1 cells, 32 layers, 1 seqs), R (f32): 0.57 MiB, S (f32): 21.00 MiB
163
+ llama_context: Flash Attention was auto, set to enabled
164
+ llama_context: CUDA0 compute buffer size = 267.39 MiB
165
+ llama_context: CUDA1 compute buffer size = 22.39 MiB
166
+ llama_context: CUDA_Host compute buffer size = 18.34 MiB
167
+ llama_context: graph nodes = 1815
168
+ llama_context: graph splits = 182 (with bs=512), 41 (with bs=1)
169
+ common_init_from_params: added <|end_of_text|> logit bias = -inf
170
+ common_init_from_params: added <|fim_pad|> logit bias = -inf
171
+ common_init_from_params: setting dry_penalty_last_n to ctx_size = 2048
172
+ common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
173
+
174
+ system_info: n_threads = 16 (n_threads_batch = 16) / 32 | CUDA : ARCHS = 860 | USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | BMI2 = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | AVX512_BF16 = 1 | LLAMAFILE = 1 | OPENMP = 1 | REPACK = 1 |
175
+ perplexity: tokenizing the input ..
176
+ perplexity: tokenization took 91.152 ms
177
+ perplexity: calculating perplexity over 44 chunks, n_ctx=2048, batch_size=2048, n_seq=1
178
+ perplexity: 0.49 seconds per pass - ETA 0.35 minutes
179
+ [1]4.3517,[2]3.9745,[3]2.5678,[4]2.3702,[5]2.6105,[6]2.8548,[7]2.7066,[8]2.5143,[9]2.3099,[10]2.1407,[11]2.1229,[12]2.1494,[13]2.0606,[14]2.0404,[15]2.0818,[16]2.0161,[17]1.9908,[18]2.0095,[19]1.9697,[20]1.9343,[21]1.9013,[22]1.8865,[23]1.9166,[24]1.8900,[25]1.9092,[26]1.8770,[27]1.8636,[28]1.8555,[29]1.9013,[30]1.9180,[31]1.9167,[32]1.8922,[33]1.9157,[34]1.9080,[35]1.8892,[36]1.9207,[37]1.9271,[38]1.9251,[39]1.9467,[40]1.9440,[41]1.9366,[42]1.9605,[43]1.9690,[44]1.9581,
180
+ Final estimate: PPL = 1.9581 +/- 0.01754
181
+
182
+ llama_perf_context_print: load time = 204.47 ms
183
+ llama_perf_context_print: prompt eval time = 14784.78 ms / 90112 tokens ( 0.16 ms per token, 6094.92 tokens per second)
184
+ llama_perf_context_print: eval time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
185
+ llama_perf_context_print: total time = 15658.06 ms / 90113 tokens
186
+ llama_perf_context_print: graphs reused = 0
187
+ llama_memory_breakdown_print: | memory breakdown [MiB] | total free self model context compute unaccounted |
188
+ llama_memory_breakdown_print: | - CUDA0 (RTX 3090) | 24107 = 20681 + ( 356 = 79 + 10 + 267) + 3068 |
189
+ llama_memory_breakdown_print: | - CUDA1 (RTX 3090) | 24124 = 23390 + ( 112 = 81 + 8 + 22) + 621 |
190
+ llama_memory_breakdown_print: | - Host | 186 = 157 + 10 + 18 |
Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_f16-router_gate_emb_q6_k/perplexity_general.txt ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
2
+ ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
3
+ ggml_cuda_init: found 2 CUDA devices:
4
+ Device 0: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
5
+ Device 1: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
6
+ build: 7040 (92bb442ad) with cc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 for x86_64-linux-gnu
7
+ llama_model_load_from_file_impl: using device CUDA0 (NVIDIA GeForce RTX 3090) (0000:01:00.0) - 21119 MiB free
8
+ llama_model_load_from_file_impl: using device CUDA1 (NVIDIA GeForce RTX 3090) (0000:03:00.0) - 23582 MiB free
9
+ llama_model_loader: loaded meta data with 48 key-value pairs and 402 tensors from /mnt/world8/AI/Models/granite-4.0-h-350m-unsloth/GGUF/MXFP4/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_f16-router_gate_emb_q6_k.gguf (version GGUF V3 (latest))
10
+ llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
11
+ llama_model_loader: - kv 0: general.architecture str = granitehybrid
12
+ llama_model_loader: - kv 1: general.type str = model
13
+ llama_model_loader: - kv 2: general.name str = Granite 4.0 H 350m Unsloth
14
+ llama_model_loader: - kv 3: general.finetune str = unsloth
15
+ llama_model_loader: - kv 4: general.basename str = granite-4.0-h
16
+ llama_model_loader: - kv 5: general.size_label str = 350M
17
+ llama_model_loader: - kv 6: general.license str = apache-2.0
18
+ llama_model_loader: - kv 7: general.base_model.count u32 = 1
19
+ llama_model_loader: - kv 8: general.base_model.0.name str = Granite 4.0 H 350m
20
+ llama_model_loader: - kv 9: general.base_model.0.organization str = Ibm Granite
21
+ llama_model_loader: - kv 10: general.base_model.0.repo_url str = https://huggingface.co/ibm-granite/gr...
22
+ llama_model_loader: - kv 11: general.tags arr[str,3] = ["language", "unsloth", "granite-4.0"]
23
+ llama_model_loader: - kv 12: granitehybrid.block_count u32 = 32
24
+ llama_model_loader: - kv 13: granitehybrid.context_length u32 = 1048576
25
+ llama_model_loader: - kv 14: granitehybrid.embedding_length u32 = 768
26
+ llama_model_loader: - kv 15: granitehybrid.feed_forward_length u32 = 2048
27
+ llama_model_loader: - kv 16: granitehybrid.attention.head_count u32 = 12
28
+ llama_model_loader: - kv 17: granitehybrid.attention.head_count_kv arr[i32,32] = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, ...
29
+ llama_model_loader: - kv 18: granitehybrid.rope.freq_base f32 = 10000.000000
30
+ llama_model_loader: - kv 19: granitehybrid.attention.layer_norm_rms_epsilon f32 = 0.000010
31
+ llama_model_loader: - kv 20: granitehybrid.expert_count u32 = 0
32
+ llama_model_loader: - kv 21: granitehybrid.expert_used_count u32 = 0
33
+ llama_model_loader: - kv 22: granitehybrid.vocab_size u32 = 100352
34
+ llama_model_loader: - kv 23: granitehybrid.rope.dimension_count u32 = 64
35
+ llama_model_loader: - kv 24: granitehybrid.attention.scale f32 = 0.015625
36
+ llama_model_loader: - kv 25: granitehybrid.embedding_scale f32 = 12.000000
37
+ llama_model_loader: - kv 26: granitehybrid.residual_scale f32 = 0.246000
38
+ llama_model_loader: - kv 27: granitehybrid.logit_scale f32 = 3.000000
39
+ llama_model_loader: - kv 28: granitehybrid.expert_shared_feed_forward_length u32 = 2048
40
+ llama_model_loader: - kv 29: granitehybrid.ssm.conv_kernel u32 = 4
41
+ llama_model_loader: - kv 30: granitehybrid.ssm.state_size u32 = 128
42
+ llama_model_loader: - kv 31: granitehybrid.ssm.group_count u32 = 1
43
+ llama_model_loader: - kv 32: granitehybrid.ssm.inner_size u32 = 1536
44
+ llama_model_loader: - kv 33: granitehybrid.ssm.time_step_rank u32 = 48
45
+ llama_model_loader: - kv 34: granitehybrid.rope.scaling.finetuned bool = false
46
+ llama_model_loader: - kv 35: tokenizer.ggml.model str = gpt2
47
+ llama_model_loader: - kv 36: tokenizer.ggml.pre str = dbrx
48
+ llama_model_loader: - kv 37: tokenizer.ggml.tokens arr[str,100352] = ["!", "\"", "#", "$", "%", "&", "'", ...
49
+ llama_model_loader: - kv 38: tokenizer.ggml.token_type arr[i32,100352] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
50
+ llama_model_loader: - kv 39: tokenizer.ggml.merges arr[str,100000] = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
51
+ llama_model_loader: - kv 40: tokenizer.ggml.bos_token_id u32 = 100257
52
+ llama_model_loader: - kv 41: tokenizer.ggml.eos_token_id u32 = 100257
53
+ llama_model_loader: - kv 42: tokenizer.ggml.unknown_token_id u32 = 100269
54
+ llama_model_loader: - kv 43: tokenizer.ggml.padding_token_id u32 = 100256
55
+ llama_model_loader: - kv 44: tokenizer.ggml.add_bos_token bool = false
56
+ llama_model_loader: - kv 45: tokenizer.chat_template str = {%- set tools_system_message_prefix =...
57
+ llama_model_loader: - kv 46: general.quantization_version u32 = 2
58
+ llama_model_loader: - kv 47: general.file_type u32 = 38
59
+ llama_model_loader: - type f32: 233 tensors
60
+ llama_model_loader: - type f16: 4 tensors
61
+ llama_model_loader: - type q8_0: 132 tensors
62
+ llama_model_loader: - type q6_K: 33 tensors
63
+ print_info: file format = GGUF V3 (latest)
64
+ print_info: file type = MXFP4 MoE
65
+ print_info: file size = 318.51 MiB (7.85 BPW)
66
+ load: printing all EOG tokens:
67
+ load: - 100257 ('<|end_of_text|>')
68
+ load: - 100261 ('<|fim_pad|>')
69
+ load: special tokens cache size = 96
70
+ load: token to piece cache size = 0.6152 MB
71
+ print_info: arch = granitehybrid
72
+ print_info: vocab_only = 0
73
+ print_info: n_ctx_train = 1048576
74
+ print_info: n_embd = 768
75
+ print_info: n_embd_inp = 768
76
+ print_info: n_layer = 32
77
+ print_info: n_head = 12
78
+ print_info: n_head_kv = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0]
79
+ print_info: n_rot = 64
80
+ print_info: n_swa = 0
81
+ print_info: is_swa_any = 0
82
+ print_info: n_embd_head_k = 64
83
+ print_info: n_embd_head_v = 64
84
+ print_info: n_gqa = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 3, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0]
85
+ print_info: n_embd_k_gqa = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 256, 0, 0, 0, 256, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 0, 0]
86
+ print_info: n_embd_v_gqa = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 256, 0, 0, 0, 256, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 0, 0]
87
+ print_info: f_norm_eps = 0.0e+00
88
+ print_info: f_norm_rms_eps = 1.0e-05
89
+ print_info: f_clamp_kqv = 0.0e+00
90
+ print_info: f_max_alibi_bias = 0.0e+00
91
+ print_info: f_logit_scale = 3.0e+00
92
+ print_info: f_attn_scale = 1.6e-02
93
+ print_info: n_ff = 2048
94
+ print_info: n_expert = 0
95
+ print_info: n_expert_used = 0
96
+ print_info: n_expert_groups = 0
97
+ print_info: n_group_used = 0
98
+ print_info: causal attn = 1
99
+ print_info: pooling type = 0
100
+ print_info: rope type = 0
101
+ print_info: rope scaling = linear
102
+ print_info: freq_base_train = 10000.0
103
+ print_info: freq_scale_train = 1
104
+ print_info: n_ctx_orig_yarn = 1048576
105
+ print_info: rope_finetuned = unknown
106
+ print_info: ssm_d_conv = 4
107
+ print_info: ssm_d_inner = 1536
108
+ print_info: ssm_d_state = 128
109
+ print_info: ssm_dt_rank = 48
110
+ print_info: ssm_n_group = 1
111
+ print_info: ssm_dt_b_c_rms = 0
112
+ print_info: model type = 350M
113
+ print_info: model params = 340.33 M
114
+ print_info: general.name = Granite 4.0 H 350m Unsloth
115
+ print_info: f_embedding_scale = 12.000000
116
+ print_info: f_residual_scale = 0.246000
117
+ print_info: f_attention_scale = 0.015625
118
+ print_info: n_ff_shexp = 2048
119
+ print_info: vocab type = BPE
120
+ print_info: n_vocab = 100352
121
+ print_info: n_merges = 100000
122
+ print_info: BOS token = 100257 '<|end_of_text|>'
123
+ print_info: EOS token = 100257 '<|end_of_text|>'
124
+ print_info: EOT token = 100257 '<|end_of_text|>'
125
+ print_info: UNK token = 100269 '<|unk|>'
126
+ print_info: PAD token = 100256 '<|pad|>'
127
+ print_info: LF token = 198 'Ċ'
128
+ print_info: FIM PRE token = 100258 '<|fim_prefix|>'
129
+ print_info: FIM SUF token = 100260 '<|fim_suffix|>'
130
+ print_info: FIM MID token = 100259 '<|fim_middle|>'
131
+ print_info: FIM PAD token = 100261 '<|fim_pad|>'
132
+ print_info: EOG token = 100257 '<|end_of_text|>'
133
+ print_info: EOG token = 100261 '<|fim_pad|>'
134
+ print_info: max token length = 256
135
+ load_tensors: loading model tensors, this can take a while... (mmap = true)
136
+ load_tensors: offloading 20 repeating layers to GPU
137
+ load_tensors: offloaded 20/33 layers to GPU
138
+ load_tensors: CPU_Mapped model buffer size = 158.00 MiB
139
+ load_tensors: CUDA0 model buffer size = 79.40 MiB
140
+ load_tensors: CUDA1 model buffer size = 81.14 MiB
141
+ ...................................................................................
142
+ llama_context: constructing llama_context
143
+ llama_context: n_seq_max = 1
144
+ llama_context: n_ctx = 2048
145
+ llama_context: n_ctx_seq = 2048
146
+ llama_context: n_batch = 2048
147
+ llama_context: n_ubatch = 512
148
+ llama_context: causal_attn = 1
149
+ llama_context: flash_attn = auto
150
+ llama_context: kv_unified = false
151
+ llama_context: freq_base = 10000.0
152
+ llama_context: freq_scale = 1
153
+ llama_context: n_ctx_seq (2048) < n_ctx_train (1048576) -- the full capacity of the model will not be utilized
154
+ llama_context: CPU output buffer size = 0.38 MiB
155
+ llama_kv_cache: CPU KV buffer size = 2.00 MiB
156
+ llama_kv_cache: CUDA0 KV buffer size = 4.00 MiB
157
+ llama_kv_cache: CUDA1 KV buffer size = 2.00 MiB
158
+ llama_kv_cache: size = 8.00 MiB ( 2048 cells, 4 layers, 1/1 seqs), K (f16): 4.00 MiB, V (f16): 4.00 MiB
159
+ llama_memory_recurrent: CPU RS buffer size = 8.48 MiB
160
+ llama_memory_recurrent: CUDA0 RS buffer size = 6.16 MiB
161
+ llama_memory_recurrent: CUDA1 RS buffer size = 6.93 MiB
162
+ llama_memory_recurrent: size = 21.57 MiB ( 1 cells, 32 layers, 1 seqs), R (f32): 0.57 MiB, S (f32): 21.00 MiB
163
+ llama_context: Flash Attention was auto, set to enabled
164
+ llama_context: CUDA0 compute buffer size = 267.39 MiB
165
+ llama_context: CUDA1 compute buffer size = 22.39 MiB
166
+ llama_context: CUDA_Host compute buffer size = 18.34 MiB
167
+ llama_context: graph nodes = 1815
168
+ llama_context: graph splits = 182 (with bs=512), 41 (with bs=1)
169
+ common_init_from_params: added <|end_of_text|> logit bias = -inf
170
+ common_init_from_params: added <|fim_pad|> logit bias = -inf
171
+ common_init_from_params: setting dry_penalty_last_n to ctx_size = 2048
172
+ common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
173
+
174
+ system_info: n_threads = 16 (n_threads_batch = 16) / 32 | CUDA : ARCHS = 860 | USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | BMI2 = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | AVX512_BF16 = 1 | LLAMAFILE = 1 | OPENMP = 1 | REPACK = 1 |
175
+ perplexity: tokenizing the input ..
176
+ perplexity: tokenization took 42.825 ms
177
+ perplexity: calculating perplexity over 14 chunks, n_ctx=2048, batch_size=2048, n_seq=1
178
+ perplexity: 0.54 seconds per pass - ETA 0.12 minutes
179
+ [1]18.6512,[2]21.6381,[3]22.3486,[4]20.2410,[5]20.2498,[6]18.0768,[7]17.7092,[8]17.6486,[9]18.1639,[10]18.1415,[11]17.9674,[12]18.0778,[13]18.1444,[14]18.1862,
180
+ Final estimate: PPL = 18.1862 +/- 0.46855
181
+
182
+ llama_perf_context_print: load time = 206.35 ms
183
+ llama_perf_context_print: prompt eval time = 4768.99 ms / 28672 tokens ( 0.17 ms per token, 6012.17 tokens per second)
184
+ llama_perf_context_print: eval time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
185
+ llama_perf_context_print: total time = 5039.14 ms / 28673 tokens
186
+ llama_perf_context_print: graphs reused = 0
187
+ llama_memory_breakdown_print: | memory breakdown [MiB] | total free self model context compute unaccounted |
188
+ llama_memory_breakdown_print: | - CUDA0 (RTX 3090) | 24107 = 20681 + ( 356 = 79 + 10 + 267) + 3068 |
189
+ llama_memory_breakdown_print: | - CUDA1 (RTX 3090) | 24124 = 23390 + ( 112 = 81 + 8 + 22) + 621 |
190
+ llama_memory_breakdown_print: | - Host | 186 = 157 + 10 + 18 |
Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_f16-router_gate_emb_q6_k/perplexity_math.txt ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
2
+ ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
3
+ ggml_cuda_init: found 2 CUDA devices:
4
+ Device 0: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
5
+ Device 1: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
6
+ build: 7040 (92bb442ad) with cc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 for x86_64-linux-gnu
7
+ llama_model_load_from_file_impl: using device CUDA0 (NVIDIA GeForce RTX 3090) (0000:01:00.0) - 21117 MiB free
8
+ llama_model_load_from_file_impl: using device CUDA1 (NVIDIA GeForce RTX 3090) (0000:03:00.0) - 23582 MiB free
9
+ llama_model_loader: loaded meta data with 48 key-value pairs and 402 tensors from /mnt/world8/AI/Models/granite-4.0-h-350m-unsloth/GGUF/MXFP4/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_f16-router_gate_emb_q6_k.gguf (version GGUF V3 (latest))
10
+ llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
11
+ llama_model_loader: - kv 0: general.architecture str = granitehybrid
12
+ llama_model_loader: - kv 1: general.type str = model
13
+ llama_model_loader: - kv 2: general.name str = Granite 4.0 H 350m Unsloth
14
+ llama_model_loader: - kv 3: general.finetune str = unsloth
15
+ llama_model_loader: - kv 4: general.basename str = granite-4.0-h
16
+ llama_model_loader: - kv 5: general.size_label str = 350M
17
+ llama_model_loader: - kv 6: general.license str = apache-2.0
18
+ llama_model_loader: - kv 7: general.base_model.count u32 = 1
19
+ llama_model_loader: - kv 8: general.base_model.0.name str = Granite 4.0 H 350m
20
+ llama_model_loader: - kv 9: general.base_model.0.organization str = Ibm Granite
21
+ llama_model_loader: - kv 10: general.base_model.0.repo_url str = https://huggingface.co/ibm-granite/gr...
22
+ llama_model_loader: - kv 11: general.tags arr[str,3] = ["language", "unsloth", "granite-4.0"]
23
+ llama_model_loader: - kv 12: granitehybrid.block_count u32 = 32
24
+ llama_model_loader: - kv 13: granitehybrid.context_length u32 = 1048576
25
+ llama_model_loader: - kv 14: granitehybrid.embedding_length u32 = 768
26
+ llama_model_loader: - kv 15: granitehybrid.feed_forward_length u32 = 2048
27
+ llama_model_loader: - kv 16: granitehybrid.attention.head_count u32 = 12
28
+ llama_model_loader: - kv 17: granitehybrid.attention.head_count_kv arr[i32,32] = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, ...
29
+ llama_model_loader: - kv 18: granitehybrid.rope.freq_base f32 = 10000.000000
30
+ llama_model_loader: - kv 19: granitehybrid.attention.layer_norm_rms_epsilon f32 = 0.000010
31
+ llama_model_loader: - kv 20: granitehybrid.expert_count u32 = 0
32
+ llama_model_loader: - kv 21: granitehybrid.expert_used_count u32 = 0
33
+ llama_model_loader: - kv 22: granitehybrid.vocab_size u32 = 100352
34
+ llama_model_loader: - kv 23: granitehybrid.rope.dimension_count u32 = 64
35
+ llama_model_loader: - kv 24: granitehybrid.attention.scale f32 = 0.015625
36
+ llama_model_loader: - kv 25: granitehybrid.embedding_scale f32 = 12.000000
37
+ llama_model_loader: - kv 26: granitehybrid.residual_scale f32 = 0.246000
38
+ llama_model_loader: - kv 27: granitehybrid.logit_scale f32 = 3.000000
39
+ llama_model_loader: - kv 28: granitehybrid.expert_shared_feed_forward_length u32 = 2048
40
+ llama_model_loader: - kv 29: granitehybrid.ssm.conv_kernel u32 = 4
41
+ llama_model_loader: - kv 30: granitehybrid.ssm.state_size u32 = 128
42
+ llama_model_loader: - kv 31: granitehybrid.ssm.group_count u32 = 1
43
+ llama_model_loader: - kv 32: granitehybrid.ssm.inner_size u32 = 1536
44
+ llama_model_loader: - kv 33: granitehybrid.ssm.time_step_rank u32 = 48
45
+ llama_model_loader: - kv 34: granitehybrid.rope.scaling.finetuned bool = false
46
+ llama_model_loader: - kv 35: tokenizer.ggml.model str = gpt2
47
+ llama_model_loader: - kv 36: tokenizer.ggml.pre str = dbrx
48
+ llama_model_loader: - kv 37: tokenizer.ggml.tokens arr[str,100352] = ["!", "\"", "#", "$", "%", "&", "'", ...
49
+ llama_model_loader: - kv 38: tokenizer.ggml.token_type arr[i32,100352] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
50
+ llama_model_loader: - kv 39: tokenizer.ggml.merges arr[str,100000] = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
51
+ llama_model_loader: - kv 40: tokenizer.ggml.bos_token_id u32 = 100257
52
+ llama_model_loader: - kv 41: tokenizer.ggml.eos_token_id u32 = 100257
53
+ llama_model_loader: - kv 42: tokenizer.ggml.unknown_token_id u32 = 100269
54
+ llama_model_loader: - kv 43: tokenizer.ggml.padding_token_id u32 = 100256
55
+ llama_model_loader: - kv 44: tokenizer.ggml.add_bos_token bool = false
56
+ llama_model_loader: - kv 45: tokenizer.chat_template str = {%- set tools_system_message_prefix =...
57
+ llama_model_loader: - kv 46: general.quantization_version u32 = 2
58
+ llama_model_loader: - kv 47: general.file_type u32 = 38
59
+ llama_model_loader: - type f32: 233 tensors
60
+ llama_model_loader: - type f16: 4 tensors
61
+ llama_model_loader: - type q8_0: 132 tensors
62
+ llama_model_loader: - type q6_K: 33 tensors
63
+ print_info: file format = GGUF V3 (latest)
64
+ print_info: file type = MXFP4 MoE
65
+ print_info: file size = 318.51 MiB (7.85 BPW)
66
+ load: printing all EOG tokens:
67
+ load: - 100257 ('<|end_of_text|>')
68
+ load: - 100261 ('<|fim_pad|>')
69
+ load: special tokens cache size = 96
70
+ load: token to piece cache size = 0.6152 MB
71
+ print_info: arch = granitehybrid
72
+ print_info: vocab_only = 0
73
+ print_info: n_ctx_train = 1048576
74
+ print_info: n_embd = 768
75
+ print_info: n_embd_inp = 768
76
+ print_info: n_layer = 32
77
+ print_info: n_head = 12
78
+ print_info: n_head_kv = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0]
79
+ print_info: n_rot = 64
80
+ print_info: n_swa = 0
81
+ print_info: is_swa_any = 0
82
+ print_info: n_embd_head_k = 64
83
+ print_info: n_embd_head_v = 64
84
+ print_info: n_gqa = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 3, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0]
85
+ print_info: n_embd_k_gqa = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 256, 0, 0, 0, 256, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 0, 0]
86
+ print_info: n_embd_v_gqa = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 256, 0, 0, 0, 256, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 0, 0]
87
+ print_info: f_norm_eps = 0.0e+00
88
+ print_info: f_norm_rms_eps = 1.0e-05
89
+ print_info: f_clamp_kqv = 0.0e+00
90
+ print_info: f_max_alibi_bias = 0.0e+00
91
+ print_info: f_logit_scale = 3.0e+00
92
+ print_info: f_attn_scale = 1.6e-02
93
+ print_info: n_ff = 2048
94
+ print_info: n_expert = 0
95
+ print_info: n_expert_used = 0
96
+ print_info: n_expert_groups = 0
97
+ print_info: n_group_used = 0
98
+ print_info: causal attn = 1
99
+ print_info: pooling type = 0
100
+ print_info: rope type = 0
101
+ print_info: rope scaling = linear
102
+ print_info: freq_base_train = 10000.0
103
+ print_info: freq_scale_train = 1
104
+ print_info: n_ctx_orig_yarn = 1048576
105
+ print_info: rope_finetuned = unknown
106
+ print_info: ssm_d_conv = 4
107
+ print_info: ssm_d_inner = 1536
108
+ print_info: ssm_d_state = 128
109
+ print_info: ssm_dt_rank = 48
110
+ print_info: ssm_n_group = 1
111
+ print_info: ssm_dt_b_c_rms = 0
112
+ print_info: model type = 350M
113
+ print_info: model params = 340.33 M
114
+ print_info: general.name = Granite 4.0 H 350m Unsloth
115
+ print_info: f_embedding_scale = 12.000000
116
+ print_info: f_residual_scale = 0.246000
117
+ print_info: f_attention_scale = 0.015625
118
+ print_info: n_ff_shexp = 2048
119
+ print_info: vocab type = BPE
120
+ print_info: n_vocab = 100352
121
+ print_info: n_merges = 100000
122
+ print_info: BOS token = 100257 '<|end_of_text|>'
123
+ print_info: EOS token = 100257 '<|end_of_text|>'
124
+ print_info: EOT token = 100257 '<|end_of_text|>'
125
+ print_info: UNK token = 100269 '<|unk|>'
126
+ print_info: PAD token = 100256 '<|pad|>'
127
+ print_info: LF token = 198 'Ċ'
128
+ print_info: FIM PRE token = 100258 '<|fim_prefix|>'
129
+ print_info: FIM SUF token = 100260 '<|fim_suffix|>'
130
+ print_info: FIM MID token = 100259 '<|fim_middle|>'
131
+ print_info: FIM PAD token = 100261 '<|fim_pad|>'
132
+ print_info: EOG token = 100257 '<|end_of_text|>'
133
+ print_info: EOG token = 100261 '<|fim_pad|>'
134
+ print_info: max token length = 256
135
+ load_tensors: loading model tensors, this can take a while... (mmap = true)
136
+ load_tensors: offloading 20 repeating layers to GPU
137
+ load_tensors: offloaded 20/33 layers to GPU
138
+ load_tensors: CPU_Mapped model buffer size = 158.00 MiB
139
+ load_tensors: CUDA0 model buffer size = 79.40 MiB
140
+ load_tensors: CUDA1 model buffer size = 81.14 MiB
141
+ ...................................................................................
142
+ llama_context: constructing llama_context
143
+ llama_context: n_seq_max = 1
144
+ llama_context: n_ctx = 2048
145
+ llama_context: n_ctx_seq = 2048
146
+ llama_context: n_batch = 2048
147
+ llama_context: n_ubatch = 512
148
+ llama_context: causal_attn = 1
149
+ llama_context: flash_attn = auto
150
+ llama_context: kv_unified = false
151
+ llama_context: freq_base = 10000.0
152
+ llama_context: freq_scale = 1
153
+ llama_context: n_ctx_seq (2048) < n_ctx_train (1048576) -- the full capacity of the model will not be utilized
154
+ llama_context: CPU output buffer size = 0.38 MiB
155
+ llama_kv_cache: CPU KV buffer size = 2.00 MiB
156
+ llama_kv_cache: CUDA0 KV buffer size = 4.00 MiB
157
+ llama_kv_cache: CUDA1 KV buffer size = 2.00 MiB
158
+ llama_kv_cache: size = 8.00 MiB ( 2048 cells, 4 layers, 1/1 seqs), K (f16): 4.00 MiB, V (f16): 4.00 MiB
159
+ llama_memory_recurrent: CPU RS buffer size = 8.48 MiB
160
+ llama_memory_recurrent: CUDA0 RS buffer size = 6.16 MiB
161
+ llama_memory_recurrent: CUDA1 RS buffer size = 6.93 MiB
162
+ llama_memory_recurrent: size = 21.57 MiB ( 1 cells, 32 layers, 1 seqs), R (f32): 0.57 MiB, S (f32): 21.00 MiB
163
+ llama_context: Flash Attention was auto, set to enabled
164
+ llama_context: CUDA0 compute buffer size = 267.39 MiB
165
+ llama_context: CUDA1 compute buffer size = 22.39 MiB
166
+ llama_context: CUDA_Host compute buffer size = 18.34 MiB
167
+ llama_context: graph nodes = 1815
168
+ llama_context: graph splits = 182 (with bs=512), 41 (with bs=1)
169
+ common_init_from_params: added <|end_of_text|> logit bias = -inf
170
+ common_init_from_params: added <|fim_pad|> logit bias = -inf
171
+ common_init_from_params: setting dry_penalty_last_n to ctx_size = 2048
172
+ common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
173
+
174
+ system_info: n_threads = 16 (n_threads_batch = 16) / 32 | CUDA : ARCHS = 860 | USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | BMI2 = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | AVX512_BF16 = 1 | LLAMAFILE = 1 | OPENMP = 1 | REPACK = 1 |
175
+ perplexity: tokenizing the input ..
176
+ perplexity: tokenization took 36.171 ms
177
+ perplexity: calculating perplexity over 15 chunks, n_ctx=2048, batch_size=2048, n_seq=1
178
+ perplexity: 0.54 seconds per pass - ETA 0.13 minutes
179
+ [1]8.7655,[2]9.9228,[3]9.4725,[4]9.7974,[5]9.9635,[6]10.0535,[7]10.2088,[8]9.9054,[9]9.9607,[10]9.9652,[11]10.1962,[12]10.2815,[13]10.4015,[14]10.3779,[15]10.2794,
180
+ Final estimate: PPL = 10.2794 +/- 0.23142
181
+
182
+ llama_perf_context_print: load time = 256.52 ms
183
+ llama_perf_context_print: prompt eval time = 5354.18 ms / 30720 tokens ( 0.17 ms per token, 5737.58 tokens per second)
184
+ llama_perf_context_print: eval time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
185
+ llama_perf_context_print: total time = 5661.01 ms / 30721 tokens
186
+ llama_perf_context_print: graphs reused = 0
187
+ llama_memory_breakdown_print: | memory breakdown [MiB] | total free self model context compute unaccounted |
188
+ llama_memory_breakdown_print: | - CUDA0 (RTX 3090) | 24107 = 20681 + ( 356 = 79 + 10 + 267) + 3068 |
189
+ llama_memory_breakdown_print: | - CUDA1 (RTX 3090) | 24124 = 23390 + ( 112 = 81 + 8 + 22) + 621 |
190
+ llama_memory_breakdown_print: | - Host | 186 = 157 + 10 + 18 |
Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_f16-router_gate_emb_q6_k/ppl_corpus_code.txt ADDED
The diff for this file is too large to render. See raw diff
 
Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_f16-router_gate_emb_q6_k/ppl_corpus_general.txt ADDED
The diff for this file is too large to render. See raw diff
 
Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_f16-router_gate_emb_q6_k/ppl_corpus_math.txt ADDED
The diff for this file is too large to render. See raw diff
 
Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_mxfp4-embd_f16/llamabench.txt ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
2
+ ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
3
+ ggml_cuda_init: found 2 CUDA devices:
4
+ Device 0: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
5
+ Device 1: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
6
+ | model | size | params | backend | ngl | test | t/s |
7
+ | ------------------------------ | ---------: | ---------: | ---------- | --: | --------------: | -------------------: |
8
+ | granitehybrid 350M MXFP4 MoE | 413.54 MiB | 340.33 M | CUDA | 35 | pp8 | 1658.55 ± 48.11 |
9
+ | granitehybrid 350M MXFP4 MoE | 413.54 MiB | 340.33 M | CUDA | 35 | tg128 | 288.98 ± 15.13 |
10
+
11
+ build: 92bb442ad (7040)
Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_mxfp4-embd_f16/perplexity_code.txt ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
2
+ ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
3
+ ggml_cuda_init: found 2 CUDA devices:
4
+ Device 0: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
5
+ Device 1: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
6
+ build: 7040 (92bb442ad) with cc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 for x86_64-linux-gnu
7
+ llama_model_load_from_file_impl: using device CUDA0 (NVIDIA GeForce RTX 3090) (0000:01:00.0) - 21084 MiB free
8
+ llama_model_load_from_file_impl: using device CUDA1 (NVIDIA GeForce RTX 3090) (0000:03:00.0) - 23582 MiB free
9
+ llama_model_loader: loaded meta data with 48 key-value pairs and 402 tensors from /mnt/world8/AI/Models/granite-4.0-h-350m-unsloth/GGUF/MXFP4/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_mxfp4-embd_f16.gguf (version GGUF V3 (latest))
10
+ llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
11
+ llama_model_loader: - kv 0: general.architecture str = granitehybrid
12
+ llama_model_loader: - kv 1: general.type str = model
13
+ llama_model_loader: - kv 2: general.name str = Granite 4.0 H 350m Unsloth
14
+ llama_model_loader: - kv 3: general.finetune str = unsloth
15
+ llama_model_loader: - kv 4: general.basename str = granite-4.0-h
16
+ llama_model_loader: - kv 5: general.size_label str = 350M
17
+ llama_model_loader: - kv 6: general.license str = apache-2.0
18
+ llama_model_loader: - kv 7: general.base_model.count u32 = 1
19
+ llama_model_loader: - kv 8: general.base_model.0.name str = Granite 4.0 H 350m
20
+ llama_model_loader: - kv 9: general.base_model.0.organization str = Ibm Granite
21
+ llama_model_loader: - kv 10: general.base_model.0.repo_url str = https://huggingface.co/ibm-granite/gr...
22
+ llama_model_loader: - kv 11: general.tags arr[str,3] = ["language", "unsloth", "granite-4.0"]
23
+ llama_model_loader: - kv 12: granitehybrid.block_count u32 = 32
24
+ llama_model_loader: - kv 13: granitehybrid.context_length u32 = 1048576
25
+ llama_model_loader: - kv 14: granitehybrid.embedding_length u32 = 768
26
+ llama_model_loader: - kv 15: granitehybrid.feed_forward_length u32 = 2048
27
+ llama_model_loader: - kv 16: granitehybrid.attention.head_count u32 = 12
28
+ llama_model_loader: - kv 17: granitehybrid.attention.head_count_kv arr[i32,32] = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, ...
29
+ llama_model_loader: - kv 18: granitehybrid.rope.freq_base f32 = 10000.000000
30
+ llama_model_loader: - kv 19: granitehybrid.attention.layer_norm_rms_epsilon f32 = 0.000010
31
+ llama_model_loader: - kv 20: granitehybrid.expert_count u32 = 0
32
+ llama_model_loader: - kv 21: granitehybrid.expert_used_count u32 = 0
33
+ llama_model_loader: - kv 22: granitehybrid.vocab_size u32 = 100352
34
+ llama_model_loader: - kv 23: granitehybrid.rope.dimension_count u32 = 64
35
+ llama_model_loader: - kv 24: granitehybrid.attention.scale f32 = 0.015625
36
+ llama_model_loader: - kv 25: granitehybrid.embedding_scale f32 = 12.000000
37
+ llama_model_loader: - kv 26: granitehybrid.residual_scale f32 = 0.246000
38
+ llama_model_loader: - kv 27: granitehybrid.logit_scale f32 = 3.000000
39
+ llama_model_loader: - kv 28: granitehybrid.expert_shared_feed_forward_length u32 = 2048
40
+ llama_model_loader: - kv 29: granitehybrid.ssm.conv_kernel u32 = 4
41
+ llama_model_loader: - kv 30: granitehybrid.ssm.state_size u32 = 128
42
+ llama_model_loader: - kv 31: granitehybrid.ssm.group_count u32 = 1
43
+ llama_model_loader: - kv 32: granitehybrid.ssm.inner_size u32 = 1536
44
+ llama_model_loader: - kv 33: granitehybrid.ssm.time_step_rank u32 = 48
45
+ llama_model_loader: - kv 34: granitehybrid.rope.scaling.finetuned bool = false
46
+ llama_model_loader: - kv 35: tokenizer.ggml.model str = gpt2
47
+ llama_model_loader: - kv 36: tokenizer.ggml.pre str = dbrx
48
+ llama_model_loader: - kv 37: tokenizer.ggml.tokens arr[str,100352] = ["!", "\"", "#", "$", "%", "&", "'", ...
49
+ llama_model_loader: - kv 38: tokenizer.ggml.token_type arr[i32,100352] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
50
+ llama_model_loader: - kv 39: tokenizer.ggml.merges arr[str,100000] = ["�� Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
51
+ llama_model_loader: - kv 40: tokenizer.ggml.bos_token_id u32 = 100257
52
+ llama_model_loader: - kv 41: tokenizer.ggml.eos_token_id u32 = 100257
53
+ llama_model_loader: - kv 42: tokenizer.ggml.unknown_token_id u32 = 100269
54
+ llama_model_loader: - kv 43: tokenizer.ggml.padding_token_id u32 = 100256
55
+ llama_model_loader: - kv 44: tokenizer.ggml.add_bos_token bool = false
56
+ llama_model_loader: - kv 45: tokenizer.chat_template str = {%- set tools_system_message_prefix =...
57
+ llama_model_loader: - kv 46: general.quantization_version u32 = 2
58
+ llama_model_loader: - kv 47: general.file_type u32 = 38
59
+ llama_model_loader: - type f32: 233 tensors
60
+ llama_model_loader: - type f16: 1 tensors
61
+ llama_model_loader: - type q8_0: 164 tensors
62
+ llama_model_loader: - type mxfp4: 4 tensors
63
+ print_info: file format = GGUF V3 (latest)
64
+ print_info: file type = MXFP4 MoE
65
+ print_info: file size = 413.54 MiB (10.19 BPW)
66
+ load: printing all EOG tokens:
67
+ load: - 100257 ('<|end_of_text|>')
68
+ load: - 100261 ('<|fim_pad|>')
69
+ load: special tokens cache size = 96
70
+ load: token to piece cache size = 0.6152 MB
71
+ print_info: arch = granitehybrid
72
+ print_info: vocab_only = 0
73
+ print_info: n_ctx_train = 1048576
74
+ print_info: n_embd = 768
75
+ print_info: n_embd_inp = 768
76
+ print_info: n_layer = 32
77
+ print_info: n_head = 12
78
+ print_info: n_head_kv = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0]
79
+ print_info: n_rot = 64
80
+ print_info: n_swa = 0
81
+ print_info: is_swa_any = 0
82
+ print_info: n_embd_head_k = 64
83
+ print_info: n_embd_head_v = 64
84
+ print_info: n_gqa = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 3, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0]
85
+ print_info: n_embd_k_gqa = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 256, 0, 0, 0, 256, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 0, 0]
86
+ print_info: n_embd_v_gqa = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 256, 0, 0, 0, 256, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 0, 0]
87
+ print_info: f_norm_eps = 0.0e+00
88
+ print_info: f_norm_rms_eps = 1.0e-05
89
+ print_info: f_clamp_kqv = 0.0e+00
90
+ print_info: f_max_alibi_bias = 0.0e+00
91
+ print_info: f_logit_scale = 3.0e+00
92
+ print_info: f_attn_scale = 1.6e-02
93
+ print_info: n_ff = 2048
94
+ print_info: n_expert = 0
95
+ print_info: n_expert_used = 0
96
+ print_info: n_expert_groups = 0
97
+ print_info: n_group_used = 0
98
+ print_info: causal attn = 1
99
+ print_info: pooling type = 0
100
+ print_info: rope type = 0
101
+ print_info: rope scaling = linear
102
+ print_info: freq_base_train = 10000.0
103
+ print_info: freq_scale_train = 1
104
+ print_info: n_ctx_orig_yarn = 1048576
105
+ print_info: rope_finetuned = unknown
106
+ print_info: ssm_d_conv = 4
107
+ print_info: ssm_d_inner = 1536
108
+ print_info: ssm_d_state = 128
109
+ print_info: ssm_dt_rank = 48
110
+ print_info: ssm_n_group = 1
111
+ print_info: ssm_dt_b_c_rms = 0
112
+ print_info: model type = 350M
113
+ print_info: model params = 340.33 M
114
+ print_info: general.name = Granite 4.0 H 350m Unsloth
115
+ print_info: f_embedding_scale = 12.000000
116
+ print_info: f_residual_scale = 0.246000
117
+ print_info: f_attention_scale = 0.015625
118
+ print_info: n_ff_shexp = 2048
119
+ print_info: vocab type = BPE
120
+ print_info: n_vocab = 100352
121
+ print_info: n_merges = 100000
122
+ print_info: BOS token = 100257 '<|end_of_text|>'
123
+ print_info: EOS token = 100257 '<|end_of_text|>'
124
+ print_info: EOT token = 100257 '<|end_of_text|>'
125
+ print_info: UNK token = 100269 '<|unk|>'
126
+ print_info: PAD token = 100256 '<|pad|>'
127
+ print_info: LF token = 198 'Ċ'
128
+ print_info: FIM PRE token = 100258 '<|fim_prefix|>'
129
+ print_info: FIM SUF token = 100260 '<|fim_suffix|>'
130
+ print_info: FIM MID token = 100259 '<|fim_middle|>'
131
+ print_info: FIM PAD token = 100261 '<|fim_pad|>'
132
+ print_info: EOG token = 100257 '<|end_of_text|>'
133
+ print_info: EOG token = 100261 '<|fim_pad|>'
134
+ print_info: max token length = 256
135
+ load_tensors: loading model tensors, this can take a while... (mmap = true)
136
+ load_tensors: offloading 20 repeating layers to GPU
137
+ load_tensors: offloaded 20/33 layers to GPU
138
+ load_tensors: CPU_Mapped model buffer size = 248.24 MiB
139
+ load_tensors: CUDA0 model buffer size = 81.38 MiB
140
+ load_tensors: CUDA1 model buffer size = 83.95 MiB
141
+ ..................................................................
142
+ llama_context: constructing llama_context
143
+ llama_context: n_seq_max = 1
144
+ llama_context: n_ctx = 2048
145
+ llama_context: n_ctx_seq = 2048
146
+ llama_context: n_batch = 2048
147
+ llama_context: n_ubatch = 512
148
+ llama_context: causal_attn = 1
149
+ llama_context: flash_attn = auto
150
+ llama_context: kv_unified = false
151
+ llama_context: freq_base = 10000.0
152
+ llama_context: freq_scale = 1
153
+ llama_context: n_ctx_seq (2048) < n_ctx_train (1048576) -- the full capacity of the model will not be utilized
154
+ llama_context: CPU output buffer size = 0.38 MiB
155
+ llama_kv_cache: CPU KV buffer size = 2.00 MiB
156
+ llama_kv_cache: CUDA0 KV buffer size = 4.00 MiB
157
+ llama_kv_cache: CUDA1 KV buffer size = 2.00 MiB
158
+ llama_kv_cache: size = 8.00 MiB ( 2048 cells, 4 layers, 1/1 seqs), K (f16): 4.00 MiB, V (f16): 4.00 MiB
159
+ llama_memory_recurrent: CPU RS buffer size = 8.48 MiB
160
+ llama_memory_recurrent: CUDA0 RS buffer size = 6.16 MiB
161
+ llama_memory_recurrent: CUDA1 RS buffer size = 6.93 MiB
162
+ llama_memory_recurrent: size = 21.57 MiB ( 1 cells, 32 layers, 1 seqs), R (f32): 0.57 MiB, S (f32): 21.00 MiB
163
+ llama_context: Flash Attention was auto, set to enabled
164
+ llama_context: CUDA0 compute buffer size = 351.61 MiB
165
+ llama_context: CUDA1 compute buffer size = 22.39 MiB
166
+ llama_context: CUDA_Host compute buffer size = 18.34 MiB
167
+ llama_context: graph nodes = 1815
168
+ llama_context: graph splits = 182 (with bs=512), 41 (with bs=1)
169
+ common_init_from_params: added <|end_of_text|> logit bias = -inf
170
+ common_init_from_params: added <|fim_pad|> logit bias = -inf
171
+ common_init_from_params: setting dry_penalty_last_n to ctx_size = 2048
172
+ common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
173
+
174
+ system_info: n_threads = 16 (n_threads_batch = 16) / 32 | CUDA : ARCHS = 860 | USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | BMI2 = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | AVX512_BF16 = 1 | LLAMAFILE = 1 | OPENMP = 1 | REPACK = 1 |
175
+ perplexity: tokenizing the input ..
176
+ perplexity: tokenization took 120.533 ms
177
+ perplexity: calculating perplexity over 44 chunks, n_ctx=2048, batch_size=2048, n_seq=1
178
+ perplexity: 0.60 seconds per pass - ETA 0.43 minutes
179
+ [1]4.3491,[2]3.9791,[3]2.5701,[4]2.3717,[5]2.6057,[6]2.8516,[7]2.7012,[8]2.5110,[9]2.3072,[10]2.1384,[11]2.1205,[12]2.1469,[13]2.0591,[14]2.0382,[15]2.0788,[16]2.0125,[17]1.9881,[18]2.0059,[19]1.9660,[20]1.9309,[21]1.8984,[22]1.8838,[23]1.9129,[24]1.8869,[25]1.9057,[26]1.8738,[27]1.8612,[28]1.8528,[29]1.8986,[30]1.9151,[31]1.9141,[32]1.8898,[33]1.9134,[34]1.9055,[35]1.8869,[36]1.9188,[37]1.9250,[38]1.9233,[39]1.9446,[40]1.9422,[41]1.9352,[42]1.9591,[43]1.9679,[44]1.9572,
180
+ Final estimate: PPL = 1.9572 +/- 0.01750
181
+
182
+ llama_perf_context_print: load time = 223.86 ms
183
+ llama_perf_context_print: prompt eval time = 15323.24 ms / 90112 tokens ( 0.17 ms per token, 5880.74 tokens per second)
184
+ llama_perf_context_print: eval time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
185
+ llama_perf_context_print: total time = 16151.18 ms / 90113 tokens
186
+ llama_perf_context_print: graphs reused = 0
187
+ llama_memory_breakdown_print: | memory breakdown [MiB] | total free self model context compute unaccounted |
188
+ llama_memory_breakdown_print: | - CUDA0 (RTX 3090) | 24107 = 20496 + ( 443 = 81 + 10 + 351) + 3167 |
189
+ llama_memory_breakdown_print: | - CUDA1 (RTX 3090) | 24124 = 23400 + ( 115 = 83 + 8 + 22) + 608 |
190
+ llama_memory_breakdown_print: | - Host | 277 = 248 + 10 + 18 |
Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_mxfp4-embd_f16/perplexity_general.txt ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
2
+ ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
3
+ ggml_cuda_init: found 2 CUDA devices:
4
+ Device 0: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
5
+ Device 1: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
6
+ build: 7040 (92bb442ad) with cc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 for x86_64-linux-gnu
7
+ llama_model_load_from_file_impl: using device CUDA0 (NVIDIA GeForce RTX 3090) (0000:01:00.0) - 21073 MiB free
8
+ llama_model_load_from_file_impl: using device CUDA1 (NVIDIA GeForce RTX 3090) (0000:03:00.0) - 23582 MiB free
9
+ llama_model_loader: loaded meta data with 48 key-value pairs and 402 tensors from /mnt/world8/AI/Models/granite-4.0-h-350m-unsloth/GGUF/MXFP4/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_mxfp4-embd_f16.gguf (version GGUF V3 (latest))
10
+ llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
11
+ llama_model_loader: - kv 0: general.architecture str = granitehybrid
12
+ llama_model_loader: - kv 1: general.type str = model
13
+ llama_model_loader: - kv 2: general.name str = Granite 4.0 H 350m Unsloth
14
+ llama_model_loader: - kv 3: general.finetune str = unsloth
15
+ llama_model_loader: - kv 4: general.basename str = granite-4.0-h
16
+ llama_model_loader: - kv 5: general.size_label str = 350M
17
+ llama_model_loader: - kv 6: general.license str = apache-2.0
18
+ llama_model_loader: - kv 7: general.base_model.count u32 = 1
19
+ llama_model_loader: - kv 8: general.base_model.0.name str = Granite 4.0 H 350m
20
+ llama_model_loader: - kv 9: general.base_model.0.organization str = Ibm Granite
21
+ llama_model_loader: - kv 10: general.base_model.0.repo_url str = https://huggingface.co/ibm-granite/gr...
22
+ llama_model_loader: - kv 11: general.tags arr[str,3] = ["language", "unsloth", "granite-4.0"]
23
+ llama_model_loader: - kv 12: granitehybrid.block_count u32 = 32
24
+ llama_model_loader: - kv 13: granitehybrid.context_length u32 = 1048576
25
+ llama_model_loader: - kv 14: granitehybrid.embedding_length u32 = 768
26
+ llama_model_loader: - kv 15: granitehybrid.feed_forward_length u32 = 2048
27
+ llama_model_loader: - kv 16: granitehybrid.attention.head_count u32 = 12
28
+ llama_model_loader: - kv 17: granitehybrid.attention.head_count_kv arr[i32,32] = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, ...
29
+ llama_model_loader: - kv 18: granitehybrid.rope.freq_base f32 = 10000.000000
30
+ llama_model_loader: - kv 19: granitehybrid.attention.layer_norm_rms_epsilon f32 = 0.000010
31
+ llama_model_loader: - kv 20: granitehybrid.expert_count u32 = 0
32
+ llama_model_loader: - kv 21: granitehybrid.expert_used_count u32 = 0
33
+ llama_model_loader: - kv 22: granitehybrid.vocab_size u32 = 100352
34
+ llama_model_loader: - kv 23: granitehybrid.rope.dimension_count u32 = 64
35
+ llama_model_loader: - kv 24: granitehybrid.attention.scale f32 = 0.015625
36
+ llama_model_loader: - kv 25: granitehybrid.embedding_scale f32 = 12.000000
37
+ llama_model_loader: - kv 26: granitehybrid.residual_scale f32 = 0.246000
38
+ llama_model_loader: - kv 27: granitehybrid.logit_scale f32 = 3.000000
39
+ llama_model_loader: - kv 28: granitehybrid.expert_shared_feed_forward_length u32 = 2048
40
+ llama_model_loader: - kv 29: granitehybrid.ssm.conv_kernel u32 = 4
41
+ llama_model_loader: - kv 30: granitehybrid.ssm.state_size u32 = 128
42
+ llama_model_loader: - kv 31: granitehybrid.ssm.group_count u32 = 1
43
+ llama_model_loader: - kv 32: granitehybrid.ssm.inner_size u32 = 1536
44
+ llama_model_loader: - kv 33: granitehybrid.ssm.time_step_rank u32 = 48
45
+ llama_model_loader: - kv 34: granitehybrid.rope.scaling.finetuned bool = false
46
+ llama_model_loader: - kv 35: tokenizer.ggml.model str = gpt2
47
+ llama_model_loader: - kv 36: tokenizer.ggml.pre str = dbrx
48
+ llama_model_loader: - kv 37: tokenizer.ggml.tokens arr[str,100352] = ["!", "\"", "#", "$", "%", "&", "'", ...
49
+ llama_model_loader: - kv 38: tokenizer.ggml.token_type arr[i32,100352] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
50
+ llama_model_loader: - kv 39: tokenizer.ggml.merges arr[str,100000] = ["�� Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
51
+ llama_model_loader: - kv 40: tokenizer.ggml.bos_token_id u32 = 100257
52
+ llama_model_loader: - kv 41: tokenizer.ggml.eos_token_id u32 = 100257
53
+ llama_model_loader: - kv 42: tokenizer.ggml.unknown_token_id u32 = 100269
54
+ llama_model_loader: - kv 43: tokenizer.ggml.padding_token_id u32 = 100256
55
+ llama_model_loader: - kv 44: tokenizer.ggml.add_bos_token bool = false
56
+ llama_model_loader: - kv 45: tokenizer.chat_template str = {%- set tools_system_message_prefix =...
57
+ llama_model_loader: - kv 46: general.quantization_version u32 = 2
58
+ llama_model_loader: - kv 47: general.file_type u32 = 38
59
+ llama_model_loader: - type f32: 233 tensors
60
+ llama_model_loader: - type f16: 1 tensors
61
+ llama_model_loader: - type q8_0: 164 tensors
62
+ llama_model_loader: - type mxfp4: 4 tensors
63
+ print_info: file format = GGUF V3 (latest)
64
+ print_info: file type = MXFP4 MoE
65
+ print_info: file size = 413.54 MiB (10.19 BPW)
66
+ load: printing all EOG tokens:
67
+ load: - 100257 ('<|end_of_text|>')
68
+ load: - 100261 ('<|fim_pad|>')
69
+ load: special tokens cache size = 96
70
+ load: token to piece cache size = 0.6152 MB
71
+ print_info: arch = granitehybrid
72
+ print_info: vocab_only = 0
73
+ print_info: n_ctx_train = 1048576
74
+ print_info: n_embd = 768
75
+ print_info: n_embd_inp = 768
76
+ print_info: n_layer = 32
77
+ print_info: n_head = 12
78
+ print_info: n_head_kv = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0]
79
+ print_info: n_rot = 64
80
+ print_info: n_swa = 0
81
+ print_info: is_swa_any = 0
82
+ print_info: n_embd_head_k = 64
83
+ print_info: n_embd_head_v = 64
84
+ print_info: n_gqa = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 3, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0]
85
+ print_info: n_embd_k_gqa = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 256, 0, 0, 0, 256, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 0, 0]
86
+ print_info: n_embd_v_gqa = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 256, 0, 0, 0, 256, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 0, 0]
87
+ print_info: f_norm_eps = 0.0e+00
88
+ print_info: f_norm_rms_eps = 1.0e-05
89
+ print_info: f_clamp_kqv = 0.0e+00
90
+ print_info: f_max_alibi_bias = 0.0e+00
91
+ print_info: f_logit_scale = 3.0e+00
92
+ print_info: f_attn_scale = 1.6e-02
93
+ print_info: n_ff = 2048
94
+ print_info: n_expert = 0
95
+ print_info: n_expert_used = 0
96
+ print_info: n_expert_groups = 0
97
+ print_info: n_group_used = 0
98
+ print_info: causal attn = 1
99
+ print_info: pooling type = 0
100
+ print_info: rope type = 0
101
+ print_info: rope scaling = linear
102
+ print_info: freq_base_train = 10000.0
103
+ print_info: freq_scale_train = 1
104
+ print_info: n_ctx_orig_yarn = 1048576
105
+ print_info: rope_finetuned = unknown
106
+ print_info: ssm_d_conv = 4
107
+ print_info: ssm_d_inner = 1536
108
+ print_info: ssm_d_state = 128
109
+ print_info: ssm_dt_rank = 48
110
+ print_info: ssm_n_group = 1
111
+ print_info: ssm_dt_b_c_rms = 0
112
+ print_info: model type = 350M
113
+ print_info: model params = 340.33 M
114
+ print_info: general.name = Granite 4.0 H 350m Unsloth
115
+ print_info: f_embedding_scale = 12.000000
116
+ print_info: f_residual_scale = 0.246000
117
+ print_info: f_attention_scale = 0.015625
118
+ print_info: n_ff_shexp = 2048
119
+ print_info: vocab type = BPE
120
+ print_info: n_vocab = 100352
121
+ print_info: n_merges = 100000
122
+ print_info: BOS token = 100257 '<|end_of_text|>'
123
+ print_info: EOS token = 100257 '<|end_of_text|>'
124
+ print_info: EOT token = 100257 '<|end_of_text|>'
125
+ print_info: UNK token = 100269 '<|unk|>'
126
+ print_info: PAD token = 100256 '<|pad|>'
127
+ print_info: LF token = 198 'Ċ'
128
+ print_info: FIM PRE token = 100258 '<|fim_prefix|>'
129
+ print_info: FIM SUF token = 100260 '<|fim_suffix|>'
130
+ print_info: FIM MID token = 100259 '<|fim_middle|>'
131
+ print_info: FIM PAD token = 100261 '<|fim_pad|>'
132
+ print_info: EOG token = 100257 '<|end_of_text|>'
133
+ print_info: EOG token = 100261 '<|fim_pad|>'
134
+ print_info: max token length = 256
135
+ load_tensors: loading model tensors, this can take a while... (mmap = true)
136
+ load_tensors: offloading 20 repeating layers to GPU
137
+ load_tensors: offloaded 20/33 layers to GPU
138
+ load_tensors: CPU_Mapped model buffer size = 248.24 MiB
139
+ load_tensors: CUDA0 model buffer size = 81.38 MiB
140
+ load_tensors: CUDA1 model buffer size = 83.95 MiB
141
+ ..................................................................
142
+ llama_context: constructing llama_context
143
+ llama_context: n_seq_max = 1
144
+ llama_context: n_ctx = 2048
145
+ llama_context: n_ctx_seq = 2048
146
+ llama_context: n_batch = 2048
147
+ llama_context: n_ubatch = 512
148
+ llama_context: causal_attn = 1
149
+ llama_context: flash_attn = auto
150
+ llama_context: kv_unified = false
151
+ llama_context: freq_base = 10000.0
152
+ llama_context: freq_scale = 1
153
+ llama_context: n_ctx_seq (2048) < n_ctx_train (1048576) -- the full capacity of the model will not be utilized
154
+ llama_context: CPU output buffer size = 0.38 MiB
155
+ llama_kv_cache: CPU KV buffer size = 2.00 MiB
156
+ llama_kv_cache: CUDA0 KV buffer size = 4.00 MiB
157
+ llama_kv_cache: CUDA1 KV buffer size = 2.00 MiB
158
+ llama_kv_cache: size = 8.00 MiB ( 2048 cells, 4 layers, 1/1 seqs), K (f16): 4.00 MiB, V (f16): 4.00 MiB
159
+ llama_memory_recurrent: CPU RS buffer size = 8.48 MiB
160
+ llama_memory_recurrent: CUDA0 RS buffer size = 6.16 MiB
161
+ llama_memory_recurrent: CUDA1 RS buffer size = 6.93 MiB
162
+ llama_memory_recurrent: size = 21.57 MiB ( 1 cells, 32 layers, 1 seqs), R (f32): 0.57 MiB, S (f32): 21.00 MiB
163
+ llama_context: Flash Attention was auto, set to enabled
164
+ llama_context: CUDA0 compute buffer size = 351.61 MiB
165
+ llama_context: CUDA1 compute buffer size = 22.39 MiB
166
+ llama_context: CUDA_Host compute buffer size = 18.34 MiB
167
+ llama_context: graph nodes = 1815
168
+ llama_context: graph splits = 182 (with bs=512), 41 (with bs=1)
169
+ common_init_from_params: added <|end_of_text|> logit bias = -inf
170
+ common_init_from_params: added <|fim_pad|> logit bias = -inf
171
+ common_init_from_params: setting dry_penalty_last_n to ctx_size = 2048
172
+ common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
173
+
174
+ system_info: n_threads = 16 (n_threads_batch = 16) / 32 | CUDA : ARCHS = 860 | USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | BMI2 = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | AVX512_BF16 = 1 | LLAMAFILE = 1 | OPENMP = 1 | REPACK = 1 |
175
+ perplexity: tokenizing the input ..
176
+ perplexity: tokenization took 41.224 ms
177
+ perplexity: calculating perplexity over 14 chunks, n_ctx=2048, batch_size=2048, n_seq=1
178
+ perplexity: 0.61 seconds per pass - ETA 0.13 minutes
179
+ [1]18.7962,[2]21.8607,[3]22.5100,[4]20.4092,[5]20.4112,[6]18.1799,[7]17.7936,[8]17.7871,[9]18.2852,[10]18.2411,[11]18.0854,[12]18.1918,[13]18.2681,[14]18.2903,
180
+ Final estimate: PPL = 18.2903 +/- 0.46972
181
+
182
+ llama_perf_context_print: load time = 235.09 ms
183
+ llama_perf_context_print: prompt eval time = 5138.69 ms / 28672 tokens ( 0.18 ms per token, 5579.63 tokens per second)
184
+ llama_perf_context_print: eval time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
185
+ llama_perf_context_print: total time = 5469.61 ms / 28673 tokens
186
+ llama_perf_context_print: graphs reused = 0
187
+ llama_memory_breakdown_print: | memory breakdown [MiB] | total free self model context compute unaccounted |
188
+ llama_memory_breakdown_print: | - CUDA0 (RTX 3090) | 24107 = 20496 + ( 443 = 81 + 10 + 351) + 3167 |
189
+ llama_memory_breakdown_print: | - CUDA1 (RTX 3090) | 24124 = 23400 + ( 115 = 83 + 8 + 22) + 608 |
190
+ llama_memory_breakdown_print: | - Host | 277 = 248 + 10 + 18 |
Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_mxfp4-embd_f16/perplexity_math.txt ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
2
+ ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
3
+ ggml_cuda_init: found 2 CUDA devices:
4
+ Device 0: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
5
+ Device 1: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
6
+ build: 7040 (92bb442ad) with cc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 for x86_64-linux-gnu
7
+ llama_model_load_from_file_impl: using device CUDA0 (NVIDIA GeForce RTX 3090) (0000:01:00.0) - 21084 MiB free
8
+ llama_model_load_from_file_impl: using device CUDA1 (NVIDIA GeForce RTX 3090) (0000:03:00.0) - 23582 MiB free
9
+ llama_model_loader: loaded meta data with 48 key-value pairs and 402 tensors from /mnt/world8/AI/Models/granite-4.0-h-350m-unsloth/GGUF/MXFP4/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_mxfp4-embd_f16.gguf (version GGUF V3 (latest))
10
+ llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
11
+ llama_model_loader: - kv 0: general.architecture str = granitehybrid
12
+ llama_model_loader: - kv 1: general.type str = model
13
+ llama_model_loader: - kv 2: general.name str = Granite 4.0 H 350m Unsloth
14
+ llama_model_loader: - kv 3: general.finetune str = unsloth
15
+ llama_model_loader: - kv 4: general.basename str = granite-4.0-h
16
+ llama_model_loader: - kv 5: general.size_label str = 350M
17
+ llama_model_loader: - kv 6: general.license str = apache-2.0
18
+ llama_model_loader: - kv 7: general.base_model.count u32 = 1
19
+ llama_model_loader: - kv 8: general.base_model.0.name str = Granite 4.0 H 350m
20
+ llama_model_loader: - kv 9: general.base_model.0.organization str = Ibm Granite
21
+ llama_model_loader: - kv 10: general.base_model.0.repo_url str = https://huggingface.co/ibm-granite/gr...
22
+ llama_model_loader: - kv 11: general.tags arr[str,3] = ["language", "unsloth", "granite-4.0"]
23
+ llama_model_loader: - kv 12: granitehybrid.block_count u32 = 32
24
+ llama_model_loader: - kv 13: granitehybrid.context_length u32 = 1048576
25
+ llama_model_loader: - kv 14: granitehybrid.embedding_length u32 = 768
26
+ llama_model_loader: - kv 15: granitehybrid.feed_forward_length u32 = 2048
27
+ llama_model_loader: - kv 16: granitehybrid.attention.head_count u32 = 12
28
+ llama_model_loader: - kv 17: granitehybrid.attention.head_count_kv arr[i32,32] = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, ...
29
+ llama_model_loader: - kv 18: granitehybrid.rope.freq_base f32 = 10000.000000
30
+ llama_model_loader: - kv 19: granitehybrid.attention.layer_norm_rms_epsilon f32 = 0.000010
31
+ llama_model_loader: - kv 20: granitehybrid.expert_count u32 = 0
32
+ llama_model_loader: - kv 21: granitehybrid.expert_used_count u32 = 0
33
+ llama_model_loader: - kv 22: granitehybrid.vocab_size u32 = 100352
34
+ llama_model_loader: - kv 23: granitehybrid.rope.dimension_count u32 = 64
35
+ llama_model_loader: - kv 24: granitehybrid.attention.scale f32 = 0.015625
36
+ llama_model_loader: - kv 25: granitehybrid.embedding_scale f32 = 12.000000
37
+ llama_model_loader: - kv 26: granitehybrid.residual_scale f32 = 0.246000
38
+ llama_model_loader: - kv 27: granitehybrid.logit_scale f32 = 3.000000
39
+ llama_model_loader: - kv 28: granitehybrid.expert_shared_feed_forward_length u32 = 2048
40
+ llama_model_loader: - kv 29: granitehybrid.ssm.conv_kernel u32 = 4
41
+ llama_model_loader: - kv 30: granitehybrid.ssm.state_size u32 = 128
42
+ llama_model_loader: - kv 31: granitehybrid.ssm.group_count u32 = 1
43
+ llama_model_loader: - kv 32: granitehybrid.ssm.inner_size u32 = 1536
44
+ llama_model_loader: - kv 33: granitehybrid.ssm.time_step_rank u32 = 48
45
+ llama_model_loader: - kv 34: granitehybrid.rope.scaling.finetuned bool = false
46
+ llama_model_loader: - kv 35: tokenizer.ggml.model str = gpt2
47
+ llama_model_loader: - kv 36: tokenizer.ggml.pre str = dbrx
48
+ llama_model_loader: - kv 37: tokenizer.ggml.tokens arr[str,100352] = ["!", "\"", "#", "$", "%", "&", "'", ...
49
+ llama_model_loader: - kv 38: tokenizer.ggml.token_type arr[i32,100352] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
50
+ llama_model_loader: - kv 39: tokenizer.ggml.merges arr[str,100000] = ["�� Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
51
+ llama_model_loader: - kv 40: tokenizer.ggml.bos_token_id u32 = 100257
52
+ llama_model_loader: - kv 41: tokenizer.ggml.eos_token_id u32 = 100257
53
+ llama_model_loader: - kv 42: tokenizer.ggml.unknown_token_id u32 = 100269
54
+ llama_model_loader: - kv 43: tokenizer.ggml.padding_token_id u32 = 100256
55
+ llama_model_loader: - kv 44: tokenizer.ggml.add_bos_token bool = false
56
+ llama_model_loader: - kv 45: tokenizer.chat_template str = {%- set tools_system_message_prefix =...
57
+ llama_model_loader: - kv 46: general.quantization_version u32 = 2
58
+ llama_model_loader: - kv 47: general.file_type u32 = 38
59
+ llama_model_loader: - type f32: 233 tensors
60
+ llama_model_loader: - type f16: 1 tensors
61
+ llama_model_loader: - type q8_0: 164 tensors
62
+ llama_model_loader: - type mxfp4: 4 tensors
63
+ print_info: file format = GGUF V3 (latest)
64
+ print_info: file type = MXFP4 MoE
65
+ print_info: file size = 413.54 MiB (10.19 BPW)
66
+ load: printing all EOG tokens:
67
+ load: - 100257 ('<|end_of_text|>')
68
+ load: - 100261 ('<|fim_pad|>')
69
+ load: special tokens cache size = 96
70
+ load: token to piece cache size = 0.6152 MB
71
+ print_info: arch = granitehybrid
72
+ print_info: vocab_only = 0
73
+ print_info: n_ctx_train = 1048576
74
+ print_info: n_embd = 768
75
+ print_info: n_embd_inp = 768
76
+ print_info: n_layer = 32
77
+ print_info: n_head = 12
78
+ print_info: n_head_kv = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0]
79
+ print_info: n_rot = 64
80
+ print_info: n_swa = 0
81
+ print_info: is_swa_any = 0
82
+ print_info: n_embd_head_k = 64
83
+ print_info: n_embd_head_v = 64
84
+ print_info: n_gqa = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 3, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0]
85
+ print_info: n_embd_k_gqa = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 256, 0, 0, 0, 256, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 0, 0]
86
+ print_info: n_embd_v_gqa = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 256, 0, 0, 0, 256, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 0, 0]
87
+ print_info: f_norm_eps = 0.0e+00
88
+ print_info: f_norm_rms_eps = 1.0e-05
89
+ print_info: f_clamp_kqv = 0.0e+00
90
+ print_info: f_max_alibi_bias = 0.0e+00
91
+ print_info: f_logit_scale = 3.0e+00
92
+ print_info: f_attn_scale = 1.6e-02
93
+ print_info: n_ff = 2048
94
+ print_info: n_expert = 0
95
+ print_info: n_expert_used = 0
96
+ print_info: n_expert_groups = 0
97
+ print_info: n_group_used = 0
98
+ print_info: causal attn = 1
99
+ print_info: pooling type = 0
100
+ print_info: rope type = 0
101
+ print_info: rope scaling = linear
102
+ print_info: freq_base_train = 10000.0
103
+ print_info: freq_scale_train = 1
104
+ print_info: n_ctx_orig_yarn = 1048576
105
+ print_info: rope_finetuned = unknown
106
+ print_info: ssm_d_conv = 4
107
+ print_info: ssm_d_inner = 1536
108
+ print_info: ssm_d_state = 128
109
+ print_info: ssm_dt_rank = 48
110
+ print_info: ssm_n_group = 1
111
+ print_info: ssm_dt_b_c_rms = 0
112
+ print_info: model type = 350M
113
+ print_info: model params = 340.33 M
114
+ print_info: general.name = Granite 4.0 H 350m Unsloth
115
+ print_info: f_embedding_scale = 12.000000
116
+ print_info: f_residual_scale = 0.246000
117
+ print_info: f_attention_scale = 0.015625
118
+ print_info: n_ff_shexp = 2048
119
+ print_info: vocab type = BPE
120
+ print_info: n_vocab = 100352
121
+ print_info: n_merges = 100000
122
+ print_info: BOS token = 100257 '<|end_of_text|>'
123
+ print_info: EOS token = 100257 '<|end_of_text|>'
124
+ print_info: EOT token = 100257 '<|end_of_text|>'
125
+ print_info: UNK token = 100269 '<|unk|>'
126
+ print_info: PAD token = 100256 '<|pad|>'
127
+ print_info: LF token = 198 'Ċ'
128
+ print_info: FIM PRE token = 100258 '<|fim_prefix|>'
129
+ print_info: FIM SUF token = 100260 '<|fim_suffix|>'
130
+ print_info: FIM MID token = 100259 '<|fim_middle|>'
131
+ print_info: FIM PAD token = 100261 '<|fim_pad|>'
132
+ print_info: EOG token = 100257 '<|end_of_text|>'
133
+ print_info: EOG token = 100261 '<|fim_pad|>'
134
+ print_info: max token length = 256
135
+ load_tensors: loading model tensors, this can take a while... (mmap = true)
136
+ load_tensors: offloading 20 repeating layers to GPU
137
+ load_tensors: offloaded 20/33 layers to GPU
138
+ load_tensors: CPU_Mapped model buffer size = 248.24 MiB
139
+ load_tensors: CUDA0 model buffer size = 81.38 MiB
140
+ load_tensors: CUDA1 model buffer size = 83.95 MiB
141
+ ..................................................................
142
+ llama_context: constructing llama_context
143
+ llama_context: n_seq_max = 1
144
+ llama_context: n_ctx = 2048
145
+ llama_context: n_ctx_seq = 2048
146
+ llama_context: n_batch = 2048
147
+ llama_context: n_ubatch = 512
148
+ llama_context: causal_attn = 1
149
+ llama_context: flash_attn = auto
150
+ llama_context: kv_unified = false
151
+ llama_context: freq_base = 10000.0
152
+ llama_context: freq_scale = 1
153
+ llama_context: n_ctx_seq (2048) < n_ctx_train (1048576) -- the full capacity of the model will not be utilized
154
+ llama_context: CPU output buffer size = 0.38 MiB
155
+ llama_kv_cache: CPU KV buffer size = 2.00 MiB
156
+ llama_kv_cache: CUDA0 KV buffer size = 4.00 MiB
157
+ llama_kv_cache: CUDA1 KV buffer size = 2.00 MiB
158
+ llama_kv_cache: size = 8.00 MiB ( 2048 cells, 4 layers, 1/1 seqs), K (f16): 4.00 MiB, V (f16): 4.00 MiB
159
+ llama_memory_recurrent: CPU RS buffer size = 8.48 MiB
160
+ llama_memory_recurrent: CUDA0 RS buffer size = 6.16 MiB
161
+ llama_memory_recurrent: CUDA1 RS buffer size = 6.93 MiB
162
+ llama_memory_recurrent: size = 21.57 MiB ( 1 cells, 32 layers, 1 seqs), R (f32): 0.57 MiB, S (f32): 21.00 MiB
163
+ llama_context: Flash Attention was auto, set to enabled
164
+ llama_context: CUDA0 compute buffer size = 351.61 MiB
165
+ llama_context: CUDA1 compute buffer size = 22.39 MiB
166
+ llama_context: CUDA_Host compute buffer size = 18.34 MiB
167
+ llama_context: graph nodes = 1815
168
+ llama_context: graph splits = 182 (with bs=512), 41 (with bs=1)
169
+ common_init_from_params: added <|end_of_text|> logit bias = -inf
170
+ common_init_from_params: added <|fim_pad|> logit bias = -inf
171
+ common_init_from_params: setting dry_penalty_last_n to ctx_size = 2048
172
+ common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
173
+
174
+ system_info: n_threads = 16 (n_threads_batch = 16) / 32 | CUDA : ARCHS = 860 | USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | BMI2 = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | AVX512_BF16 = 1 | LLAMAFILE = 1 | OPENMP = 1 | REPACK = 1 |
175
+ perplexity: tokenizing the input ..
176
+ perplexity: tokenization took 36.886 ms
177
+ perplexity: calculating perplexity over 15 chunks, n_ctx=2048, batch_size=2048, n_seq=1
178
+ perplexity: 0.53 seconds per pass - ETA 0.12 minutes
179
+ [1]8.7490,[2]10.0105,[3]9.5878,[4]9.9360,[5]10.1086,[6]10.1772,[7]10.3318,[8]10.0191,[9]10.0694,[10]10.0736,[11]10.3061,[12]10.3801,[13]10.5055,[14]10.4769,[15]10.3689,
180
+ Final estimate: PPL = 10.3689 +/- 0.23339
181
+
182
+ llama_perf_context_print: load time = 214.11 ms
183
+ llama_perf_context_print: prompt eval time = 5401.50 ms / 30720 tokens ( 0.18 ms per token, 5687.31 tokens per second)
184
+ llama_perf_context_print: eval time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
185
+ llama_perf_context_print: total time = 5702.33 ms / 30721 tokens
186
+ llama_perf_context_print: graphs reused = 0
187
+ llama_memory_breakdown_print: | memory breakdown [MiB] | total free self model context compute unaccounted |
188
+ llama_memory_breakdown_print: | - CUDA0 (RTX 3090) | 24107 = 20496 + ( 443 = 81 + 10 + 351) + 3167 |
189
+ llama_memory_breakdown_print: | - CUDA1 (RTX 3090) | 24124 = 23400 + ( 115 = 83 + 8 + 22) + 608 |
190
+ llama_memory_breakdown_print: | - Host | 277 = 248 + 10 + 18 |
Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_mxfp4-embd_f16/ppl_corpus_code.txt ADDED
The diff for this file is too large to render. See raw diff
 
Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_mxfp4-embd_f16/ppl_corpus_general.txt ADDED
The diff for this file is too large to render. See raw diff
 
Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_mxfp4-embd_f16/ppl_corpus_math.txt ADDED
The diff for this file is too large to render. See raw diff
 
Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_mxfp4-router_gate_emb_f16/llamabench.txt ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
2
+ ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
3
+ ggml_cuda_init: found 2 CUDA devices:
4
+ Device 0: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
5
+ Device 1: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
6
+ | model | size | params | backend | ngl | test | t/s |
7
+ | ------------------------------ | ---------: | ---------: | ---------- | --: | --------------: | -------------------: |
8
+ | granitehybrid 350M MXFP4 MoE | 318.51 MiB | 340.33 M | CUDA | 35 | pp8 | 1649.31 ± 23.94 |
9
+ | granitehybrid 350M MXFP4 MoE | 318.51 MiB | 340.33 M | CUDA | 35 | tg128 | 300.67 ± 11.67 |
10
+
11
+ build: 92bb442ad (7040)
Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_mxfp4-router_gate_emb_f16/perplexity_code.txt ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
2
+ ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
3
+ ggml_cuda_init: found 2 CUDA devices:
4
+ Device 0: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
5
+ Device 1: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
6
+ build: 7040 (92bb442ad) with cc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 for x86_64-linux-gnu
7
+ llama_model_load_from_file_impl: using device CUDA0 (NVIDIA GeForce RTX 3090) (0000:01:00.0) - 21079 MiB free
8
+ llama_model_load_from_file_impl: using device CUDA1 (NVIDIA GeForce RTX 3090) (0000:03:00.0) - 23582 MiB free
9
+ llama_model_loader: loaded meta data with 48 key-value pairs and 402 tensors from /mnt/world8/AI/Models/granite-4.0-h-350m-unsloth/GGUF/MXFP4/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_mxfp4-router_gate_emb_f16.gguf (version GGUF V3 (latest))
10
+ llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
11
+ llama_model_loader: - kv 0: general.architecture str = granitehybrid
12
+ llama_model_loader: - kv 1: general.type str = model
13
+ llama_model_loader: - kv 2: general.name str = Granite 4.0 H 350m Unsloth
14
+ llama_model_loader: - kv 3: general.finetune str = unsloth
15
+ llama_model_loader: - kv 4: general.basename str = granite-4.0-h
16
+ llama_model_loader: - kv 5: general.size_label str = 350M
17
+ llama_model_loader: - kv 6: general.license str = apache-2.0
18
+ llama_model_loader: - kv 7: general.base_model.count u32 = 1
19
+ llama_model_loader: - kv 8: general.base_model.0.name str = Granite 4.0 H 350m
20
+ llama_model_loader: - kv 9: general.base_model.0.organization str = Ibm Granite
21
+ llama_model_loader: - kv 10: general.base_model.0.repo_url str = https://huggingface.co/ibm-granite/gr...
22
+ llama_model_loader: - kv 11: general.tags arr[str,3] = ["language", "unsloth", "granite-4.0"]
23
+ llama_model_loader: - kv 12: granitehybrid.block_count u32 = 32
24
+ llama_model_loader: - kv 13: granitehybrid.context_length u32 = 1048576
25
+ llama_model_loader: - kv 14: granitehybrid.embedding_length u32 = 768
26
+ llama_model_loader: - kv 15: granitehybrid.feed_forward_length u32 = 2048
27
+ llama_model_loader: - kv 16: granitehybrid.attention.head_count u32 = 12
28
+ llama_model_loader: - kv 17: granitehybrid.attention.head_count_kv arr[i32,32] = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, ...
29
+ llama_model_loader: - kv 18: granitehybrid.rope.freq_base f32 = 10000.000000
30
+ llama_model_loader: - kv 19: granitehybrid.attention.layer_norm_rms_epsilon f32 = 0.000010
31
+ llama_model_loader: - kv 20: granitehybrid.expert_count u32 = 0
32
+ llama_model_loader: - kv 21: granitehybrid.expert_used_count u32 = 0
33
+ llama_model_loader: - kv 22: granitehybrid.vocab_size u32 = 100352
34
+ llama_model_loader: - kv 23: granitehybrid.rope.dimension_count u32 = 64
35
+ llama_model_loader: - kv 24: granitehybrid.attention.scale f32 = 0.015625
36
+ llama_model_loader: - kv 25: granitehybrid.embedding_scale f32 = 12.000000
37
+ llama_model_loader: - kv 26: granitehybrid.residual_scale f32 = 0.246000
38
+ llama_model_loader: - kv 27: granitehybrid.logit_scale f32 = 3.000000
39
+ llama_model_loader: - kv 28: granitehybrid.expert_shared_feed_forward_length u32 = 2048
40
+ llama_model_loader: - kv 29: granitehybrid.ssm.conv_kernel u32 = 4
41
+ llama_model_loader: - kv 30: granitehybrid.ssm.state_size u32 = 128
42
+ llama_model_loader: - kv 31: granitehybrid.ssm.group_count u32 = 1
43
+ llama_model_loader: - kv 32: granitehybrid.ssm.inner_size u32 = 1536
44
+ llama_model_loader: - kv 33: granitehybrid.ssm.time_step_rank u32 = 48
45
+ llama_model_loader: - kv 34: granitehybrid.rope.scaling.finetuned bool = false
46
+ llama_model_loader: - kv 35: tokenizer.ggml.model str = gpt2
47
+ llama_model_loader: - kv 36: tokenizer.ggml.pre str = dbrx
48
+ llama_model_loader: - kv 37: tokenizer.ggml.tokens arr[str,100352] = ["!", "\"", "#", "$", "%", "&", "'", ...
49
+ llama_model_loader: - kv 38: tokenizer.ggml.token_type arr[i32,100352] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
50
+ llama_model_loader: - kv 39: tokenizer.ggml.merges arr[str,100000] = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
51
+ llama_model_loader: - kv 40: tokenizer.ggml.bos_token_id u32 = 100257
52
+ llama_model_loader: - kv 41: tokenizer.ggml.eos_token_id u32 = 100257
53
+ llama_model_loader: - kv 42: tokenizer.ggml.unknown_token_id u32 = 100269
54
+ llama_model_loader: - kv 43: tokenizer.ggml.padding_token_id u32 = 100256
55
+ llama_model_loader: - kv 44: tokenizer.ggml.add_bos_token bool = false
56
+ llama_model_loader: - kv 45: tokenizer.chat_template str = {%- set tools_system_message_prefix =...
57
+ llama_model_loader: - kv 46: general.quantization_version u32 = 2
58
+ llama_model_loader: - kv 47: general.file_type u32 = 38
59
+ llama_model_loader: - type f32: 233 tensors
60
+ llama_model_loader: - type f16: 4 tensors
61
+ llama_model_loader: - type q8_0: 132 tensors
62
+ llama_model_loader: - type q6_K: 33 tensors
63
+ print_info: file format = GGUF V3 (latest)
64
+ print_info: file type = MXFP4 MoE
65
+ print_info: file size = 318.51 MiB (7.85 BPW)
66
+ load: printing all EOG tokens:
67
+ load: - 100257 ('<|end_of_text|>')
68
+ load: - 100261 ('<|fim_pad|>')
69
+ load: special tokens cache size = 96
70
+ load: token to piece cache size = 0.6152 MB
71
+ print_info: arch = granitehybrid
72
+ print_info: vocab_only = 0
73
+ print_info: n_ctx_train = 1048576
74
+ print_info: n_embd = 768
75
+ print_info: n_embd_inp = 768
76
+ print_info: n_layer = 32
77
+ print_info: n_head = 12
78
+ print_info: n_head_kv = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0]
79
+ print_info: n_rot = 64
80
+ print_info: n_swa = 0
81
+ print_info: is_swa_any = 0
82
+ print_info: n_embd_head_k = 64
83
+ print_info: n_embd_head_v = 64
84
+ print_info: n_gqa = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 3, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0]
85
+ print_info: n_embd_k_gqa = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 256, 0, 0, 0, 256, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 0, 0]
86
+ print_info: n_embd_v_gqa = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 256, 0, 0, 0, 256, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 0, 0]
87
+ print_info: f_norm_eps = 0.0e+00
88
+ print_info: f_norm_rms_eps = 1.0e-05
89
+ print_info: f_clamp_kqv = 0.0e+00
90
+ print_info: f_max_alibi_bias = 0.0e+00
91
+ print_info: f_logit_scale = 3.0e+00
92
+ print_info: f_attn_scale = 1.6e-02
93
+ print_info: n_ff = 2048
94
+ print_info: n_expert = 0
95
+ print_info: n_expert_used = 0
96
+ print_info: n_expert_groups = 0
97
+ print_info: n_group_used = 0
98
+ print_info: causal attn = 1
99
+ print_info: pooling type = 0
100
+ print_info: rope type = 0
101
+ print_info: rope scaling = linear
102
+ print_info: freq_base_train = 10000.0
103
+ print_info: freq_scale_train = 1
104
+ print_info: n_ctx_orig_yarn = 1048576
105
+ print_info: rope_finetuned = unknown
106
+ print_info: ssm_d_conv = 4
107
+ print_info: ssm_d_inner = 1536
108
+ print_info: ssm_d_state = 128
109
+ print_info: ssm_dt_rank = 48
110
+ print_info: ssm_n_group = 1
111
+ print_info: ssm_dt_b_c_rms = 0
112
+ print_info: model type = 350M
113
+ print_info: model params = 340.33 M
114
+ print_info: general.name = Granite 4.0 H 350m Unsloth
115
+ print_info: f_embedding_scale = 12.000000
116
+ print_info: f_residual_scale = 0.246000
117
+ print_info: f_attention_scale = 0.015625
118
+ print_info: n_ff_shexp = 2048
119
+ print_info: vocab type = BPE
120
+ print_info: n_vocab = 100352
121
+ print_info: n_merges = 100000
122
+ print_info: BOS token = 100257 '<|end_of_text|>'
123
+ print_info: EOS token = 100257 '<|end_of_text|>'
124
+ print_info: EOT token = 100257 '<|end_of_text|>'
125
+ print_info: UNK token = 100269 '<|unk|>'
126
+ print_info: PAD token = 100256 '<|pad|>'
127
+ print_info: LF token = 198 'Ċ'
128
+ print_info: FIM PRE token = 100258 '<|fim_prefix|>'
129
+ print_info: FIM SUF token = 100260 '<|fim_suffix|>'
130
+ print_info: FIM MID token = 100259 '<|fim_middle|>'
131
+ print_info: FIM PAD token = 100261 '<|fim_pad|>'
132
+ print_info: EOG token = 100257 '<|end_of_text|>'
133
+ print_info: EOG token = 100261 '<|fim_pad|>'
134
+ print_info: max token length = 256
135
+ load_tensors: loading model tensors, this can take a while... (mmap = true)
136
+ load_tensors: offloading 20 repeating layers to GPU
137
+ load_tensors: offloaded 20/33 layers to GPU
138
+ load_tensors: CPU_Mapped model buffer size = 158.00 MiB
139
+ load_tensors: CUDA0 model buffer size = 79.40 MiB
140
+ load_tensors: CUDA1 model buffer size = 81.14 MiB
141
+ ...................................................................................
142
+ llama_context: constructing llama_context
143
+ llama_context: n_seq_max = 1
144
+ llama_context: n_ctx = 2048
145
+ llama_context: n_ctx_seq = 2048
146
+ llama_context: n_batch = 2048
147
+ llama_context: n_ubatch = 512
148
+ llama_context: causal_attn = 1
149
+ llama_context: flash_attn = auto
150
+ llama_context: kv_unified = false
151
+ llama_context: freq_base = 10000.0
152
+ llama_context: freq_scale = 1
153
+ llama_context: n_ctx_seq (2048) < n_ctx_train (1048576) -- the full capacity of the model will not be utilized
154
+ llama_context: CPU output buffer size = 0.38 MiB
155
+ llama_kv_cache: CPU KV buffer size = 2.00 MiB
156
+ llama_kv_cache: CUDA0 KV buffer size = 4.00 MiB
157
+ llama_kv_cache: CUDA1 KV buffer size = 2.00 MiB
158
+ llama_kv_cache: size = 8.00 MiB ( 2048 cells, 4 layers, 1/1 seqs), K (f16): 4.00 MiB, V (f16): 4.00 MiB
159
+ llama_memory_recurrent: CPU RS buffer size = 8.48 MiB
160
+ llama_memory_recurrent: CUDA0 RS buffer size = 6.16 MiB
161
+ llama_memory_recurrent: CUDA1 RS buffer size = 6.93 MiB
162
+ llama_memory_recurrent: size = 21.57 MiB ( 1 cells, 32 layers, 1 seqs), R (f32): 0.57 MiB, S (f32): 21.00 MiB
163
+ llama_context: Flash Attention was auto, set to enabled
164
+ llama_context: CUDA0 compute buffer size = 267.39 MiB
165
+ llama_context: CUDA1 compute buffer size = 22.39 MiB
166
+ llama_context: CUDA_Host compute buffer size = 18.34 MiB
167
+ llama_context: graph nodes = 1815
168
+ llama_context: graph splits = 182 (with bs=512), 41 (with bs=1)
169
+ common_init_from_params: added <|end_of_text|> logit bias = -inf
170
+ common_init_from_params: added <|fim_pad|> logit bias = -inf
171
+ common_init_from_params: setting dry_penalty_last_n to ctx_size = 2048
172
+ common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
173
+
174
+ system_info: n_threads = 16 (n_threads_batch = 16) / 32 | CUDA : ARCHS = 860 | USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | BMI2 = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | AVX512_BF16 = 1 | LLAMAFILE = 1 | OPENMP = 1 | REPACK = 1 |
175
+ perplexity: tokenizing the input ..
176
+ perplexity: tokenization took 90.608 ms
177
+ perplexity: calculating perplexity over 44 chunks, n_ctx=2048, batch_size=2048, n_seq=1
178
+ perplexity: 0.50 seconds per pass - ETA 0.35 minutes
179
+ [1]4.3517,[2]3.9745,[3]2.5678,[4]2.3702,[5]2.6105,[6]2.8548,[7]2.7066,[8]2.5143,[9]2.3099,[10]2.1407,[11]2.1229,[12]2.1494,[13]2.0606,[14]2.0404,[15]2.0818,[16]2.0161,[17]1.9908,[18]2.0095,[19]1.9697,[20]1.9343,[21]1.9013,[22]1.8865,[23]1.9166,[24]1.8900,[25]1.9092,[26]1.8770,[27]1.8636,[28]1.8555,[29]1.9013,[30]1.9180,[31]1.9167,[32]1.8922,[33]1.9157,[34]1.9080,[35]1.8892,[36]1.9207,[37]1.9271,[38]1.9251,[39]1.9467,[40]1.9440,[41]1.9366,[42]1.9605,[43]1.9690,[44]1.9581,
180
+ Final estimate: PPL = 1.9581 +/- 0.01754
181
+
182
+ llama_perf_context_print: load time = 258.24 ms
183
+ llama_perf_context_print: prompt eval time = 15073.77 ms / 90112 tokens ( 0.17 ms per token, 5978.07 tokens per second)
184
+ llama_perf_context_print: eval time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
185
+ llama_perf_context_print: total time = 15896.19 ms / 90113 tokens
186
+ llama_perf_context_print: graphs reused = 0
187
+ llama_memory_breakdown_print: | memory breakdown [MiB] | total free self model context compute unaccounted |
188
+ llama_memory_breakdown_print: | - CUDA0 (RTX 3090) | 24107 = 20643 + ( 356 = 79 + 10 + 267) + 3106 |
189
+ llama_memory_breakdown_print: | - CUDA1 (RTX 3090) | 24124 = 23390 + ( 112 = 81 + 8 + 22) + 621 |
190
+ llama_memory_breakdown_print: | - Host | 186 = 157 + 10 + 18 |
Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_mxfp4-router_gate_emb_f16/perplexity_general.txt ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
2
+ ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
3
+ ggml_cuda_init: found 2 CUDA devices:
4
+ Device 0: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
5
+ Device 1: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
6
+ build: 7040 (92bb442ad) with cc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 for x86_64-linux-gnu
7
+ llama_model_load_from_file_impl: using device CUDA0 (NVIDIA GeForce RTX 3090) (0000:01:00.0) - 21084 MiB free
8
+ llama_model_load_from_file_impl: using device CUDA1 (NVIDIA GeForce RTX 3090) (0000:03:00.0) - 23582 MiB free
9
+ llama_model_loader: loaded meta data with 48 key-value pairs and 402 tensors from /mnt/world8/AI/Models/granite-4.0-h-350m-unsloth/GGUF/MXFP4/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_mxfp4-router_gate_emb_f16.gguf (version GGUF V3 (latest))
10
+ llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
11
+ llama_model_loader: - kv 0: general.architecture str = granitehybrid
12
+ llama_model_loader: - kv 1: general.type str = model
13
+ llama_model_loader: - kv 2: general.name str = Granite 4.0 H 350m Unsloth
14
+ llama_model_loader: - kv 3: general.finetune str = unsloth
15
+ llama_model_loader: - kv 4: general.basename str = granite-4.0-h
16
+ llama_model_loader: - kv 5: general.size_label str = 350M
17
+ llama_model_loader: - kv 6: general.license str = apache-2.0
18
+ llama_model_loader: - kv 7: general.base_model.count u32 = 1
19
+ llama_model_loader: - kv 8: general.base_model.0.name str = Granite 4.0 H 350m
20
+ llama_model_loader: - kv 9: general.base_model.0.organization str = Ibm Granite
21
+ llama_model_loader: - kv 10: general.base_model.0.repo_url str = https://huggingface.co/ibm-granite/gr...
22
+ llama_model_loader: - kv 11: general.tags arr[str,3] = ["language", "unsloth", "granite-4.0"]
23
+ llama_model_loader: - kv 12: granitehybrid.block_count u32 = 32
24
+ llama_model_loader: - kv 13: granitehybrid.context_length u32 = 1048576
25
+ llama_model_loader: - kv 14: granitehybrid.embedding_length u32 = 768
26
+ llama_model_loader: - kv 15: granitehybrid.feed_forward_length u32 = 2048
27
+ llama_model_loader: - kv 16: granitehybrid.attention.head_count u32 = 12
28
+ llama_model_loader: - kv 17: granitehybrid.attention.head_count_kv arr[i32,32] = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, ...
29
+ llama_model_loader: - kv 18: granitehybrid.rope.freq_base f32 = 10000.000000
30
+ llama_model_loader: - kv 19: granitehybrid.attention.layer_norm_rms_epsilon f32 = 0.000010
31
+ llama_model_loader: - kv 20: granitehybrid.expert_count u32 = 0
32
+ llama_model_loader: - kv 21: granitehybrid.expert_used_count u32 = 0
33
+ llama_model_loader: - kv 22: granitehybrid.vocab_size u32 = 100352
34
+ llama_model_loader: - kv 23: granitehybrid.rope.dimension_count u32 = 64
35
+ llama_model_loader: - kv 24: granitehybrid.attention.scale f32 = 0.015625
36
+ llama_model_loader: - kv 25: granitehybrid.embedding_scale f32 = 12.000000
37
+ llama_model_loader: - kv 26: granitehybrid.residual_scale f32 = 0.246000
38
+ llama_model_loader: - kv 27: granitehybrid.logit_scale f32 = 3.000000
39
+ llama_model_loader: - kv 28: granitehybrid.expert_shared_feed_forward_length u32 = 2048
40
+ llama_model_loader: - kv 29: granitehybrid.ssm.conv_kernel u32 = 4
41
+ llama_model_loader: - kv 30: granitehybrid.ssm.state_size u32 = 128
42
+ llama_model_loader: - kv 31: granitehybrid.ssm.group_count u32 = 1
43
+ llama_model_loader: - kv 32: granitehybrid.ssm.inner_size u32 = 1536
44
+ llama_model_loader: - kv 33: granitehybrid.ssm.time_step_rank u32 = 48
45
+ llama_model_loader: - kv 34: granitehybrid.rope.scaling.finetuned bool = false
46
+ llama_model_loader: - kv 35: tokenizer.ggml.model str = gpt2
47
+ llama_model_loader: - kv 36: tokenizer.ggml.pre str = dbrx
48
+ llama_model_loader: - kv 37: tokenizer.ggml.tokens arr[str,100352] = ["!", "\"", "#", "$", "%", "&", "'", ...
49
+ llama_model_loader: - kv 38: tokenizer.ggml.token_type arr[i32,100352] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
50
+ llama_model_loader: - kv 39: tokenizer.ggml.merges arr[str,100000] = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
51
+ llama_model_loader: - kv 40: tokenizer.ggml.bos_token_id u32 = 100257
52
+ llama_model_loader: - kv 41: tokenizer.ggml.eos_token_id u32 = 100257
53
+ llama_model_loader: - kv 42: tokenizer.ggml.unknown_token_id u32 = 100269
54
+ llama_model_loader: - kv 43: tokenizer.ggml.padding_token_id u32 = 100256
55
+ llama_model_loader: - kv 44: tokenizer.ggml.add_bos_token bool = false
56
+ llama_model_loader: - kv 45: tokenizer.chat_template str = {%- set tools_system_message_prefix =...
57
+ llama_model_loader: - kv 46: general.quantization_version u32 = 2
58
+ llama_model_loader: - kv 47: general.file_type u32 = 38
59
+ llama_model_loader: - type f32: 233 tensors
60
+ llama_model_loader: - type f16: 4 tensors
61
+ llama_model_loader: - type q8_0: 132 tensors
62
+ llama_model_loader: - type q6_K: 33 tensors
63
+ print_info: file format = GGUF V3 (latest)
64
+ print_info: file type = MXFP4 MoE
65
+ print_info: file size = 318.51 MiB (7.85 BPW)
66
+ load: printing all EOG tokens:
67
+ load: - 100257 ('<|end_of_text|>')
68
+ load: - 100261 ('<|fim_pad|>')
69
+ load: special tokens cache size = 96
70
+ load: token to piece cache size = 0.6152 MB
71
+ print_info: arch = granitehybrid
72
+ print_info: vocab_only = 0
73
+ print_info: n_ctx_train = 1048576
74
+ print_info: n_embd = 768
75
+ print_info: n_embd_inp = 768
76
+ print_info: n_layer = 32
77
+ print_info: n_head = 12
78
+ print_info: n_head_kv = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0]
79
+ print_info: n_rot = 64
80
+ print_info: n_swa = 0
81
+ print_info: is_swa_any = 0
82
+ print_info: n_embd_head_k = 64
83
+ print_info: n_embd_head_v = 64
84
+ print_info: n_gqa = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 3, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0]
85
+ print_info: n_embd_k_gqa = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 256, 0, 0, 0, 256, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 0, 0]
86
+ print_info: n_embd_v_gqa = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 256, 0, 0, 0, 256, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 0, 0]
87
+ print_info: f_norm_eps = 0.0e+00
88
+ print_info: f_norm_rms_eps = 1.0e-05
89
+ print_info: f_clamp_kqv = 0.0e+00
90
+ print_info: f_max_alibi_bias = 0.0e+00
91
+ print_info: f_logit_scale = 3.0e+00
92
+ print_info: f_attn_scale = 1.6e-02
93
+ print_info: n_ff = 2048
94
+ print_info: n_expert = 0
95
+ print_info: n_expert_used = 0
96
+ print_info: n_expert_groups = 0
97
+ print_info: n_group_used = 0
98
+ print_info: causal attn = 1
99
+ print_info: pooling type = 0
100
+ print_info: rope type = 0
101
+ print_info: rope scaling = linear
102
+ print_info: freq_base_train = 10000.0
103
+ print_info: freq_scale_train = 1
104
+ print_info: n_ctx_orig_yarn = 1048576
105
+ print_info: rope_finetuned = unknown
106
+ print_info: ssm_d_conv = 4
107
+ print_info: ssm_d_inner = 1536
108
+ print_info: ssm_d_state = 128
109
+ print_info: ssm_dt_rank = 48
110
+ print_info: ssm_n_group = 1
111
+ print_info: ssm_dt_b_c_rms = 0
112
+ print_info: model type = 350M
113
+ print_info: model params = 340.33 M
114
+ print_info: general.name = Granite 4.0 H 350m Unsloth
115
+ print_info: f_embedding_scale = 12.000000
116
+ print_info: f_residual_scale = 0.246000
117
+ print_info: f_attention_scale = 0.015625
118
+ print_info: n_ff_shexp = 2048
119
+ print_info: vocab type = BPE
120
+ print_info: n_vocab = 100352
121
+ print_info: n_merges = 100000
122
+ print_info: BOS token = 100257 '<|end_of_text|>'
123
+ print_info: EOS token = 100257 '<|end_of_text|>'
124
+ print_info: EOT token = 100257 '<|end_of_text|>'
125
+ print_info: UNK token = 100269 '<|unk|>'
126
+ print_info: PAD token = 100256 '<|pad|>'
127
+ print_info: LF token = 198 'Ċ'
128
+ print_info: FIM PRE token = 100258 '<|fim_prefix|>'
129
+ print_info: FIM SUF token = 100260 '<|fim_suffix|>'
130
+ print_info: FIM MID token = 100259 '<|fim_middle|>'
131
+ print_info: FIM PAD token = 100261 '<|fim_pad|>'
132
+ print_info: EOG token = 100257 '<|end_of_text|>'
133
+ print_info: EOG token = 100261 '<|fim_pad|>'
134
+ print_info: max token length = 256
135
+ load_tensors: loading model tensors, this can take a while... (mmap = true)
136
+ load_tensors: offloading 20 repeating layers to GPU
137
+ load_tensors: offloaded 20/33 layers to GPU
138
+ load_tensors: CPU_Mapped model buffer size = 158.00 MiB
139
+ load_tensors: CUDA0 model buffer size = 79.40 MiB
140
+ load_tensors: CUDA1 model buffer size = 81.14 MiB
141
+ ...................................................................................
142
+ llama_context: constructing llama_context
143
+ llama_context: n_seq_max = 1
144
+ llama_context: n_ctx = 2048
145
+ llama_context: n_ctx_seq = 2048
146
+ llama_context: n_batch = 2048
147
+ llama_context: n_ubatch = 512
148
+ llama_context: causal_attn = 1
149
+ llama_context: flash_attn = auto
150
+ llama_context: kv_unified = false
151
+ llama_context: freq_base = 10000.0
152
+ llama_context: freq_scale = 1
153
+ llama_context: n_ctx_seq (2048) < n_ctx_train (1048576) -- the full capacity of the model will not be utilized
154
+ llama_context: CPU output buffer size = 0.38 MiB
155
+ llama_kv_cache: CPU KV buffer size = 2.00 MiB
156
+ llama_kv_cache: CUDA0 KV buffer size = 4.00 MiB
157
+ llama_kv_cache: CUDA1 KV buffer size = 2.00 MiB
158
+ llama_kv_cache: size = 8.00 MiB ( 2048 cells, 4 layers, 1/1 seqs), K (f16): 4.00 MiB, V (f16): 4.00 MiB
159
+ llama_memory_recurrent: CPU RS buffer size = 8.48 MiB
160
+ llama_memory_recurrent: CUDA0 RS buffer size = 6.16 MiB
161
+ llama_memory_recurrent: CUDA1 RS buffer size = 6.93 MiB
162
+ llama_memory_recurrent: size = 21.57 MiB ( 1 cells, 32 layers, 1 seqs), R (f32): 0.57 MiB, S (f32): 21.00 MiB
163
+ llama_context: Flash Attention was auto, set to enabled
164
+ llama_context: CUDA0 compute buffer size = 267.39 MiB
165
+ llama_context: CUDA1 compute buffer size = 22.39 MiB
166
+ llama_context: CUDA_Host compute buffer size = 18.34 MiB
167
+ llama_context: graph nodes = 1815
168
+ llama_context: graph splits = 182 (with bs=512), 41 (with bs=1)
169
+ common_init_from_params: added <|end_of_text|> logit bias = -inf
170
+ common_init_from_params: added <|fim_pad|> logit bias = -inf
171
+ common_init_from_params: setting dry_penalty_last_n to ctx_size = 2048
172
+ common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
173
+
174
+ system_info: n_threads = 16 (n_threads_batch = 16) / 32 | CUDA : ARCHS = 860 | USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | BMI2 = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | AVX512_BF16 = 1 | LLAMAFILE = 1 | OPENMP = 1 | REPACK = 1 |
175
+ perplexity: tokenizing the input ..
176
+ perplexity: tokenization took 36.875 ms
177
+ perplexity: calculating perplexity over 14 chunks, n_ctx=2048, batch_size=2048, n_seq=1
178
+ perplexity: 0.85 seconds per pass - ETA 0.18 minutes
179
+ [1]18.6512,[2]21.6381,[3]22.3486,[4]20.2410,[5]20.2498,[6]18.0768,[7]17.7092,[8]17.6486,[9]18.1639,[10]18.1415,[11]17.9674,[12]18.0778,[13]18.1444,[14]18.1862,
180
+ Final estimate: PPL = 18.1862 +/- 0.46855
181
+
182
+ llama_perf_context_print: load time = 282.45 ms
183
+ llama_perf_context_print: prompt eval time = 5159.99 ms / 28672 tokens ( 0.18 ms per token, 5556.60 tokens per second)
184
+ llama_perf_context_print: eval time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
185
+ llama_perf_context_print: total time = 5431.32 ms / 28673 tokens
186
+ llama_perf_context_print: graphs reused = 0
187
+ llama_memory_breakdown_print: | memory breakdown [MiB] | total free self model context compute unaccounted |
188
+ llama_memory_breakdown_print: | - CUDA0 (RTX 3090) | 24107 = 20649 + ( 356 = 79 + 10 + 267) + 3100 |
189
+ llama_memory_breakdown_print: | - CUDA1 (RTX 3090) | 24124 = 23390 + ( 112 = 81 + 8 + 22) + 621 |
190
+ llama_memory_breakdown_print: | - Host | 186 = 157 + 10 + 18 |
Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_mxfp4-router_gate_emb_f16/perplexity_math.txt ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
2
+ ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
3
+ ggml_cuda_init: found 2 CUDA devices:
4
+ Device 0: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
5
+ Device 1: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
6
+ build: 7040 (92bb442ad) with cc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 for x86_64-linux-gnu
7
+ llama_model_load_from_file_impl: using device CUDA0 (NVIDIA GeForce RTX 3090) (0000:01:00.0) - 21079 MiB free
8
+ llama_model_load_from_file_impl: using device CUDA1 (NVIDIA GeForce RTX 3090) (0000:03:00.0) - 23582 MiB free
9
+ llama_model_loader: loaded meta data with 48 key-value pairs and 402 tensors from /mnt/world8/AI/Models/granite-4.0-h-350m-unsloth/GGUF/MXFP4/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_mxfp4-router_gate_emb_f16.gguf (version GGUF V3 (latest))
10
+ llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
11
+ llama_model_loader: - kv 0: general.architecture str = granitehybrid
12
+ llama_model_loader: - kv 1: general.type str = model
13
+ llama_model_loader: - kv 2: general.name str = Granite 4.0 H 350m Unsloth
14
+ llama_model_loader: - kv 3: general.finetune str = unsloth
15
+ llama_model_loader: - kv 4: general.basename str = granite-4.0-h
16
+ llama_model_loader: - kv 5: general.size_label str = 350M
17
+ llama_model_loader: - kv 6: general.license str = apache-2.0
18
+ llama_model_loader: - kv 7: general.base_model.count u32 = 1
19
+ llama_model_loader: - kv 8: general.base_model.0.name str = Granite 4.0 H 350m
20
+ llama_model_loader: - kv 9: general.base_model.0.organization str = Ibm Granite
21
+ llama_model_loader: - kv 10: general.base_model.0.repo_url str = https://huggingface.co/ibm-granite/gr...
22
+ llama_model_loader: - kv 11: general.tags arr[str,3] = ["language", "unsloth", "granite-4.0"]
23
+ llama_model_loader: - kv 12: granitehybrid.block_count u32 = 32
24
+ llama_model_loader: - kv 13: granitehybrid.context_length u32 = 1048576
25
+ llama_model_loader: - kv 14: granitehybrid.embedding_length u32 = 768
26
+ llama_model_loader: - kv 15: granitehybrid.feed_forward_length u32 = 2048
27
+ llama_model_loader: - kv 16: granitehybrid.attention.head_count u32 = 12
28
+ llama_model_loader: - kv 17: granitehybrid.attention.head_count_kv arr[i32,32] = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, ...
29
+ llama_model_loader: - kv 18: granitehybrid.rope.freq_base f32 = 10000.000000
30
+ llama_model_loader: - kv 19: granitehybrid.attention.layer_norm_rms_epsilon f32 = 0.000010
31
+ llama_model_loader: - kv 20: granitehybrid.expert_count u32 = 0
32
+ llama_model_loader: - kv 21: granitehybrid.expert_used_count u32 = 0
33
+ llama_model_loader: - kv 22: granitehybrid.vocab_size u32 = 100352
34
+ llama_model_loader: - kv 23: granitehybrid.rope.dimension_count u32 = 64
35
+ llama_model_loader: - kv 24: granitehybrid.attention.scale f32 = 0.015625
36
+ llama_model_loader: - kv 25: granitehybrid.embedding_scale f32 = 12.000000
37
+ llama_model_loader: - kv 26: granitehybrid.residual_scale f32 = 0.246000
38
+ llama_model_loader: - kv 27: granitehybrid.logit_scale f32 = 3.000000
39
+ llama_model_loader: - kv 28: granitehybrid.expert_shared_feed_forward_length u32 = 2048
40
+ llama_model_loader: - kv 29: granitehybrid.ssm.conv_kernel u32 = 4
41
+ llama_model_loader: - kv 30: granitehybrid.ssm.state_size u32 = 128
42
+ llama_model_loader: - kv 31: granitehybrid.ssm.group_count u32 = 1
43
+ llama_model_loader: - kv 32: granitehybrid.ssm.inner_size u32 = 1536
44
+ llama_model_loader: - kv 33: granitehybrid.ssm.time_step_rank u32 = 48
45
+ llama_model_loader: - kv 34: granitehybrid.rope.scaling.finetuned bool = false
46
+ llama_model_loader: - kv 35: tokenizer.ggml.model str = gpt2
47
+ llama_model_loader: - kv 36: tokenizer.ggml.pre str = dbrx
48
+ llama_model_loader: - kv 37: tokenizer.ggml.tokens arr[str,100352] = ["!", "\"", "#", "$", "%", "&", "'", ...
49
+ llama_model_loader: - kv 38: tokenizer.ggml.token_type arr[i32,100352] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
50
+ llama_model_loader: - kv 39: tokenizer.ggml.merges arr[str,100000] = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
51
+ llama_model_loader: - kv 40: tokenizer.ggml.bos_token_id u32 = 100257
52
+ llama_model_loader: - kv 41: tokenizer.ggml.eos_token_id u32 = 100257
53
+ llama_model_loader: - kv 42: tokenizer.ggml.unknown_token_id u32 = 100269
54
+ llama_model_loader: - kv 43: tokenizer.ggml.padding_token_id u32 = 100256
55
+ llama_model_loader: - kv 44: tokenizer.ggml.add_bos_token bool = false
56
+ llama_model_loader: - kv 45: tokenizer.chat_template str = {%- set tools_system_message_prefix =...
57
+ llama_model_loader: - kv 46: general.quantization_version u32 = 2
58
+ llama_model_loader: - kv 47: general.file_type u32 = 38
59
+ llama_model_loader: - type f32: 233 tensors
60
+ llama_model_loader: - type f16: 4 tensors
61
+ llama_model_loader: - type q8_0: 132 tensors
62
+ llama_model_loader: - type q6_K: 33 tensors
63
+ print_info: file format = GGUF V3 (latest)
64
+ print_info: file type = MXFP4 MoE
65
+ print_info: file size = 318.51 MiB (7.85 BPW)
66
+ load: printing all EOG tokens:
67
+ load: - 100257 ('<|end_of_text|>')
68
+ load: - 100261 ('<|fim_pad|>')
69
+ load: special tokens cache size = 96
70
+ load: token to piece cache size = 0.6152 MB
71
+ print_info: arch = granitehybrid
72
+ print_info: vocab_only = 0
73
+ print_info: n_ctx_train = 1048576
74
+ print_info: n_embd = 768
75
+ print_info: n_embd_inp = 768
76
+ print_info: n_layer = 32
77
+ print_info: n_head = 12
78
+ print_info: n_head_kv = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0]
79
+ print_info: n_rot = 64
80
+ print_info: n_swa = 0
81
+ print_info: is_swa_any = 0
82
+ print_info: n_embd_head_k = 64
83
+ print_info: n_embd_head_v = 64
84
+ print_info: n_gqa = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 3, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0]
85
+ print_info: n_embd_k_gqa = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 256, 0, 0, 0, 256, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 0, 0]
86
+ print_info: n_embd_v_gqa = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 256, 0, 0, 0, 256, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 0, 0]
87
+ print_info: f_norm_eps = 0.0e+00
88
+ print_info: f_norm_rms_eps = 1.0e-05
89
+ print_info: f_clamp_kqv = 0.0e+00
90
+ print_info: f_max_alibi_bias = 0.0e+00
91
+ print_info: f_logit_scale = 3.0e+00
92
+ print_info: f_attn_scale = 1.6e-02
93
+ print_info: n_ff = 2048
94
+ print_info: n_expert = 0
95
+ print_info: n_expert_used = 0
96
+ print_info: n_expert_groups = 0
97
+ print_info: n_group_used = 0
98
+ print_info: causal attn = 1
99
+ print_info: pooling type = 0
100
+ print_info: rope type = 0
101
+ print_info: rope scaling = linear
102
+ print_info: freq_base_train = 10000.0
103
+ print_info: freq_scale_train = 1
104
+ print_info: n_ctx_orig_yarn = 1048576
105
+ print_info: rope_finetuned = unknown
106
+ print_info: ssm_d_conv = 4
107
+ print_info: ssm_d_inner = 1536
108
+ print_info: ssm_d_state = 128
109
+ print_info: ssm_dt_rank = 48
110
+ print_info: ssm_n_group = 1
111
+ print_info: ssm_dt_b_c_rms = 0
112
+ print_info: model type = 350M
113
+ print_info: model params = 340.33 M
114
+ print_info: general.name = Granite 4.0 H 350m Unsloth
115
+ print_info: f_embedding_scale = 12.000000
116
+ print_info: f_residual_scale = 0.246000
117
+ print_info: f_attention_scale = 0.015625
118
+ print_info: n_ff_shexp = 2048
119
+ print_info: vocab type = BPE
120
+ print_info: n_vocab = 100352
121
+ print_info: n_merges = 100000
122
+ print_info: BOS token = 100257 '<|end_of_text|>'
123
+ print_info: EOS token = 100257 '<|end_of_text|>'
124
+ print_info: EOT token = 100257 '<|end_of_text|>'
125
+ print_info: UNK token = 100269 '<|unk|>'
126
+ print_info: PAD token = 100256 '<|pad|>'
127
+ print_info: LF token = 198 'Ċ'
128
+ print_info: FIM PRE token = 100258 '<|fim_prefix|>'
129
+ print_info: FIM SUF token = 100260 '<|fim_suffix|>'
130
+ print_info: FIM MID token = 100259 '<|fim_middle|>'
131
+ print_info: FIM PAD token = 100261 '<|fim_pad|>'
132
+ print_info: EOG token = 100257 '<|end_of_text|>'
133
+ print_info: EOG token = 100261 '<|fim_pad|>'
134
+ print_info: max token length = 256
135
+ load_tensors: loading model tensors, this can take a while... (mmap = true)
136
+ load_tensors: offloading 20 repeating layers to GPU
137
+ load_tensors: offloaded 20/33 layers to GPU
138
+ load_tensors: CPU_Mapped model buffer size = 158.00 MiB
139
+ load_tensors: CUDA0 model buffer size = 79.40 MiB
140
+ load_tensors: CUDA1 model buffer size = 81.14 MiB
141
+ ...................................................................................
142
+ llama_context: constructing llama_context
143
+ llama_context: n_seq_max = 1
144
+ llama_context: n_ctx = 2048
145
+ llama_context: n_ctx_seq = 2048
146
+ llama_context: n_batch = 2048
147
+ llama_context: n_ubatch = 512
148
+ llama_context: causal_attn = 1
149
+ llama_context: flash_attn = auto
150
+ llama_context: kv_unified = false
151
+ llama_context: freq_base = 10000.0
152
+ llama_context: freq_scale = 1
153
+ llama_context: n_ctx_seq (2048) < n_ctx_train (1048576) -- the full capacity of the model will not be utilized
154
+ llama_context: CPU output buffer size = 0.38 MiB
155
+ llama_kv_cache: CPU KV buffer size = 2.00 MiB
156
+ llama_kv_cache: CUDA0 KV buffer size = 4.00 MiB
157
+ llama_kv_cache: CUDA1 KV buffer size = 2.00 MiB
158
+ llama_kv_cache: size = 8.00 MiB ( 2048 cells, 4 layers, 1/1 seqs), K (f16): 4.00 MiB, V (f16): 4.00 MiB
159
+ llama_memory_recurrent: CPU RS buffer size = 8.48 MiB
160
+ llama_memory_recurrent: CUDA0 RS buffer size = 6.16 MiB
161
+ llama_memory_recurrent: CUDA1 RS buffer size = 6.93 MiB
162
+ llama_memory_recurrent: size = 21.57 MiB ( 1 cells, 32 layers, 1 seqs), R (f32): 0.57 MiB, S (f32): 21.00 MiB
163
+ llama_context: Flash Attention was auto, set to enabled
164
+ llama_context: CUDA0 compute buffer size = 267.39 MiB
165
+ llama_context: CUDA1 compute buffer size = 22.39 MiB
166
+ llama_context: CUDA_Host compute buffer size = 18.34 MiB
167
+ llama_context: graph nodes = 1815
168
+ llama_context: graph splits = 182 (with bs=512), 41 (with bs=1)
169
+ common_init_from_params: added <|end_of_text|> logit bias = -inf
170
+ common_init_from_params: added <|fim_pad|> logit bias = -inf
171
+ common_init_from_params: setting dry_penalty_last_n to ctx_size = 2048
172
+ common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
173
+
174
+ system_info: n_threads = 16 (n_threads_batch = 16) / 32 | CUDA : ARCHS = 860 | USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | BMI2 = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | AVX512_BF16 = 1 | LLAMAFILE = 1 | OPENMP = 1 | REPACK = 1 |
175
+ perplexity: tokenizing the input ..
176
+ perplexity: tokenization took 35.426 ms
177
+ perplexity: calculating perplexity over 15 chunks, n_ctx=2048, batch_size=2048, n_seq=1
178
+ perplexity: 0.57 seconds per pass - ETA 0.13 minutes
179
+ [1]8.7655,[2]9.9228,[3]9.4725,[4]9.7974,[5]9.9635,[6]10.0535,[7]10.2088,[8]9.9054,[9]9.9607,[10]9.9652,[11]10.1962,[12]10.2815,[13]10.4015,[14]10.3779,[15]10.2794,
180
+ Final estimate: PPL = 10.2794 +/- 0.23142
181
+
182
+ llama_perf_context_print: load time = 211.56 ms
183
+ llama_perf_context_print: prompt eval time = 5241.07 ms / 30720 tokens ( 0.17 ms per token, 5861.40 tokens per second)
184
+ llama_perf_context_print: eval time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
185
+ llama_perf_context_print: total time = 5525.24 ms / 30721 tokens
186
+ llama_perf_context_print: graphs reused = 0
187
+ llama_memory_breakdown_print: | memory breakdown [MiB] | total free self model context compute unaccounted |
188
+ llama_memory_breakdown_print: | - CUDA0 (RTX 3090) | 24107 = 20643 + ( 356 = 79 + 10 + 267) + 3106 |
189
+ llama_memory_breakdown_print: | - CUDA1 (RTX 3090) | 24124 = 23390 + ( 112 = 81 + 8 + 22) + 621 |
190
+ llama_memory_breakdown_print: | - Host | 186 = 157 + 10 + 18 |
Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_mxfp4-router_gate_emb_f16/ppl_corpus_code.txt ADDED
The diff for this file is too large to render. See raw diff
 
Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_mxfp4-router_gate_emb_f16/ppl_corpus_general.txt ADDED
The diff for this file is too large to render. See raw diff
 
Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_mxfp4-router_gate_emb_f16/ppl_corpus_math.txt ADDED
The diff for this file is too large to render. See raw diff
 
Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_q6_k-embd_f16/llamabench.txt ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
2
+ ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
3
+ ggml_cuda_init: found 2 CUDA devices:
4
+ Device 0: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
5
+ Device 1: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
6
+ | model | size | params | backend | ngl | test | t/s |
7
+ | ------------------------------ | ---------: | ---------: | ---------- | --: | --------------: | -------------------: |
8
+ | granitehybrid 350M MXFP4 MoE | 414.19 MiB | 340.33 M | CUDA | 35 | pp8 | 1577.68 ± 58.97 |
9
+ | granitehybrid 350M MXFP4 MoE | 414.19 MiB | 340.33 M | CUDA | 35 | tg128 | 307.95 ± 11.28 |
10
+
11
+ build: 92bb442ad (7040)
Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_q6_k-embd_f16/perplexity_code.txt ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
2
+ ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
3
+ ggml_cuda_init: found 2 CUDA devices:
4
+ Device 0: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
5
+ Device 1: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
6
+ build: 7040 (92bb442ad) with cc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 for x86_64-linux-gnu
7
+ llama_model_load_from_file_impl: using device CUDA0 (NVIDIA GeForce RTX 3090) (0000:01:00.0) - 21085 MiB free
8
+ llama_model_load_from_file_impl: using device CUDA1 (NVIDIA GeForce RTX 3090) (0000:03:00.0) - 23582 MiB free
9
+ llama_model_loader: loaded meta data with 48 key-value pairs and 402 tensors from /mnt/world8/AI/Models/granite-4.0-h-350m-unsloth/GGUF/MXFP4/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_q6_k-embd_f16.gguf (version GGUF V3 (latest))
10
+ llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
11
+ llama_model_loader: - kv 0: general.architecture str = granitehybrid
12
+ llama_model_loader: - kv 1: general.type str = model
13
+ llama_model_loader: - kv 2: general.name str = Granite 4.0 H 350m Unsloth
14
+ llama_model_loader: - kv 3: general.finetune str = unsloth
15
+ llama_model_loader: - kv 4: general.basename str = granite-4.0-h
16
+ llama_model_loader: - kv 5: general.size_label str = 350M
17
+ llama_model_loader: - kv 6: general.license str = apache-2.0
18
+ llama_model_loader: - kv 7: general.base_model.count u32 = 1
19
+ llama_model_loader: - kv 8: general.base_model.0.name str = Granite 4.0 H 350m
20
+ llama_model_loader: - kv 9: general.base_model.0.organization str = Ibm Granite
21
+ llama_model_loader: - kv 10: general.base_model.0.repo_url str = https://huggingface.co/ibm-granite/gr...
22
+ llama_model_loader: - kv 11: general.tags arr[str,3] = ["language", "unsloth", "granite-4.0"]
23
+ llama_model_loader: - kv 12: granitehybrid.block_count u32 = 32
24
+ llama_model_loader: - kv 13: granitehybrid.context_length u32 = 1048576
25
+ llama_model_loader: - kv 14: granitehybrid.embedding_length u32 = 768
26
+ llama_model_loader: - kv 15: granitehybrid.feed_forward_length u32 = 2048
27
+ llama_model_loader: - kv 16: granitehybrid.attention.head_count u32 = 12
28
+ llama_model_loader: - kv 17: granitehybrid.attention.head_count_kv arr[i32,32] = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, ...
29
+ llama_model_loader: - kv 18: granitehybrid.rope.freq_base f32 = 10000.000000
30
+ llama_model_loader: - kv 19: granitehybrid.attention.layer_norm_rms_epsilon f32 = 0.000010
31
+ llama_model_loader: - kv 20: granitehybrid.expert_count u32 = 0
32
+ llama_model_loader: - kv 21: granitehybrid.expert_used_count u32 = 0
33
+ llama_model_loader: - kv 22: granitehybrid.vocab_size u32 = 100352
34
+ llama_model_loader: - kv 23: granitehybrid.rope.dimension_count u32 = 64
35
+ llama_model_loader: - kv 24: granitehybrid.attention.scale f32 = 0.015625
36
+ llama_model_loader: - kv 25: granitehybrid.embedding_scale f32 = 12.000000
37
+ llama_model_loader: - kv 26: granitehybrid.residual_scale f32 = 0.246000
38
+ llama_model_loader: - kv 27: granitehybrid.logit_scale f32 = 3.000000
39
+ llama_model_loader: - kv 28: granitehybrid.expert_shared_feed_forward_length u32 = 2048
40
+ llama_model_loader: - kv 29: granitehybrid.ssm.conv_kernel u32 = 4
41
+ llama_model_loader: - kv 30: granitehybrid.ssm.state_size u32 = 128
42
+ llama_model_loader: - kv 31: granitehybrid.ssm.group_count u32 = 1
43
+ llama_model_loader: - kv 32: granitehybrid.ssm.inner_size u32 = 1536
44
+ llama_model_loader: - kv 33: granitehybrid.ssm.time_step_rank u32 = 48
45
+ llama_model_loader: - kv 34: granitehybrid.rope.scaling.finetuned bool = false
46
+ llama_model_loader: - kv 35: tokenizer.ggml.model str = gpt2
47
+ llama_model_loader: - kv 36: tokenizer.ggml.pre str = dbrx
48
+ llama_model_loader: - kv 37: tokenizer.ggml.tokens arr[str,100352] = ["!", "\"", "#", "$", "%", "&", "'", ...
49
+ llama_model_loader: - kv 38: tokenizer.ggml.token_type arr[i32,100352] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
50
+ llama_model_loader: - kv 39: tokenizer.ggml.merges arr[str,100000] = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
51
+ llama_model_loader: - kv 40: tokenizer.ggml.bos_token_id u32 = 100257
52
+ llama_model_loader: - kv 41: tokenizer.ggml.eos_token_id u32 = 100257
53
+ llama_model_loader: - kv 42: tokenizer.ggml.unknown_token_id u32 = 100269
54
+ llama_model_loader: - kv 43: tokenizer.ggml.padding_token_id u32 = 100256
55
+ llama_model_loader: - kv 44: tokenizer.ggml.add_bos_token bool = false
56
+ llama_model_loader: - kv 45: tokenizer.chat_template str = {%- set tools_system_message_prefix =...
57
+ llama_model_loader: - kv 46: general.quantization_version u32 = 2
58
+ llama_model_loader: - kv 47: general.file_type u32 = 38
59
+ llama_model_loader: - type f32: 233 tensors
60
+ llama_model_loader: - type f16: 1 tensors
61
+ llama_model_loader: - type q8_0: 164 tensors
62
+ llama_model_loader: - type q6_K: 4 tensors
63
+ print_info: file format = GGUF V3 (latest)
64
+ print_info: file type = MXFP4 MoE
65
+ print_info: file size = 414.19 MiB (10.21 BPW)
66
+ load: printing all EOG tokens:
67
+ load: - 100257 ('<|end_of_text|>')
68
+ load: - 100261 ('<|fim_pad|>')
69
+ load: special tokens cache size = 96
70
+ load: token to piece cache size = 0.6152 MB
71
+ print_info: arch = granitehybrid
72
+ print_info: vocab_only = 0
73
+ print_info: n_ctx_train = 1048576
74
+ print_info: n_embd = 768
75
+ print_info: n_embd_inp = 768
76
+ print_info: n_layer = 32
77
+ print_info: n_head = 12
78
+ print_info: n_head_kv = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0]
79
+ print_info: n_rot = 64
80
+ print_info: n_swa = 0
81
+ print_info: is_swa_any = 0
82
+ print_info: n_embd_head_k = 64
83
+ print_info: n_embd_head_v = 64
84
+ print_info: n_gqa = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 3, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0]
85
+ print_info: n_embd_k_gqa = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 256, 0, 0, 0, 256, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 0, 0]
86
+ print_info: n_embd_v_gqa = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 256, 0, 0, 0, 256, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 0, 0]
87
+ print_info: f_norm_eps = 0.0e+00
88
+ print_info: f_norm_rms_eps = 1.0e-05
89
+ print_info: f_clamp_kqv = 0.0e+00
90
+ print_info: f_max_alibi_bias = 0.0e+00
91
+ print_info: f_logit_scale = 3.0e+00
92
+ print_info: f_attn_scale = 1.6e-02
93
+ print_info: n_ff = 2048
94
+ print_info: n_expert = 0
95
+ print_info: n_expert_used = 0
96
+ print_info: n_expert_groups = 0
97
+ print_info: n_group_used = 0
98
+ print_info: causal attn = 1
99
+ print_info: pooling type = 0
100
+ print_info: rope type = 0
101
+ print_info: rope scaling = linear
102
+ print_info: freq_base_train = 10000.0
103
+ print_info: freq_scale_train = 1
104
+ print_info: n_ctx_orig_yarn = 1048576
105
+ print_info: rope_finetuned = unknown
106
+ print_info: ssm_d_conv = 4
107
+ print_info: ssm_d_inner = 1536
108
+ print_info: ssm_d_state = 128
109
+ print_info: ssm_dt_rank = 48
110
+ print_info: ssm_n_group = 1
111
+ print_info: ssm_dt_b_c_rms = 0
112
+ print_info: model type = 350M
113
+ print_info: model params = 340.33 M
114
+ print_info: general.name = Granite 4.0 H 350m Unsloth
115
+ print_info: f_embedding_scale = 12.000000
116
+ print_info: f_residual_scale = 0.246000
117
+ print_info: f_attention_scale = 0.015625
118
+ print_info: n_ff_shexp = 2048
119
+ print_info: vocab type = BPE
120
+ print_info: n_vocab = 100352
121
+ print_info: n_merges = 100000
122
+ print_info: BOS token = 100257 '<|end_of_text|>'
123
+ print_info: EOS token = 100257 '<|end_of_text|>'
124
+ print_info: EOT token = 100257 '<|end_of_text|>'
125
+ print_info: UNK token = 100269 '<|unk|>'
126
+ print_info: PAD token = 100256 '<|pad|>'
127
+ print_info: LF token = 198 'Ċ'
128
+ print_info: FIM PRE token = 100258 '<|fim_prefix|>'
129
+ print_info: FIM SUF token = 100260 '<|fim_suffix|>'
130
+ print_info: FIM MID token = 100259 '<|fim_middle|>'
131
+ print_info: FIM PAD token = 100261 '<|fim_pad|>'
132
+ print_info: EOG token = 100257 '<|end_of_text|>'
133
+ print_info: EOG token = 100261 '<|fim_pad|>'
134
+ print_info: max token length = 256
135
+ load_tensors: loading model tensors, this can take a while... (mmap = true)
136
+ load_tensors: offloading 20 repeating layers to GPU
137
+ load_tensors: offloaded 20/33 layers to GPU
138
+ load_tensors: CPU_Mapped model buffer size = 248.40 MiB
139
+ load_tensors: CUDA0 model buffer size = 81.71 MiB
140
+ load_tensors: CUDA1 model buffer size = 84.11 MiB
141
+ ..................................................................
142
+ llama_context: constructing llama_context
143
+ llama_context: n_seq_max = 1
144
+ llama_context: n_ctx = 2048
145
+ llama_context: n_ctx_seq = 2048
146
+ llama_context: n_batch = 2048
147
+ llama_context: n_ubatch = 512
148
+ llama_context: causal_attn = 1
149
+ llama_context: flash_attn = auto
150
+ llama_context: kv_unified = false
151
+ llama_context: freq_base = 10000.0
152
+ llama_context: freq_scale = 1
153
+ llama_context: n_ctx_seq (2048) < n_ctx_train (1048576) -- the full capacity of the model will not be utilized
154
+ llama_context: CPU output buffer size = 0.38 MiB
155
+ llama_kv_cache: CPU KV buffer size = 2.00 MiB
156
+ llama_kv_cache: CUDA0 KV buffer size = 4.00 MiB
157
+ llama_kv_cache: CUDA1 KV buffer size = 2.00 MiB
158
+ llama_kv_cache: size = 8.00 MiB ( 2048 cells, 4 layers, 1/1 seqs), K (f16): 4.00 MiB, V (f16): 4.00 MiB
159
+ llama_memory_recurrent: CPU RS buffer size = 8.48 MiB
160
+ llama_memory_recurrent: CUDA0 RS buffer size = 6.16 MiB
161
+ llama_memory_recurrent: CUDA1 RS buffer size = 6.93 MiB
162
+ llama_memory_recurrent: size = 21.57 MiB ( 1 cells, 32 layers, 1 seqs), R (f32): 0.57 MiB, S (f32): 21.00 MiB
163
+ llama_context: Flash Attention was auto, set to enabled
164
+ llama_context: CUDA0 compute buffer size = 351.61 MiB
165
+ llama_context: CUDA1 compute buffer size = 22.39 MiB
166
+ llama_context: CUDA_Host compute buffer size = 18.34 MiB
167
+ llama_context: graph nodes = 1815
168
+ llama_context: graph splits = 182 (with bs=512), 41 (with bs=1)
169
+ common_init_from_params: added <|end_of_text|> logit bias = -inf
170
+ common_init_from_params: added <|fim_pad|> logit bias = -inf
171
+ common_init_from_params: setting dry_penalty_last_n to ctx_size = 2048
172
+ common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
173
+
174
+ system_info: n_threads = 16 (n_threads_batch = 16) / 32 | CUDA : ARCHS = 860 | USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | BMI2 = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | AVX512_BF16 = 1 | LLAMAFILE = 1 | OPENMP = 1 | REPACK = 1 |
175
+ perplexity: tokenizing the input ..
176
+ perplexity: tokenization took 103.423 ms
177
+ perplexity: calculating perplexity over 44 chunks, n_ctx=2048, batch_size=2048, n_seq=1
178
+ perplexity: 0.57 seconds per pass - ETA 0.40 minutes
179
+ [1]4.3638,[2]3.9778,[3]2.5685,[4]2.3700,[5]2.6041,[6]2.8488,[7]2.7004,[8]2.5086,[9]2.3058,[10]2.1374,[11]2.1200,[12]2.1461,[13]2.0575,[14]2.0372,[15]2.0776,[16]2.0120,[17]1.9869,[18]2.0052,[19]1.9658,[20]1.9305,[21]1.8976,[22]1.8829,[23]1.9121,[24]1.8856,[25]1.9045,[26]1.8727,[27]1.8596,[28]1.8511,[29]1.8965,[30]1.9133,[31]1.9122,[32]1.8881,[33]1.9115,[34]1.9036,[35]1.8848,[36]1.9161,[37]1.9225,[38]1.9204,[39]1.9419,[40]1.9393,[41]1.9321,[42]1.9561,[43]1.9647,[44]1.9539,
180
+ Final estimate: PPL = 1.9539 +/- 0.01749
181
+
182
+ llama_perf_context_print: load time = 275.21 ms
183
+ llama_perf_context_print: prompt eval time = 16124.85 ms / 90112 tokens ( 0.18 ms per token, 5588.39 tokens per second)
184
+ llama_perf_context_print: eval time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
185
+ llama_perf_context_print: total time = 17002.61 ms / 90113 tokens
186
+ llama_perf_context_print: graphs reused = 0
187
+ llama_memory_breakdown_print: | memory breakdown [MiB] | total free self model context compute unaccounted |
188
+ llama_memory_breakdown_print: | - CUDA0 (RTX 3090) | 24107 = 20499 + ( 443 = 81 + 10 + 351) + 3163 |
189
+ llama_memory_breakdown_print: | - CUDA1 (RTX 3090) | 24124 = 23398 + ( 115 = 84 + 8 + 22) + 610 |
190
+ llama_memory_breakdown_print: | - Host | 277 = 248 + 10 + 18 |
Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_q6_k-embd_f16/perplexity_general.txt ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
2
+ ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
3
+ ggml_cuda_init: found 2 CUDA devices:
4
+ Device 0: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
5
+ Device 1: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
6
+ build: 7040 (92bb442ad) with cc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 for x86_64-linux-gnu
7
+ llama_model_load_from_file_impl: using device CUDA0 (NVIDIA GeForce RTX 3090) (0000:01:00.0) - 21083 MiB free
8
+ llama_model_load_from_file_impl: using device CUDA1 (NVIDIA GeForce RTX 3090) (0000:03:00.0) - 23582 MiB free
9
+ llama_model_loader: loaded meta data with 48 key-value pairs and 402 tensors from /mnt/world8/AI/Models/granite-4.0-h-350m-unsloth/GGUF/MXFP4/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_q6_k-embd_f16.gguf (version GGUF V3 (latest))
10
+ llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
11
+ llama_model_loader: - kv 0: general.architecture str = granitehybrid
12
+ llama_model_loader: - kv 1: general.type str = model
13
+ llama_model_loader: - kv 2: general.name str = Granite 4.0 H 350m Unsloth
14
+ llama_model_loader: - kv 3: general.finetune str = unsloth
15
+ llama_model_loader: - kv 4: general.basename str = granite-4.0-h
16
+ llama_model_loader: - kv 5: general.size_label str = 350M
17
+ llama_model_loader: - kv 6: general.license str = apache-2.0
18
+ llama_model_loader: - kv 7: general.base_model.count u32 = 1
19
+ llama_model_loader: - kv 8: general.base_model.0.name str = Granite 4.0 H 350m
20
+ llama_model_loader: - kv 9: general.base_model.0.organization str = Ibm Granite
21
+ llama_model_loader: - kv 10: general.base_model.0.repo_url str = https://huggingface.co/ibm-granite/gr...
22
+ llama_model_loader: - kv 11: general.tags arr[str,3] = ["language", "unsloth", "granite-4.0"]
23
+ llama_model_loader: - kv 12: granitehybrid.block_count u32 = 32
24
+ llama_model_loader: - kv 13: granitehybrid.context_length u32 = 1048576
25
+ llama_model_loader: - kv 14: granitehybrid.embedding_length u32 = 768
26
+ llama_model_loader: - kv 15: granitehybrid.feed_forward_length u32 = 2048
27
+ llama_model_loader: - kv 16: granitehybrid.attention.head_count u32 = 12
28
+ llama_model_loader: - kv 17: granitehybrid.attention.head_count_kv arr[i32,32] = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, ...
29
+ llama_model_loader: - kv 18: granitehybrid.rope.freq_base f32 = 10000.000000
30
+ llama_model_loader: - kv 19: granitehybrid.attention.layer_norm_rms_epsilon f32 = 0.000010
31
+ llama_model_loader: - kv 20: granitehybrid.expert_count u32 = 0
32
+ llama_model_loader: - kv 21: granitehybrid.expert_used_count u32 = 0
33
+ llama_model_loader: - kv 22: granitehybrid.vocab_size u32 = 100352
34
+ llama_model_loader: - kv 23: granitehybrid.rope.dimension_count u32 = 64
35
+ llama_model_loader: - kv 24: granitehybrid.attention.scale f32 = 0.015625
36
+ llama_model_loader: - kv 25: granitehybrid.embedding_scale f32 = 12.000000
37
+ llama_model_loader: - kv 26: granitehybrid.residual_scale f32 = 0.246000
38
+ llama_model_loader: - kv 27: granitehybrid.logit_scale f32 = 3.000000
39
+ llama_model_loader: - kv 28: granitehybrid.expert_shared_feed_forward_length u32 = 2048
40
+ llama_model_loader: - kv 29: granitehybrid.ssm.conv_kernel u32 = 4
41
+ llama_model_loader: - kv 30: granitehybrid.ssm.state_size u32 = 128
42
+ llama_model_loader: - kv 31: granitehybrid.ssm.group_count u32 = 1
43
+ llama_model_loader: - kv 32: granitehybrid.ssm.inner_size u32 = 1536
44
+ llama_model_loader: - kv 33: granitehybrid.ssm.time_step_rank u32 = 48
45
+ llama_model_loader: - kv 34: granitehybrid.rope.scaling.finetuned bool = false
46
+ llama_model_loader: - kv 35: tokenizer.ggml.model str = gpt2
47
+ llama_model_loader: - kv 36: tokenizer.ggml.pre str = dbrx
48
+ llama_model_loader: - kv 37: tokenizer.ggml.tokens arr[str,100352] = ["!", "\"", "#", "$", "%", "&", "'", ...
49
+ llama_model_loader: - kv 38: tokenizer.ggml.token_type arr[i32,100352] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
50
+ llama_model_loader: - kv 39: tokenizer.ggml.merges arr[str,100000] = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
51
+ llama_model_loader: - kv 40: tokenizer.ggml.bos_token_id u32 = 100257
52
+ llama_model_loader: - kv 41: tokenizer.ggml.eos_token_id u32 = 100257
53
+ llama_model_loader: - kv 42: tokenizer.ggml.unknown_token_id u32 = 100269
54
+ llama_model_loader: - kv 43: tokenizer.ggml.padding_token_id u32 = 100256
55
+ llama_model_loader: - kv 44: tokenizer.ggml.add_bos_token bool = false
56
+ llama_model_loader: - kv 45: tokenizer.chat_template str = {%- set tools_system_message_prefix =...
57
+ llama_model_loader: - kv 46: general.quantization_version u32 = 2
58
+ llama_model_loader: - kv 47: general.file_type u32 = 38
59
+ llama_model_loader: - type f32: 233 tensors
60
+ llama_model_loader: - type f16: 1 tensors
61
+ llama_model_loader: - type q8_0: 164 tensors
62
+ llama_model_loader: - type q6_K: 4 tensors
63
+ print_info: file format = GGUF V3 (latest)
64
+ print_info: file type = MXFP4 MoE
65
+ print_info: file size = 414.19 MiB (10.21 BPW)
66
+ load: printing all EOG tokens:
67
+ load: - 100257 ('<|end_of_text|>')
68
+ load: - 100261 ('<|fim_pad|>')
69
+ load: special tokens cache size = 96
70
+ load: token to piece cache size = 0.6152 MB
71
+ print_info: arch = granitehybrid
72
+ print_info: vocab_only = 0
73
+ print_info: n_ctx_train = 1048576
74
+ print_info: n_embd = 768
75
+ print_info: n_embd_inp = 768
76
+ print_info: n_layer = 32
77
+ print_info: n_head = 12
78
+ print_info: n_head_kv = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0]
79
+ print_info: n_rot = 64
80
+ print_info: n_swa = 0
81
+ print_info: is_swa_any = 0
82
+ print_info: n_embd_head_k = 64
83
+ print_info: n_embd_head_v = 64
84
+ print_info: n_gqa = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 3, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0]
85
+ print_info: n_embd_k_gqa = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 256, 0, 0, 0, 256, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 0, 0]
86
+ print_info: n_embd_v_gqa = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 256, 0, 0, 0, 256, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 0, 0]
87
+ print_info: f_norm_eps = 0.0e+00
88
+ print_info: f_norm_rms_eps = 1.0e-05
89
+ print_info: f_clamp_kqv = 0.0e+00
90
+ print_info: f_max_alibi_bias = 0.0e+00
91
+ print_info: f_logit_scale = 3.0e+00
92
+ print_info: f_attn_scale = 1.6e-02
93
+ print_info: n_ff = 2048
94
+ print_info: n_expert = 0
95
+ print_info: n_expert_used = 0
96
+ print_info: n_expert_groups = 0
97
+ print_info: n_group_used = 0
98
+ print_info: causal attn = 1
99
+ print_info: pooling type = 0
100
+ print_info: rope type = 0
101
+ print_info: rope scaling = linear
102
+ print_info: freq_base_train = 10000.0
103
+ print_info: freq_scale_train = 1
104
+ print_info: n_ctx_orig_yarn = 1048576
105
+ print_info: rope_finetuned = unknown
106
+ print_info: ssm_d_conv = 4
107
+ print_info: ssm_d_inner = 1536
108
+ print_info: ssm_d_state = 128
109
+ print_info: ssm_dt_rank = 48
110
+ print_info: ssm_n_group = 1
111
+ print_info: ssm_dt_b_c_rms = 0
112
+ print_info: model type = 350M
113
+ print_info: model params = 340.33 M
114
+ print_info: general.name = Granite 4.0 H 350m Unsloth
115
+ print_info: f_embedding_scale = 12.000000
116
+ print_info: f_residual_scale = 0.246000
117
+ print_info: f_attention_scale = 0.015625
118
+ print_info: n_ff_shexp = 2048
119
+ print_info: vocab type = BPE
120
+ print_info: n_vocab = 100352
121
+ print_info: n_merges = 100000
122
+ print_info: BOS token = 100257 '<|end_of_text|>'
123
+ print_info: EOS token = 100257 '<|end_of_text|>'
124
+ print_info: EOT token = 100257 '<|end_of_text|>'
125
+ print_info: UNK token = 100269 '<|unk|>'
126
+ print_info: PAD token = 100256 '<|pad|>'
127
+ print_info: LF token = 198 'Ċ'
128
+ print_info: FIM PRE token = 100258 '<|fim_prefix|>'
129
+ print_info: FIM SUF token = 100260 '<|fim_suffix|>'
130
+ print_info: FIM MID token = 100259 '<|fim_middle|>'
131
+ print_info: FIM PAD token = 100261 '<|fim_pad|>'
132
+ print_info: EOG token = 100257 '<|end_of_text|>'
133
+ print_info: EOG token = 100261 '<|fim_pad|>'
134
+ print_info: max token length = 256
135
+ load_tensors: loading model tensors, this can take a while... (mmap = true)
136
+ load_tensors: offloading 20 repeating layers to GPU
137
+ load_tensors: offloaded 20/33 layers to GPU
138
+ load_tensors: CPU_Mapped model buffer size = 248.40 MiB
139
+ load_tensors: CUDA0 model buffer size = 81.71 MiB
140
+ load_tensors: CUDA1 model buffer size = 84.11 MiB
141
+ ..................................................................
142
+ llama_context: constructing llama_context
143
+ llama_context: n_seq_max = 1
144
+ llama_context: n_ctx = 2048
145
+ llama_context: n_ctx_seq = 2048
146
+ llama_context: n_batch = 2048
147
+ llama_context: n_ubatch = 512
148
+ llama_context: causal_attn = 1
149
+ llama_context: flash_attn = auto
150
+ llama_context: kv_unified = false
151
+ llama_context: freq_base = 10000.0
152
+ llama_context: freq_scale = 1
153
+ llama_context: n_ctx_seq (2048) < n_ctx_train (1048576) -- the full capacity of the model will not be utilized
154
+ llama_context: CPU output buffer size = 0.38 MiB
155
+ llama_kv_cache: CPU KV buffer size = 2.00 MiB
156
+ llama_kv_cache: CUDA0 KV buffer size = 4.00 MiB
157
+ llama_kv_cache: CUDA1 KV buffer size = 2.00 MiB
158
+ llama_kv_cache: size = 8.00 MiB ( 2048 cells, 4 layers, 1/1 seqs), K (f16): 4.00 MiB, V (f16): 4.00 MiB
159
+ llama_memory_recurrent: CPU RS buffer size = 8.48 MiB
160
+ llama_memory_recurrent: CUDA0 RS buffer size = 6.16 MiB
161
+ llama_memory_recurrent: CUDA1 RS buffer size = 6.93 MiB
162
+ llama_memory_recurrent: size = 21.57 MiB ( 1 cells, 32 layers, 1 seqs), R (f32): 0.57 MiB, S (f32): 21.00 MiB
163
+ llama_context: Flash Attention was auto, set to enabled
164
+ llama_context: CUDA0 compute buffer size = 351.61 MiB
165
+ llama_context: CUDA1 compute buffer size = 22.39 MiB
166
+ llama_context: CUDA_Host compute buffer size = 18.34 MiB
167
+ llama_context: graph nodes = 1815
168
+ llama_context: graph splits = 182 (with bs=512), 41 (with bs=1)
169
+ common_init_from_params: added <|end_of_text|> logit bias = -inf
170
+ common_init_from_params: added <|fim_pad|> logit bias = -inf
171
+ common_init_from_params: setting dry_penalty_last_n to ctx_size = 2048
172
+ common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
173
+
174
+ system_info: n_threads = 16 (n_threads_batch = 16) / 32 | CUDA : ARCHS = 860 | USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | BMI2 = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | AVX512_BF16 = 1 | LLAMAFILE = 1 | OPENMP = 1 | REPACK = 1 |
175
+ perplexity: tokenizing the input ..
176
+ perplexity: tokenization took 46.422 ms
177
+ perplexity: calculating perplexity over 14 chunks, n_ctx=2048, batch_size=2048, n_seq=1
178
+ perplexity: 0.57 seconds per pass - ETA 0.12 minutes
179
+ [1]18.5175,[2]21.5651,[3]22.2330,[4]20.1930,[5]20.1937,[6]17.9976,[7]17.6212,[8]17.5896,[9]18.1097,[10]18.0961,[11]17.9342,[12]18.0526,[13]18.1223,[14]18.1555,
180
+ Final estimate: PPL = 18.1555 +/- 0.46639
181
+
182
+ llama_perf_context_print: load time = 285.95 ms
183
+ llama_perf_context_print: prompt eval time = 5794.67 ms / 28672 tokens ( 0.20 ms per token, 4948.00 tokens per second)
184
+ llama_perf_context_print: eval time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
185
+ llama_perf_context_print: total time = 6216.80 ms / 28673 tokens
186
+ llama_perf_context_print: graphs reused = 0
187
+ llama_memory_breakdown_print: | memory breakdown [MiB] | total free self model context compute unaccounted |
188
+ llama_memory_breakdown_print: | - CUDA0 (RTX 3090) | 24107 = 20494 + ( 443 = 81 + 10 + 351) + 3168 |
189
+ llama_memory_breakdown_print: | - CUDA1 (RTX 3090) | 24124 = 23398 + ( 115 = 84 + 8 + 22) + 610 |
190
+ llama_memory_breakdown_print: | - Host | 277 = 248 + 10 + 18 |
Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_q6_k-embd_f16/perplexity_math.txt ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
2
+ ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
3
+ ggml_cuda_init: found 2 CUDA devices:
4
+ Device 0: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
5
+ Device 1: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
6
+ build: 7040 (92bb442ad) with cc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 for x86_64-linux-gnu
7
+ llama_model_load_from_file_impl: using device CUDA0 (NVIDIA GeForce RTX 3090) (0000:01:00.0) - 21087 MiB free
8
+ llama_model_load_from_file_impl: using device CUDA1 (NVIDIA GeForce RTX 3090) (0000:03:00.0) - 23582 MiB free
9
+ llama_model_loader: loaded meta data with 48 key-value pairs and 402 tensors from /mnt/world8/AI/Models/granite-4.0-h-350m-unsloth/GGUF/MXFP4/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_q6_k-embd_f16.gguf (version GGUF V3 (latest))
10
+ llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
11
+ llama_model_loader: - kv 0: general.architecture str = granitehybrid
12
+ llama_model_loader: - kv 1: general.type str = model
13
+ llama_model_loader: - kv 2: general.name str = Granite 4.0 H 350m Unsloth
14
+ llama_model_loader: - kv 3: general.finetune str = unsloth
15
+ llama_model_loader: - kv 4: general.basename str = granite-4.0-h
16
+ llama_model_loader: - kv 5: general.size_label str = 350M
17
+ llama_model_loader: - kv 6: general.license str = apache-2.0
18
+ llama_model_loader: - kv 7: general.base_model.count u32 = 1
19
+ llama_model_loader: - kv 8: general.base_model.0.name str = Granite 4.0 H 350m
20
+ llama_model_loader: - kv 9: general.base_model.0.organization str = Ibm Granite
21
+ llama_model_loader: - kv 10: general.base_model.0.repo_url str = https://huggingface.co/ibm-granite/gr...
22
+ llama_model_loader: - kv 11: general.tags arr[str,3] = ["language", "unsloth", "granite-4.0"]
23
+ llama_model_loader: - kv 12: granitehybrid.block_count u32 = 32
24
+ llama_model_loader: - kv 13: granitehybrid.context_length u32 = 1048576
25
+ llama_model_loader: - kv 14: granitehybrid.embedding_length u32 = 768
26
+ llama_model_loader: - kv 15: granitehybrid.feed_forward_length u32 = 2048
27
+ llama_model_loader: - kv 16: granitehybrid.attention.head_count u32 = 12
28
+ llama_model_loader: - kv 17: granitehybrid.attention.head_count_kv arr[i32,32] = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, ...
29
+ llama_model_loader: - kv 18: granitehybrid.rope.freq_base f32 = 10000.000000
30
+ llama_model_loader: - kv 19: granitehybrid.attention.layer_norm_rms_epsilon f32 = 0.000010
31
+ llama_model_loader: - kv 20: granitehybrid.expert_count u32 = 0
32
+ llama_model_loader: - kv 21: granitehybrid.expert_used_count u32 = 0
33
+ llama_model_loader: - kv 22: granitehybrid.vocab_size u32 = 100352
34
+ llama_model_loader: - kv 23: granitehybrid.rope.dimension_count u32 = 64
35
+ llama_model_loader: - kv 24: granitehybrid.attention.scale f32 = 0.015625
36
+ llama_model_loader: - kv 25: granitehybrid.embedding_scale f32 = 12.000000
37
+ llama_model_loader: - kv 26: granitehybrid.residual_scale f32 = 0.246000
38
+ llama_model_loader: - kv 27: granitehybrid.logit_scale f32 = 3.000000
39
+ llama_model_loader: - kv 28: granitehybrid.expert_shared_feed_forward_length u32 = 2048
40
+ llama_model_loader: - kv 29: granitehybrid.ssm.conv_kernel u32 = 4
41
+ llama_model_loader: - kv 30: granitehybrid.ssm.state_size u32 = 128
42
+ llama_model_loader: - kv 31: granitehybrid.ssm.group_count u32 = 1
43
+ llama_model_loader: - kv 32: granitehybrid.ssm.inner_size u32 = 1536
44
+ llama_model_loader: - kv 33: granitehybrid.ssm.time_step_rank u32 = 48
45
+ llama_model_loader: - kv 34: granitehybrid.rope.scaling.finetuned bool = false
46
+ llama_model_loader: - kv 35: tokenizer.ggml.model str = gpt2
47
+ llama_model_loader: - kv 36: tokenizer.ggml.pre str = dbrx
48
+ llama_model_loader: - kv 37: tokenizer.ggml.tokens arr[str,100352] = ["!", "\"", "#", "$", "%", "&", "'", ...
49
+ llama_model_loader: - kv 38: tokenizer.ggml.token_type arr[i32,100352] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
50
+ llama_model_loader: - kv 39: tokenizer.ggml.merges arr[str,100000] = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
51
+ llama_model_loader: - kv 40: tokenizer.ggml.bos_token_id u32 = 100257
52
+ llama_model_loader: - kv 41: tokenizer.ggml.eos_token_id u32 = 100257
53
+ llama_model_loader: - kv 42: tokenizer.ggml.unknown_token_id u32 = 100269
54
+ llama_model_loader: - kv 43: tokenizer.ggml.padding_token_id u32 = 100256
55
+ llama_model_loader: - kv 44: tokenizer.ggml.add_bos_token bool = false
56
+ llama_model_loader: - kv 45: tokenizer.chat_template str = {%- set tools_system_message_prefix =...
57
+ llama_model_loader: - kv 46: general.quantization_version u32 = 2
58
+ llama_model_loader: - kv 47: general.file_type u32 = 38
59
+ llama_model_loader: - type f32: 233 tensors
60
+ llama_model_loader: - type f16: 1 tensors
61
+ llama_model_loader: - type q8_0: 164 tensors
62
+ llama_model_loader: - type q6_K: 4 tensors
63
+ print_info: file format = GGUF V3 (latest)
64
+ print_info: file type = MXFP4 MoE
65
+ print_info: file size = 414.19 MiB (10.21 BPW)
66
+ load: printing all EOG tokens:
67
+ load: - 100257 ('<|end_of_text|>')
68
+ load: - 100261 ('<|fim_pad|>')
69
+ load: special tokens cache size = 96
70
+ load: token to piece cache size = 0.6152 MB
71
+ print_info: arch = granitehybrid
72
+ print_info: vocab_only = 0
73
+ print_info: n_ctx_train = 1048576
74
+ print_info: n_embd = 768
75
+ print_info: n_embd_inp = 768
76
+ print_info: n_layer = 32
77
+ print_info: n_head = 12
78
+ print_info: n_head_kv = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0]
79
+ print_info: n_rot = 64
80
+ print_info: n_swa = 0
81
+ print_info: is_swa_any = 0
82
+ print_info: n_embd_head_k = 64
83
+ print_info: n_embd_head_v = 64
84
+ print_info: n_gqa = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 3, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0]
85
+ print_info: n_embd_k_gqa = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 256, 0, 0, 0, 256, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 0, 0]
86
+ print_info: n_embd_v_gqa = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 256, 0, 0, 0, 256, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 0, 0]
87
+ print_info: f_norm_eps = 0.0e+00
88
+ print_info: f_norm_rms_eps = 1.0e-05
89
+ print_info: f_clamp_kqv = 0.0e+00
90
+ print_info: f_max_alibi_bias = 0.0e+00
91
+ print_info: f_logit_scale = 3.0e+00
92
+ print_info: f_attn_scale = 1.6e-02
93
+ print_info: n_ff = 2048
94
+ print_info: n_expert = 0
95
+ print_info: n_expert_used = 0
96
+ print_info: n_expert_groups = 0
97
+ print_info: n_group_used = 0
98
+ print_info: causal attn = 1
99
+ print_info: pooling type = 0
100
+ print_info: rope type = 0
101
+ print_info: rope scaling = linear
102
+ print_info: freq_base_train = 10000.0
103
+ print_info: freq_scale_train = 1
104
+ print_info: n_ctx_orig_yarn = 1048576
105
+ print_info: rope_finetuned = unknown
106
+ print_info: ssm_d_conv = 4
107
+ print_info: ssm_d_inner = 1536
108
+ print_info: ssm_d_state = 128
109
+ print_info: ssm_dt_rank = 48
110
+ print_info: ssm_n_group = 1
111
+ print_info: ssm_dt_b_c_rms = 0
112
+ print_info: model type = 350M
113
+ print_info: model params = 340.33 M
114
+ print_info: general.name = Granite 4.0 H 350m Unsloth
115
+ print_info: f_embedding_scale = 12.000000
116
+ print_info: f_residual_scale = 0.246000
117
+ print_info: f_attention_scale = 0.015625
118
+ print_info: n_ff_shexp = 2048
119
+ print_info: vocab type = BPE
120
+ print_info: n_vocab = 100352
121
+ print_info: n_merges = 100000
122
+ print_info: BOS token = 100257 '<|end_of_text|>'
123
+ print_info: EOS token = 100257 '<|end_of_text|>'
124
+ print_info: EOT token = 100257 '<|end_of_text|>'
125
+ print_info: UNK token = 100269 '<|unk|>'
126
+ print_info: PAD token = 100256 '<|pad|>'
127
+ print_info: LF token = 198 'Ċ'
128
+ print_info: FIM PRE token = 100258 '<|fim_prefix|>'
129
+ print_info: FIM SUF token = 100260 '<|fim_suffix|>'
130
+ print_info: FIM MID token = 100259 '<|fim_middle|>'
131
+ print_info: FIM PAD token = 100261 '<|fim_pad|>'
132
+ print_info: EOG token = 100257 '<|end_of_text|>'
133
+ print_info: EOG token = 100261 '<|fim_pad|>'
134
+ print_info: max token length = 256
135
+ load_tensors: loading model tensors, this can take a while... (mmap = true)
136
+ load_tensors: offloading 20 repeating layers to GPU
137
+ load_tensors: offloaded 20/33 layers to GPU
138
+ load_tensors: CPU_Mapped model buffer size = 248.40 MiB
139
+ load_tensors: CUDA0 model buffer size = 81.71 MiB
140
+ load_tensors: CUDA1 model buffer size = 84.11 MiB
141
+ ..................................................................
142
+ llama_context: constructing llama_context
143
+ llama_context: n_seq_max = 1
144
+ llama_context: n_ctx = 2048
145
+ llama_context: n_ctx_seq = 2048
146
+ llama_context: n_batch = 2048
147
+ llama_context: n_ubatch = 512
148
+ llama_context: causal_attn = 1
149
+ llama_context: flash_attn = auto
150
+ llama_context: kv_unified = false
151
+ llama_context: freq_base = 10000.0
152
+ llama_context: freq_scale = 1
153
+ llama_context: n_ctx_seq (2048) < n_ctx_train (1048576) -- the full capacity of the model will not be utilized
154
+ llama_context: CPU output buffer size = 0.38 MiB
155
+ llama_kv_cache: CPU KV buffer size = 2.00 MiB
156
+ llama_kv_cache: CUDA0 KV buffer size = 4.00 MiB
157
+ llama_kv_cache: CUDA1 KV buffer size = 2.00 MiB
158
+ llama_kv_cache: size = 8.00 MiB ( 2048 cells, 4 layers, 1/1 seqs), K (f16): 4.00 MiB, V (f16): 4.00 MiB
159
+ llama_memory_recurrent: CPU RS buffer size = 8.48 MiB
160
+ llama_memory_recurrent: CUDA0 RS buffer size = 6.16 MiB
161
+ llama_memory_recurrent: CUDA1 RS buffer size = 6.93 MiB
162
+ llama_memory_recurrent: size = 21.57 MiB ( 1 cells, 32 layers, 1 seqs), R (f32): 0.57 MiB, S (f32): 21.00 MiB
163
+ llama_context: Flash Attention was auto, set to enabled
164
+ llama_context: CUDA0 compute buffer size = 351.61 MiB
165
+ llama_context: CUDA1 compute buffer size = 22.39 MiB
166
+ llama_context: CUDA_Host compute buffer size = 18.34 MiB
167
+ llama_context: graph nodes = 1815
168
+ llama_context: graph splits = 182 (with bs=512), 41 (with bs=1)
169
+ common_init_from_params: added <|end_of_text|> logit bias = -inf
170
+ common_init_from_params: added <|fim_pad|> logit bias = -inf
171
+ common_init_from_params: setting dry_penalty_last_n to ctx_size = 2048
172
+ common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
173
+
174
+ system_info: n_threads = 16 (n_threads_batch = 16) / 32 | CUDA : ARCHS = 860 | USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | BMI2 = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | AVX512_BF16 = 1 | LLAMAFILE = 1 | OPENMP = 1 | REPACK = 1 |
175
+ perplexity: tokenizing the input ..
176
+ perplexity: tokenization took 39.186 ms
177
+ perplexity: calculating perplexity over 15 chunks, n_ctx=2048, batch_size=2048, n_seq=1
178
+ perplexity: 0.65 seconds per pass - ETA 0.15 minutes
179
+ [1]8.6883,[2]9.9276,[3]9.4995,[4]9.8344,[5]9.9786,[6]10.0566,[7]10.2142,[8]9.9124,[9]9.9724,[10]9.9839,[11]10.2179,[12]10.3011,[13]10.4233,[14]10.3949,[15]10.2956,
180
+ Final estimate: PPL = 10.2956 +/- 0.23171
181
+
182
+ llama_perf_context_print: load time = 222.66 ms
183
+ llama_perf_context_print: prompt eval time = 5721.99 ms / 30720 tokens ( 0.19 ms per token, 5368.76 tokens per second)
184
+ llama_perf_context_print: eval time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
185
+ llama_perf_context_print: total time = 6059.09 ms / 30721 tokens
186
+ llama_perf_context_print: graphs reused = 0
187
+ llama_memory_breakdown_print: | memory breakdown [MiB] | total free self model context compute unaccounted |
188
+ llama_memory_breakdown_print: | - CUDA0 (RTX 3090) | 24107 = 20499 + ( 443 = 81 + 10 + 351) + 3163 |
189
+ llama_memory_breakdown_print: | - CUDA1 (RTX 3090) | 24124 = 23398 + ( 115 = 84 + 8 + 22) + 610 |
190
+ llama_memory_breakdown_print: | - Host | 277 = 248 + 10 + 18 |
Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_q6_k-embd_f16/ppl_corpus_code.txt ADDED
The diff for this file is too large to render. See raw diff
 
Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_q6_k-embd_f16/ppl_corpus_general.txt ADDED
The diff for this file is too large to render. See raw diff
 
Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_q6_k-embd_f16/ppl_corpus_math.txt ADDED
The diff for this file is too large to render. See raw diff
 
Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_q6_k-router_gate_emb_f16/llamabench.txt ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
2
+ ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
3
+ ggml_cuda_init: found 2 CUDA devices:
4
+ Device 0: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
5
+ Device 1: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
6
+ | model | size | params | backend | ngl | test | t/s |
7
+ | ------------------------------ | ---------: | ---------: | ---------- | --: | --------------: | -------------------: |
8
+ | granitehybrid 350M MXFP4 MoE | 459.19 MiB | 340.33 M | CUDA | 35 | pp8 | 1652.10 ± 29.30 |
9
+ | granitehybrid 350M MXFP4 MoE | 459.19 MiB | 340.33 M | CUDA | 35 | tg128 | 292.38 ± 9.54 |
10
+
11
+ build: 92bb442ad (7040)
Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_q6_k-router_gate_emb_f16/perplexity_code.txt ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
2
+ ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
3
+ ggml_cuda_init: found 2 CUDA devices:
4
+ Device 0: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
5
+ Device 1: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
6
+ build: 7040 (92bb442ad) with cc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 for x86_64-linux-gnu
7
+ llama_model_load_from_file_impl: using device CUDA0 (NVIDIA GeForce RTX 3090) (0000:01:00.0) - 21085 MiB free
8
+ llama_model_load_from_file_impl: using device CUDA1 (NVIDIA GeForce RTX 3090) (0000:03:00.0) - 23582 MiB free
9
+ llama_model_loader: loaded meta data with 48 key-value pairs and 402 tensors from /mnt/world8/AI/Models/granite-4.0-h-350m-unsloth/GGUF/MXFP4/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_q6_k-router_gate_emb_f16.gguf (version GGUF V3 (latest))
10
+ llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
11
+ llama_model_loader: - kv 0: general.architecture str = granitehybrid
12
+ llama_model_loader: - kv 1: general.type str = model
13
+ llama_model_loader: - kv 2: general.name str = Granite 4.0 H 350m Unsloth
14
+ llama_model_loader: - kv 3: general.finetune str = unsloth
15
+ llama_model_loader: - kv 4: general.basename str = granite-4.0-h
16
+ llama_model_loader: - kv 5: general.size_label str = 350M
17
+ llama_model_loader: - kv 6: general.license str = apache-2.0
18
+ llama_model_loader: - kv 7: general.base_model.count u32 = 1
19
+ llama_model_loader: - kv 8: general.base_model.0.name str = Granite 4.0 H 350m
20
+ llama_model_loader: - kv 9: general.base_model.0.organization str = Ibm Granite
21
+ llama_model_loader: - kv 10: general.base_model.0.repo_url str = https://huggingface.co/ibm-granite/gr...
22
+ llama_model_loader: - kv 11: general.tags arr[str,3] = ["language", "unsloth", "granite-4.0"]
23
+ llama_model_loader: - kv 12: granitehybrid.block_count u32 = 32
24
+ llama_model_loader: - kv 13: granitehybrid.context_length u32 = 1048576
25
+ llama_model_loader: - kv 14: granitehybrid.embedding_length u32 = 768
26
+ llama_model_loader: - kv 15: granitehybrid.feed_forward_length u32 = 2048
27
+ llama_model_loader: - kv 16: granitehybrid.attention.head_count u32 = 12
28
+ llama_model_loader: - kv 17: granitehybrid.attention.head_count_kv arr[i32,32] = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, ...
29
+ llama_model_loader: - kv 18: granitehybrid.rope.freq_base f32 = 10000.000000
30
+ llama_model_loader: - kv 19: granitehybrid.attention.layer_norm_rms_epsilon f32 = 0.000010
31
+ llama_model_loader: - kv 20: granitehybrid.expert_count u32 = 0
32
+ llama_model_loader: - kv 21: granitehybrid.expert_used_count u32 = 0
33
+ llama_model_loader: - kv 22: granitehybrid.vocab_size u32 = 100352
34
+ llama_model_loader: - kv 23: granitehybrid.rope.dimension_count u32 = 64
35
+ llama_model_loader: - kv 24: granitehybrid.attention.scale f32 = 0.015625
36
+ llama_model_loader: - kv 25: granitehybrid.embedding_scale f32 = 12.000000
37
+ llama_model_loader: - kv 26: granitehybrid.residual_scale f32 = 0.246000
38
+ llama_model_loader: - kv 27: granitehybrid.logit_scale f32 = 3.000000
39
+ llama_model_loader: - kv 28: granitehybrid.expert_shared_feed_forward_length u32 = 2048
40
+ llama_model_loader: - kv 29: granitehybrid.ssm.conv_kernel u32 = 4
41
+ llama_model_loader: - kv 30: granitehybrid.ssm.state_size u32 = 128
42
+ llama_model_loader: - kv 31: granitehybrid.ssm.group_count u32 = 1
43
+ llama_model_loader: - kv 32: granitehybrid.ssm.inner_size u32 = 1536
44
+ llama_model_loader: - kv 33: granitehybrid.ssm.time_step_rank u32 = 48
45
+ llama_model_loader: - kv 34: granitehybrid.rope.scaling.finetuned bool = false
46
+ llama_model_loader: - kv 35: tokenizer.ggml.model str = gpt2
47
+ llama_model_loader: - kv 36: tokenizer.ggml.pre str = dbrx
48
+ llama_model_loader: - kv 37: tokenizer.ggml.tokens arr[str,100352] = ["!", "\"", "#", "$", "%", "&", "'", ...
49
+ llama_model_loader: - kv 38: tokenizer.ggml.token_type arr[i32,100352] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
50
+ llama_model_loader: - kv 39: tokenizer.ggml.merges arr[str,100000] = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
51
+ llama_model_loader: - kv 40: tokenizer.ggml.bos_token_id u32 = 100257
52
+ llama_model_loader: - kv 41: tokenizer.ggml.eos_token_id u32 = 100257
53
+ llama_model_loader: - kv 42: tokenizer.ggml.unknown_token_id u32 = 100269
54
+ llama_model_loader: - kv 43: tokenizer.ggml.padding_token_id u32 = 100256
55
+ llama_model_loader: - kv 44: tokenizer.ggml.add_bos_token bool = false
56
+ llama_model_loader: - kv 45: tokenizer.chat_template str = {%- set tools_system_message_prefix =...
57
+ llama_model_loader: - kv 46: general.quantization_version u32 = 2
58
+ llama_model_loader: - kv 47: general.file_type u32 = 38
59
+ llama_model_loader: - type f32: 233 tensors
60
+ llama_model_loader: - type f16: 33 tensors
61
+ llama_model_loader: - type q8_0: 132 tensors
62
+ llama_model_loader: - type q6_K: 4 tensors
63
+ print_info: file format = GGUF V3 (latest)
64
+ print_info: file type = MXFP4 MoE
65
+ print_info: file size = 459.19 MiB (11.32 BPW)
66
+ load: printing all EOG tokens:
67
+ load: - 100257 ('<|end_of_text|>')
68
+ load: - 100261 ('<|fim_pad|>')
69
+ load: special tokens cache size = 96
70
+ load: token to piece cache size = 0.6152 MB
71
+ print_info: arch = granitehybrid
72
+ print_info: vocab_only = 0
73
+ print_info: n_ctx_train = 1048576
74
+ print_info: n_embd = 768
75
+ print_info: n_embd_inp = 768
76
+ print_info: n_layer = 32
77
+ print_info: n_head = 12
78
+ print_info: n_head_kv = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0]
79
+ print_info: n_rot = 64
80
+ print_info: n_swa = 0
81
+ print_info: is_swa_any = 0
82
+ print_info: n_embd_head_k = 64
83
+ print_info: n_embd_head_v = 64
84
+ print_info: n_gqa = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 3, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0]
85
+ print_info: n_embd_k_gqa = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 256, 0, 0, 0, 256, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 0, 0]
86
+ print_info: n_embd_v_gqa = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 256, 0, 0, 0, 256, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 0, 0]
87
+ print_info: f_norm_eps = 0.0e+00
88
+ print_info: f_norm_rms_eps = 1.0e-05
89
+ print_info: f_clamp_kqv = 0.0e+00
90
+ print_info: f_max_alibi_bias = 0.0e+00
91
+ print_info: f_logit_scale = 3.0e+00
92
+ print_info: f_attn_scale = 1.6e-02
93
+ print_info: n_ff = 2048
94
+ print_info: n_expert = 0
95
+ print_info: n_expert_used = 0
96
+ print_info: n_expert_groups = 0
97
+ print_info: n_group_used = 0
98
+ print_info: causal attn = 1
99
+ print_info: pooling type = 0
100
+ print_info: rope type = 0
101
+ print_info: rope scaling = linear
102
+ print_info: freq_base_train = 10000.0
103
+ print_info: freq_scale_train = 1
104
+ print_info: n_ctx_orig_yarn = 1048576
105
+ print_info: rope_finetuned = unknown
106
+ print_info: ssm_d_conv = 4
107
+ print_info: ssm_d_inner = 1536
108
+ print_info: ssm_d_state = 128
109
+ print_info: ssm_dt_rank = 48
110
+ print_info: ssm_n_group = 1
111
+ print_info: ssm_dt_b_c_rms = 0
112
+ print_info: model type = 350M
113
+ print_info: model params = 340.33 M
114
+ print_info: general.name = Granite 4.0 H 350m Unsloth
115
+ print_info: f_embedding_scale = 12.000000
116
+ print_info: f_residual_scale = 0.246000
117
+ print_info: f_attention_scale = 0.015625
118
+ print_info: n_ff_shexp = 2048
119
+ print_info: vocab type = BPE
120
+ print_info: n_vocab = 100352
121
+ print_info: n_merges = 100000
122
+ print_info: BOS token = 100257 '<|end_of_text|>'
123
+ print_info: EOS token = 100257 '<|end_of_text|>'
124
+ print_info: EOT token = 100257 '<|end_of_text|>'
125
+ print_info: UNK token = 100269 '<|unk|>'
126
+ print_info: PAD token = 100256 '<|pad|>'
127
+ print_info: LF token = 198 'Ċ'
128
+ print_info: FIM PRE token = 100258 '<|fim_prefix|>'
129
+ print_info: FIM SUF token = 100260 '<|fim_suffix|>'
130
+ print_info: FIM MID token = 100259 '<|fim_middle|>'
131
+ print_info: FIM PAD token = 100261 '<|fim_pad|>'
132
+ print_info: EOG token = 100257 '<|end_of_text|>'
133
+ print_info: EOG token = 100261 '<|fim_pad|>'
134
+ print_info: max token length = 256
135
+ load_tensors: loading model tensors, this can take a while... (mmap = true)
136
+ load_tensors: offloading 20 repeating layers to GPU
137
+ load_tensors: offloaded 20/33 layers to GPU
138
+ load_tensors: CPU_Mapped model buffer size = 265.27 MiB
139
+ load_tensors: CUDA0 model buffer size = 95.76 MiB
140
+ load_tensors: CUDA1 model buffer size = 98.17 MiB
141
+ .....................................................................
142
+ llama_context: constructing llama_context
143
+ llama_context: n_seq_max = 1
144
+ llama_context: n_ctx = 2048
145
+ llama_context: n_ctx_seq = 2048
146
+ llama_context: n_batch = 2048
147
+ llama_context: n_ubatch = 512
148
+ llama_context: causal_attn = 1
149
+ llama_context: flash_attn = auto
150
+ llama_context: kv_unified = false
151
+ llama_context: freq_base = 10000.0
152
+ llama_context: freq_scale = 1
153
+ llama_context: n_ctx_seq (2048) < n_ctx_train (1048576) -- the full capacity of the model will not be utilized
154
+ llama_context: CPU output buffer size = 0.38 MiB
155
+ llama_kv_cache: CPU KV buffer size = 2.00 MiB
156
+ llama_kv_cache: CUDA0 KV buffer size = 4.00 MiB
157
+ llama_kv_cache: CUDA1 KV buffer size = 2.00 MiB
158
+ llama_kv_cache: size = 8.00 MiB ( 2048 cells, 4 layers, 1/1 seqs), K (f16): 4.00 MiB, V (f16): 4.00 MiB
159
+ llama_memory_recurrent: CPU RS buffer size = 8.48 MiB
160
+ llama_memory_recurrent: CUDA0 RS buffer size = 6.16 MiB
161
+ llama_memory_recurrent: CUDA1 RS buffer size = 6.93 MiB
162
+ llama_memory_recurrent: size = 21.57 MiB ( 1 cells, 32 layers, 1 seqs), R (f32): 0.57 MiB, S (f32): 21.00 MiB
163
+ llama_context: Flash Attention was auto, set to enabled
164
+ llama_context: CUDA0 compute buffer size = 354.10 MiB
165
+ llama_context: CUDA1 compute buffer size = 22.39 MiB
166
+ llama_context: CUDA_Host compute buffer size = 18.34 MiB
167
+ llama_context: graph nodes = 1815
168
+ llama_context: graph splits = 182 (with bs=512), 41 (with bs=1)
169
+ common_init_from_params: added <|end_of_text|> logit bias = -inf
170
+ common_init_from_params: added <|fim_pad|> logit bias = -inf
171
+ common_init_from_params: setting dry_penalty_last_n to ctx_size = 2048
172
+ common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
173
+
174
+ system_info: n_threads = 16 (n_threads_batch = 16) / 32 | CUDA : ARCHS = 860 | USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | BMI2 = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | AVX512_BF16 = 1 | LLAMAFILE = 1 | OPENMP = 1 | REPACK = 1 |
175
+ perplexity: tokenizing the input ..
176
+ perplexity: tokenization took 92.34 ms
177
+ perplexity: calculating perplexity over 44 chunks, n_ctx=2048, batch_size=2048, n_seq=1
178
+ perplexity: 0.54 seconds per pass - ETA 0.38 minutes
179
+ [1]4.3900,[2]3.9915,[3]2.5750,[4]2.3699,[5]2.6085,[6]2.8527,[7]2.7033,[8]2.5113,[9]2.3080,[10]2.1391,[11]2.1211,[12]2.1472,[13]2.0589,[14]2.0386,[15]2.0789,[16]2.0132,[17]1.9882,[18]2.0064,[19]1.9668,[20]1.9314,[21]1.8986,[22]1.8838,[23]1.9127,[24]1.8862,[25]1.9052,[26]1.8732,[27]1.8601,[28]1.8518,[29]1.8971,[30]1.9137,[31]1.9124,[32]1.8882,[33]1.9115,[34]1.9036,[35]1.8848,[36]1.9161,[37]1.9224,[38]1.9204,[39]1.9420,[40]1.9395,[41]1.9324,[42]1.9565,[43]1.9650,[44]1.9543,
180
+ Final estimate: PPL = 1.9543 +/- 0.01750
181
+
182
+ llama_perf_context_print: load time = 250.31 ms
183
+ llama_perf_context_print: prompt eval time = 15511.51 ms / 90112 tokens ( 0.17 ms per token, 5809.36 tokens per second)
184
+ llama_perf_context_print: eval time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
185
+ llama_perf_context_print: total time = 16356.83 ms / 90113 tokens
186
+ llama_perf_context_print: graphs reused = 0
187
+ llama_memory_breakdown_print: | memory breakdown [MiB] | total free self model context compute unaccounted |
188
+ llama_memory_breakdown_print: | - CUDA0 (RTX 3090) | 24107 = 20479 + ( 460 = 95 + 10 + 354) + 3167 |
189
+ llama_memory_breakdown_print: | - CUDA1 (RTX 3090) | 24124 = 23372 + ( 129 = 98 + 8 + 22) + 622 |
190
+ llama_memory_breakdown_print: | - Host | 294 = 265 + 10 + 18 |
Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_q6_k-router_gate_emb_f16/perplexity_general.txt ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
2
+ ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
3
+ ggml_cuda_init: found 2 CUDA devices:
4
+ Device 0: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
5
+ Device 1: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
6
+ build: 7040 (92bb442ad) with cc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 for x86_64-linux-gnu
7
+ llama_model_load_from_file_impl: using device CUDA0 (NVIDIA GeForce RTX 3090) (0000:01:00.0) - 21079 MiB free
8
+ llama_model_load_from_file_impl: using device CUDA1 (NVIDIA GeForce RTX 3090) (0000:03:00.0) - 23582 MiB free
9
+ llama_model_loader: loaded meta data with 48 key-value pairs and 402 tensors from /mnt/world8/AI/Models/granite-4.0-h-350m-unsloth/GGUF/MXFP4/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_q6_k-router_gate_emb_f16.gguf (version GGUF V3 (latest))
10
+ llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
11
+ llama_model_loader: - kv 0: general.architecture str = granitehybrid
12
+ llama_model_loader: - kv 1: general.type str = model
13
+ llama_model_loader: - kv 2: general.name str = Granite 4.0 H 350m Unsloth
14
+ llama_model_loader: - kv 3: general.finetune str = unsloth
15
+ llama_model_loader: - kv 4: general.basename str = granite-4.0-h
16
+ llama_model_loader: - kv 5: general.size_label str = 350M
17
+ llama_model_loader: - kv 6: general.license str = apache-2.0
18
+ llama_model_loader: - kv 7: general.base_model.count u32 = 1
19
+ llama_model_loader: - kv 8: general.base_model.0.name str = Granite 4.0 H 350m
20
+ llama_model_loader: - kv 9: general.base_model.0.organization str = Ibm Granite
21
+ llama_model_loader: - kv 10: general.base_model.0.repo_url str = https://huggingface.co/ibm-granite/gr...
22
+ llama_model_loader: - kv 11: general.tags arr[str,3] = ["language", "unsloth", "granite-4.0"]
23
+ llama_model_loader: - kv 12: granitehybrid.block_count u32 = 32
24
+ llama_model_loader: - kv 13: granitehybrid.context_length u32 = 1048576
25
+ llama_model_loader: - kv 14: granitehybrid.embedding_length u32 = 768
26
+ llama_model_loader: - kv 15: granitehybrid.feed_forward_length u32 = 2048
27
+ llama_model_loader: - kv 16: granitehybrid.attention.head_count u32 = 12
28
+ llama_model_loader: - kv 17: granitehybrid.attention.head_count_kv arr[i32,32] = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, ...
29
+ llama_model_loader: - kv 18: granitehybrid.rope.freq_base f32 = 10000.000000
30
+ llama_model_loader: - kv 19: granitehybrid.attention.layer_norm_rms_epsilon f32 = 0.000010
31
+ llama_model_loader: - kv 20: granitehybrid.expert_count u32 = 0
32
+ llama_model_loader: - kv 21: granitehybrid.expert_used_count u32 = 0
33
+ llama_model_loader: - kv 22: granitehybrid.vocab_size u32 = 100352
34
+ llama_model_loader: - kv 23: granitehybrid.rope.dimension_count u32 = 64
35
+ llama_model_loader: - kv 24: granitehybrid.attention.scale f32 = 0.015625
36
+ llama_model_loader: - kv 25: granitehybrid.embedding_scale f32 = 12.000000
37
+ llama_model_loader: - kv 26: granitehybrid.residual_scale f32 = 0.246000
38
+ llama_model_loader: - kv 27: granitehybrid.logit_scale f32 = 3.000000
39
+ llama_model_loader: - kv 28: granitehybrid.expert_shared_feed_forward_length u32 = 2048
40
+ llama_model_loader: - kv 29: granitehybrid.ssm.conv_kernel u32 = 4
41
+ llama_model_loader: - kv 30: granitehybrid.ssm.state_size u32 = 128
42
+ llama_model_loader: - kv 31: granitehybrid.ssm.group_count u32 = 1
43
+ llama_model_loader: - kv 32: granitehybrid.ssm.inner_size u32 = 1536
44
+ llama_model_loader: - kv 33: granitehybrid.ssm.time_step_rank u32 = 48
45
+ llama_model_loader: - kv 34: granitehybrid.rope.scaling.finetuned bool = false
46
+ llama_model_loader: - kv 35: tokenizer.ggml.model str = gpt2
47
+ llama_model_loader: - kv 36: tokenizer.ggml.pre str = dbrx
48
+ llama_model_loader: - kv 37: tokenizer.ggml.tokens arr[str,100352] = ["!", "\"", "#", "$", "%", "&", "'", ...
49
+ llama_model_loader: - kv 38: tokenizer.ggml.token_type arr[i32,100352] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
50
+ llama_model_loader: - kv 39: tokenizer.ggml.merges arr[str,100000] = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
51
+ llama_model_loader: - kv 40: tokenizer.ggml.bos_token_id u32 = 100257
52
+ llama_model_loader: - kv 41: tokenizer.ggml.eos_token_id u32 = 100257
53
+ llama_model_loader: - kv 42: tokenizer.ggml.unknown_token_id u32 = 100269
54
+ llama_model_loader: - kv 43: tokenizer.ggml.padding_token_id u32 = 100256
55
+ llama_model_loader: - kv 44: tokenizer.ggml.add_bos_token bool = false
56
+ llama_model_loader: - kv 45: tokenizer.chat_template str = {%- set tools_system_message_prefix =...
57
+ llama_model_loader: - kv 46: general.quantization_version u32 = 2
58
+ llama_model_loader: - kv 47: general.file_type u32 = 38
59
+ llama_model_loader: - type f32: 233 tensors
60
+ llama_model_loader: - type f16: 33 tensors
61
+ llama_model_loader: - type q8_0: 132 tensors
62
+ llama_model_loader: - type q6_K: 4 tensors
63
+ print_info: file format = GGUF V3 (latest)
64
+ print_info: file type = MXFP4 MoE
65
+ print_info: file size = 459.19 MiB (11.32 BPW)
66
+ load: printing all EOG tokens:
67
+ load: - 100257 ('<|end_of_text|>')
68
+ load: - 100261 ('<|fim_pad|>')
69
+ load: special tokens cache size = 96
70
+ load: token to piece cache size = 0.6152 MB
71
+ print_info: arch = granitehybrid
72
+ print_info: vocab_only = 0
73
+ print_info: n_ctx_train = 1048576
74
+ print_info: n_embd = 768
75
+ print_info: n_embd_inp = 768
76
+ print_info: n_layer = 32
77
+ print_info: n_head = 12
78
+ print_info: n_head_kv = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0]
79
+ print_info: n_rot = 64
80
+ print_info: n_swa = 0
81
+ print_info: is_swa_any = 0
82
+ print_info: n_embd_head_k = 64
83
+ print_info: n_embd_head_v = 64
84
+ print_info: n_gqa = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 3, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0]
85
+ print_info: n_embd_k_gqa = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 256, 0, 0, 0, 256, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 0, 0]
86
+ print_info: n_embd_v_gqa = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 256, 0, 0, 0, 256, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 0, 0]
87
+ print_info: f_norm_eps = 0.0e+00
88
+ print_info: f_norm_rms_eps = 1.0e-05
89
+ print_info: f_clamp_kqv = 0.0e+00
90
+ print_info: f_max_alibi_bias = 0.0e+00
91
+ print_info: f_logit_scale = 3.0e+00
92
+ print_info: f_attn_scale = 1.6e-02
93
+ print_info: n_ff = 2048
94
+ print_info: n_expert = 0
95
+ print_info: n_expert_used = 0
96
+ print_info: n_expert_groups = 0
97
+ print_info: n_group_used = 0
98
+ print_info: causal attn = 1
99
+ print_info: pooling type = 0
100
+ print_info: rope type = 0
101
+ print_info: rope scaling = linear
102
+ print_info: freq_base_train = 10000.0
103
+ print_info: freq_scale_train = 1
104
+ print_info: n_ctx_orig_yarn = 1048576
105
+ print_info: rope_finetuned = unknown
106
+ print_info: ssm_d_conv = 4
107
+ print_info: ssm_d_inner = 1536
108
+ print_info: ssm_d_state = 128
109
+ print_info: ssm_dt_rank = 48
110
+ print_info: ssm_n_group = 1
111
+ print_info: ssm_dt_b_c_rms = 0
112
+ print_info: model type = 350M
113
+ print_info: model params = 340.33 M
114
+ print_info: general.name = Granite 4.0 H 350m Unsloth
115
+ print_info: f_embedding_scale = 12.000000
116
+ print_info: f_residual_scale = 0.246000
117
+ print_info: f_attention_scale = 0.015625
118
+ print_info: n_ff_shexp = 2048
119
+ print_info: vocab type = BPE
120
+ print_info: n_vocab = 100352
121
+ print_info: n_merges = 100000
122
+ print_info: BOS token = 100257 '<|end_of_text|>'
123
+ print_info: EOS token = 100257 '<|end_of_text|>'
124
+ print_info: EOT token = 100257 '<|end_of_text|>'
125
+ print_info: UNK token = 100269 '<|unk|>'
126
+ print_info: PAD token = 100256 '<|pad|>'
127
+ print_info: LF token = 198 'Ċ'
128
+ print_info: FIM PRE token = 100258 '<|fim_prefix|>'
129
+ print_info: FIM SUF token = 100260 '<|fim_suffix|>'
130
+ print_info: FIM MID token = 100259 '<|fim_middle|>'
131
+ print_info: FIM PAD token = 100261 '<|fim_pad|>'
132
+ print_info: EOG token = 100257 '<|end_of_text|>'
133
+ print_info: EOG token = 100261 '<|fim_pad|>'
134
+ print_info: max token length = 256
135
+ load_tensors: loading model tensors, this can take a while... (mmap = true)
136
+ load_tensors: offloading 20 repeating layers to GPU
137
+ load_tensors: offloaded 20/33 layers to GPU
138
+ load_tensors: CPU_Mapped model buffer size = 265.27 MiB
139
+ load_tensors: CUDA0 model buffer size = 95.76 MiB
140
+ load_tensors: CUDA1 model buffer size = 98.17 MiB
141
+ .....................................................................
142
+ llama_context: constructing llama_context
143
+ llama_context: n_seq_max = 1
144
+ llama_context: n_ctx = 2048
145
+ llama_context: n_ctx_seq = 2048
146
+ llama_context: n_batch = 2048
147
+ llama_context: n_ubatch = 512
148
+ llama_context: causal_attn = 1
149
+ llama_context: flash_attn = auto
150
+ llama_context: kv_unified = false
151
+ llama_context: freq_base = 10000.0
152
+ llama_context: freq_scale = 1
153
+ llama_context: n_ctx_seq (2048) < n_ctx_train (1048576) -- the full capacity of the model will not be utilized
154
+ llama_context: CPU output buffer size = 0.38 MiB
155
+ llama_kv_cache: CPU KV buffer size = 2.00 MiB
156
+ llama_kv_cache: CUDA0 KV buffer size = 4.00 MiB
157
+ llama_kv_cache: CUDA1 KV buffer size = 2.00 MiB
158
+ llama_kv_cache: size = 8.00 MiB ( 2048 cells, 4 layers, 1/1 seqs), K (f16): 4.00 MiB, V (f16): 4.00 MiB
159
+ llama_memory_recurrent: CPU RS buffer size = 8.48 MiB
160
+ llama_memory_recurrent: CUDA0 RS buffer size = 6.16 MiB
161
+ llama_memory_recurrent: CUDA1 RS buffer size = 6.93 MiB
162
+ llama_memory_recurrent: size = 21.57 MiB ( 1 cells, 32 layers, 1 seqs), R (f32): 0.57 MiB, S (f32): 21.00 MiB
163
+ llama_context: Flash Attention was auto, set to enabled
164
+ llama_context: CUDA0 compute buffer size = 354.10 MiB
165
+ llama_context: CUDA1 compute buffer size = 22.39 MiB
166
+ llama_context: CUDA_Host compute buffer size = 18.34 MiB
167
+ llama_context: graph nodes = 1815
168
+ llama_context: graph splits = 182 (with bs=512), 41 (with bs=1)
169
+ common_init_from_params: added <|end_of_text|> logit bias = -inf
170
+ common_init_from_params: added <|fim_pad|> logit bias = -inf
171
+ common_init_from_params: setting dry_penalty_last_n to ctx_size = 2048
172
+ common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
173
+
174
+ system_info: n_threads = 16 (n_threads_batch = 16) / 32 | CUDA : ARCHS = 860 | USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | BMI2 = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | AVX512_BF16 = 1 | LLAMAFILE = 1 | OPENMP = 1 | REPACK = 1 |
175
+ perplexity: tokenizing the input ..
176
+ perplexity: tokenization took 37.624 ms
177
+ perplexity: calculating perplexity over 14 chunks, n_ctx=2048, batch_size=2048, n_seq=1
178
+ perplexity: 0.53 seconds per pass - ETA 0.12 minutes
179
+ [1]18.5143,[2]21.5620,[3]22.2454,[4]20.1986,[5]20.1917,[6]18.0056,[7]17.6202,[8]17.5785,[9]18.1005,[10]18.0823,[11]17.9222,[12]18.0450,[13]18.1147,[14]18.1547,
180
+ Final estimate: PPL = 18.1547 +/- 0.46668
181
+
182
+ llama_perf_context_print: load time = 226.12 ms
183
+ llama_perf_context_print: prompt eval time = 5160.53 ms / 28672 tokens ( 0.18 ms per token, 5556.02 tokens per second)
184
+ llama_perf_context_print: eval time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
185
+ llama_perf_context_print: total time = 5430.22 ms / 28673 tokens
186
+ llama_perf_context_print: graphs reused = 0
187
+ llama_memory_breakdown_print: | memory breakdown [MiB] | total free self model context compute unaccounted |
188
+ llama_memory_breakdown_print: | - CUDA0 (RTX 3090) | 24107 = 20473 + ( 460 = 95 + 10 + 354) + 3173 |
189
+ llama_memory_breakdown_print: | - CUDA1 (RTX 3090) | 24124 = 23372 + ( 129 = 98 + 8 + 22) + 622 |
190
+ llama_memory_breakdown_print: | - Host | 294 = 265 + 10 + 18 |
Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_q6_k-router_gate_emb_f16/perplexity_math.txt ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
2
+ ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
3
+ ggml_cuda_init: found 2 CUDA devices:
4
+ Device 0: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
5
+ Device 1: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
6
+ build: 7040 (92bb442ad) with cc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 for x86_64-linux-gnu
7
+ llama_model_load_from_file_impl: using device CUDA0 (NVIDIA GeForce RTX 3090) (0000:01:00.0) - 21079 MiB free
8
+ llama_model_load_from_file_impl: using device CUDA1 (NVIDIA GeForce RTX 3090) (0000:03:00.0) - 23582 MiB free
9
+ llama_model_loader: loaded meta data with 48 key-value pairs and 402 tensors from /mnt/world8/AI/Models/granite-4.0-h-350m-unsloth/GGUF/MXFP4/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_q6_k-router_gate_emb_f16.gguf (version GGUF V3 (latest))
10
+ llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
11
+ llama_model_loader: - kv 0: general.architecture str = granitehybrid
12
+ llama_model_loader: - kv 1: general.type str = model
13
+ llama_model_loader: - kv 2: general.name str = Granite 4.0 H 350m Unsloth
14
+ llama_model_loader: - kv 3: general.finetune str = unsloth
15
+ llama_model_loader: - kv 4: general.basename str = granite-4.0-h
16
+ llama_model_loader: - kv 5: general.size_label str = 350M
17
+ llama_model_loader: - kv 6: general.license str = apache-2.0
18
+ llama_model_loader: - kv 7: general.base_model.count u32 = 1
19
+ llama_model_loader: - kv 8: general.base_model.0.name str = Granite 4.0 H 350m
20
+ llama_model_loader: - kv 9: general.base_model.0.organization str = Ibm Granite
21
+ llama_model_loader: - kv 10: general.base_model.0.repo_url str = https://huggingface.co/ibm-granite/gr...
22
+ llama_model_loader: - kv 11: general.tags arr[str,3] = ["language", "unsloth", "granite-4.0"]
23
+ llama_model_loader: - kv 12: granitehybrid.block_count u32 = 32
24
+ llama_model_loader: - kv 13: granitehybrid.context_length u32 = 1048576
25
+ llama_model_loader: - kv 14: granitehybrid.embedding_length u32 = 768
26
+ llama_model_loader: - kv 15: granitehybrid.feed_forward_length u32 = 2048
27
+ llama_model_loader: - kv 16: granitehybrid.attention.head_count u32 = 12
28
+ llama_model_loader: - kv 17: granitehybrid.attention.head_count_kv arr[i32,32] = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, ...
29
+ llama_model_loader: - kv 18: granitehybrid.rope.freq_base f32 = 10000.000000
30
+ llama_model_loader: - kv 19: granitehybrid.attention.layer_norm_rms_epsilon f32 = 0.000010
31
+ llama_model_loader: - kv 20: granitehybrid.expert_count u32 = 0
32
+ llama_model_loader: - kv 21: granitehybrid.expert_used_count u32 = 0
33
+ llama_model_loader: - kv 22: granitehybrid.vocab_size u32 = 100352
34
+ llama_model_loader: - kv 23: granitehybrid.rope.dimension_count u32 = 64
35
+ llama_model_loader: - kv 24: granitehybrid.attention.scale f32 = 0.015625
36
+ llama_model_loader: - kv 25: granitehybrid.embedding_scale f32 = 12.000000
37
+ llama_model_loader: - kv 26: granitehybrid.residual_scale f32 = 0.246000
38
+ llama_model_loader: - kv 27: granitehybrid.logit_scale f32 = 3.000000
39
+ llama_model_loader: - kv 28: granitehybrid.expert_shared_feed_forward_length u32 = 2048
40
+ llama_model_loader: - kv 29: granitehybrid.ssm.conv_kernel u32 = 4
41
+ llama_model_loader: - kv 30: granitehybrid.ssm.state_size u32 = 128
42
+ llama_model_loader: - kv 31: granitehybrid.ssm.group_count u32 = 1
43
+ llama_model_loader: - kv 32: granitehybrid.ssm.inner_size u32 = 1536
44
+ llama_model_loader: - kv 33: granitehybrid.ssm.time_step_rank u32 = 48
45
+ llama_model_loader: - kv 34: granitehybrid.rope.scaling.finetuned bool = false
46
+ llama_model_loader: - kv 35: tokenizer.ggml.model str = gpt2
47
+ llama_model_loader: - kv 36: tokenizer.ggml.pre str = dbrx
48
+ llama_model_loader: - kv 37: tokenizer.ggml.tokens arr[str,100352] = ["!", "\"", "#", "$", "%", "&", "'", ...
49
+ llama_model_loader: - kv 38: tokenizer.ggml.token_type arr[i32,100352] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
50
+ llama_model_loader: - kv 39: tokenizer.ggml.merges arr[str,100000] = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
51
+ llama_model_loader: - kv 40: tokenizer.ggml.bos_token_id u32 = 100257
52
+ llama_model_loader: - kv 41: tokenizer.ggml.eos_token_id u32 = 100257
53
+ llama_model_loader: - kv 42: tokenizer.ggml.unknown_token_id u32 = 100269
54
+ llama_model_loader: - kv 43: tokenizer.ggml.padding_token_id u32 = 100256
55
+ llama_model_loader: - kv 44: tokenizer.ggml.add_bos_token bool = false
56
+ llama_model_loader: - kv 45: tokenizer.chat_template str = {%- set tools_system_message_prefix =...
57
+ llama_model_loader: - kv 46: general.quantization_version u32 = 2
58
+ llama_model_loader: - kv 47: general.file_type u32 = 38
59
+ llama_model_loader: - type f32: 233 tensors
60
+ llama_model_loader: - type f16: 33 tensors
61
+ llama_model_loader: - type q8_0: 132 tensors
62
+ llama_model_loader: - type q6_K: 4 tensors
63
+ print_info: file format = GGUF V3 (latest)
64
+ print_info: file type = MXFP4 MoE
65
+ print_info: file size = 459.19 MiB (11.32 BPW)
66
+ load: printing all EOG tokens:
67
+ load: - 100257 ('<|end_of_text|>')
68
+ load: - 100261 ('<|fim_pad|>')
69
+ load: special tokens cache size = 96
70
+ load: token to piece cache size = 0.6152 MB
71
+ print_info: arch = granitehybrid
72
+ print_info: vocab_only = 0
73
+ print_info: n_ctx_train = 1048576
74
+ print_info: n_embd = 768
75
+ print_info: n_embd_inp = 768
76
+ print_info: n_layer = 32
77
+ print_info: n_head = 12
78
+ print_info: n_head_kv = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0]
79
+ print_info: n_rot = 64
80
+ print_info: n_swa = 0
81
+ print_info: is_swa_any = 0
82
+ print_info: n_embd_head_k = 64
83
+ print_info: n_embd_head_v = 64
84
+ print_info: n_gqa = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 3, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0]
85
+ print_info: n_embd_k_gqa = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 256, 0, 0, 0, 256, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 0, 0]
86
+ print_info: n_embd_v_gqa = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 256, 0, 0, 0, 256, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 0, 0]
87
+ print_info: f_norm_eps = 0.0e+00
88
+ print_info: f_norm_rms_eps = 1.0e-05
89
+ print_info: f_clamp_kqv = 0.0e+00
90
+ print_info: f_max_alibi_bias = 0.0e+00
91
+ print_info: f_logit_scale = 3.0e+00
92
+ print_info: f_attn_scale = 1.6e-02
93
+ print_info: n_ff = 2048
94
+ print_info: n_expert = 0
95
+ print_info: n_expert_used = 0
96
+ print_info: n_expert_groups = 0
97
+ print_info: n_group_used = 0
98
+ print_info: causal attn = 1
99
+ print_info: pooling type = 0
100
+ print_info: rope type = 0
101
+ print_info: rope scaling = linear
102
+ print_info: freq_base_train = 10000.0
103
+ print_info: freq_scale_train = 1
104
+ print_info: n_ctx_orig_yarn = 1048576
105
+ print_info: rope_finetuned = unknown
106
+ print_info: ssm_d_conv = 4
107
+ print_info: ssm_d_inner = 1536
108
+ print_info: ssm_d_state = 128
109
+ print_info: ssm_dt_rank = 48
110
+ print_info: ssm_n_group = 1
111
+ print_info: ssm_dt_b_c_rms = 0
112
+ print_info: model type = 350M
113
+ print_info: model params = 340.33 M
114
+ print_info: general.name = Granite 4.0 H 350m Unsloth
115
+ print_info: f_embedding_scale = 12.000000
116
+ print_info: f_residual_scale = 0.246000
117
+ print_info: f_attention_scale = 0.015625
118
+ print_info: n_ff_shexp = 2048
119
+ print_info: vocab type = BPE
120
+ print_info: n_vocab = 100352
121
+ print_info: n_merges = 100000
122
+ print_info: BOS token = 100257 '<|end_of_text|>'
123
+ print_info: EOS token = 100257 '<|end_of_text|>'
124
+ print_info: EOT token = 100257 '<|end_of_text|>'
125
+ print_info: UNK token = 100269 '<|unk|>'
126
+ print_info: PAD token = 100256 '<|pad|>'
127
+ print_info: LF token = 198 'Ċ'
128
+ print_info: FIM PRE token = 100258 '<|fim_prefix|>'
129
+ print_info: FIM SUF token = 100260 '<|fim_suffix|>'
130
+ print_info: FIM MID token = 100259 '<|fim_middle|>'
131
+ print_info: FIM PAD token = 100261 '<|fim_pad|>'
132
+ print_info: EOG token = 100257 '<|end_of_text|>'
133
+ print_info: EOG token = 100261 '<|fim_pad|>'
134
+ print_info: max token length = 256
135
+ load_tensors: loading model tensors, this can take a while... (mmap = true)
136
+ load_tensors: offloading 20 repeating layers to GPU
137
+ load_tensors: offloaded 20/33 layers to GPU
138
+ load_tensors: CPU_Mapped model buffer size = 265.27 MiB
139
+ load_tensors: CUDA0 model buffer size = 95.76 MiB
140
+ load_tensors: CUDA1 model buffer size = 98.17 MiB
141
+ .....................................................................
142
+ llama_context: constructing llama_context
143
+ llama_context: n_seq_max = 1
144
+ llama_context: n_ctx = 2048
145
+ llama_context: n_ctx_seq = 2048
146
+ llama_context: n_batch = 2048
147
+ llama_context: n_ubatch = 512
148
+ llama_context: causal_attn = 1
149
+ llama_context: flash_attn = auto
150
+ llama_context: kv_unified = false
151
+ llama_context: freq_base = 10000.0
152
+ llama_context: freq_scale = 1
153
+ llama_context: n_ctx_seq (2048) < n_ctx_train (1048576) -- the full capacity of the model will not be utilized
154
+ llama_context: CPU output buffer size = 0.38 MiB
155
+ llama_kv_cache: CPU KV buffer size = 2.00 MiB
156
+ llama_kv_cache: CUDA0 KV buffer size = 4.00 MiB
157
+ llama_kv_cache: CUDA1 KV buffer size = 2.00 MiB
158
+ llama_kv_cache: size = 8.00 MiB ( 2048 cells, 4 layers, 1/1 seqs), K (f16): 4.00 MiB, V (f16): 4.00 MiB
159
+ llama_memory_recurrent: CPU RS buffer size = 8.48 MiB
160
+ llama_memory_recurrent: CUDA0 RS buffer size = 6.16 MiB
161
+ llama_memory_recurrent: CUDA1 RS buffer size = 6.93 MiB
162
+ llama_memory_recurrent: size = 21.57 MiB ( 1 cells, 32 layers, 1 seqs), R (f32): 0.57 MiB, S (f32): 21.00 MiB
163
+ llama_context: Flash Attention was auto, set to enabled
164
+ llama_context: CUDA0 compute buffer size = 354.10 MiB
165
+ llama_context: CUDA1 compute buffer size = 22.39 MiB
166
+ llama_context: CUDA_Host compute buffer size = 18.34 MiB
167
+ llama_context: graph nodes = 1815
168
+ llama_context: graph splits = 182 (with bs=512), 41 (with bs=1)
169
+ common_init_from_params: added <|end_of_text|> logit bias = -inf
170
+ common_init_from_params: added <|fim_pad|> logit bias = -inf
171
+ common_init_from_params: setting dry_penalty_last_n to ctx_size = 2048
172
+ common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
173
+
174
+ system_info: n_threads = 16 (n_threads_batch = 16) / 32 | CUDA : ARCHS = 860 | USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | BMI2 = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | AVX512_BF16 = 1 | LLAMAFILE = 1 | OPENMP = 1 | REPACK = 1 |
175
+ perplexity: tokenizing the input ..
176
+ perplexity: tokenization took 38.92 ms
177
+ perplexity: calculating perplexity over 15 chunks, n_ctx=2048, batch_size=2048, n_seq=1
178
+ perplexity: 0.63 seconds per pass - ETA 0.15 minutes
179
+ [1]8.6997,[2]9.9092,[3]9.4740,[4]9.8120,[5]9.9534,[6]10.0280,[7]10.1927,[8]9.8904,[9]9.9473,[10]9.9599,[11]10.1948,[12]10.2769,[13]10.3983,[14]10.3724,[15]10.2742,
180
+ Final estimate: PPL = 10.2742 +/- 0.23108
181
+
182
+ llama_perf_context_print: load time = 226.80 ms
183
+ llama_perf_context_print: prompt eval time = 5676.92 ms / 30720 tokens ( 0.18 ms per token, 5411.38 tokens per second)
184
+ llama_perf_context_print: eval time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
185
+ llama_perf_context_print: total time = 5959.27 ms / 30721 tokens
186
+ llama_perf_context_print: graphs reused = 0
187
+ llama_memory_breakdown_print: | memory breakdown [MiB] | total free self model context compute unaccounted |
188
+ llama_memory_breakdown_print: | - CUDA0 (RTX 3090) | 24107 = 20596 + ( 460 = 95 + 10 + 354) + 3050 |
189
+ llama_memory_breakdown_print: | - CUDA1 (RTX 3090) | 24124 = 23372 + ( 129 = 98 + 8 + 22) + 622 |
190
+ llama_memory_breakdown_print: | - Host | 294 = 265 + 10 + 18 |
Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_q6_k-router_gate_emb_f16/ppl_corpus_code.txt ADDED
The diff for this file is too large to render. See raw diff
 
Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_q6_k-router_gate_emb_f16/ppl_corpus_general.txt ADDED
The diff for this file is too large to render. See raw diff
 
Benchmarks/granite-4.0-h-350m-unsloth-MXFP4_MOE-output_q6_k-router_gate_emb_f16/ppl_corpus_math.txt ADDED
The diff for this file is too large to render. See raw diff
 
README.md CHANGED
@@ -21,6 +21,14 @@ base_model:
21
 
22
  ## **Use The Following Models!**
23
 
 
 
 
 
 
 
 
 
24
  Stats compared against the standard Q8_0 (precision loss still compared to F16)
25
 
26
  * **MXFP4_MOE-output_q6_K-router_gate_emb_q6_K**
@@ -42,11 +50,23 @@ Unlike pure MXFP4, which heavily degrades dense models. This hybrid method selec
42
 
43
  # The Magic Model
44
 
45
- This model achieved:
 
 
46
 
47
- > **File size reduction compared to the Q8_0**
48
- >
49
- > **Better precision loss scores than the pure Q8_0**
 
 
 
 
 
 
 
 
 
 
50
 
51
 
52
  #### MXFP4_MOE-output_q6_K-router_gate_emb_q6_K
@@ -119,21 +139,34 @@ All models were tested with a unified automated harness using `llama.cpp` tools.
119
 
120
  Comparing to F16.
121
 
122
- | model_name | size_reduction | tps_change |
123
- | ------------------------------------------- | -------------- | ---------- |
124
- | MXFP4_MOE-Q8 | 46.87% | 61.73% |
125
- | Q8_0 | 46.87% | 66.72% |
126
- | MXFP4_MOE-F16 | 40.46% | 41.91% |
127
- | MXFP4_MOE-output_q6_K-router_gate_emb_q6_K | 51.57% | 84.76% |
128
- | MXFP4_MOE-Q6_K | 48.52% | 66.55% |
129
- | Q6_K | 58.98% | 97.63% |
130
- | Q5_K_M | 64.6% | 90.69% |
131
- | MXFP4_MOE-output_mxfp4-router_gate_emb_q6_K | 53.21% | 82.98% |
132
- | MXFP4_MOE-output_mxfp4-embd_q6_K | 50.19% | 74.01% |
133
- | MXFP4_MOE-output_mxfp4-embd_q8 | 49.92% | 64.94% |
134
- | MXFP4_MOE-output_mxfp4-router_gate_emb_q8 | 49.92% | 74.09% |
135
- | MXFP4_MOE | 73.42% | 77.31% |
136
- | Q4_K_M | 69.9% | 132.18% |
 
 
 
 
 
 
 
 
 
 
 
 
 
137
 
138
  * All percentages compared against the selected family F16 baseline.
139
 
@@ -141,22 +174,35 @@ Comparing to F16.
141
 
142
  ### Table - File Size + TPS + Avg Precision Loss
143
 
144
- | model_name | file_size_gb | bench_tps | avg_prec_loss |
145
- | ------------------------------------------- | ------------ | --------- | ------------- |
146
- | F16 | 67.35 | 11.81 | 0 |
147
- | MXFP4_MOE-Q8 | 35.78 | 19.1 | 0.0171 |
148
- | Q8_0 | 35.78 | 19.69 | 0.0171 |
149
- | MXFP4_MOE-F16 | 40.1 | 16.76 | 0.0215 |
150
- | MXFP4_MOE-output_q6_K-router_gate_emb_q6_K | 32.62 | 21.82 | 0.053 |
151
- | MXFP4_MOE-Q6_K | 34.67 | 19.67 | 0.0566 |
152
- | Q6_K | 27.63 | 23.34 | 0.1651 |
153
- | Q5_K_M | 23.84 | 22.52 | 0.2512 |
154
- | MXFP4_MOE-output_mxfp4-router_gate_emb_q6_K | 31.51 | 21.61 | 1.0377 |
155
- | MXFP4_MOE-output_mxfp4-embd_q6_K | 33.55 | 20.55 | 1.0464 |
156
- | MXFP4_MOE-output_mxfp4-embd_q8 | 33.73 | 19.48 | 1.0473 |
157
- | MXFP4_MOE-output_mxfp4-router_gate_emb_q8 | 33.73 | 20.56 | 1.0473 |
158
- | MXFP4_MOE | 17.9 | 20.94 | 2.694 |
159
- | Q4_K_M | 20.27 | 27.42 | 2.8138 |
 
 
 
 
 
 
 
 
 
 
 
 
 
160
 
161
  * Bench NGL was 35
162
  * Utilized CUDA
@@ -167,20 +213,33 @@ Comparing to F16.
167
 
168
  | model_name | gen | gen_er | code | code_er | math | math_er |
169
  | ---------- | ---- | ------- | ----- | -------- | ------ | -------- |
170
- | F16 | 6.8905 | 0.1681 | 1.4129 | 0.0095 | 5.4475 | 0.121 |
171
- | MXFP4_MOE-Q8 | 6.8866 | 0.1679 | 1.413 | 0.0095 | 5.4474 | 0.121 |
172
- | Q8_0 | 6.8866 | 0.1679 | 1.413 | 0.0095 | 5.4474 | 0.121 |
173
- | MXFP4_MOE-F16 | 6.8893 | 0.1679 | 1.4132 | 0.0095 | 5.4508 | 0.1211 |
174
- | MXFP4_MOE-output_q6_K-router_gate_emb_q6_K | 6.8932 | 0.1682 | 1.4127 | 0.0095 | 5.4548 | 0.1213 |
175
- | MXFP4_MOE-Q6_K | 6.8946 | 0.1682 | 1.4128 | 0.0095 | 5.4539 | 0.1213 |
176
- | Q6_K | 6.9012 | 0.1685 | 1.4135 | 0.0095 | 5.4637 | 0.1218 |
177
- | Q5_K_M | 6.9071 | 0.1685 | 1.4168 | 0.0096 | 5.4604 | 0.1212 |
178
- | MXFP4_MOE-output_mxfp4-router_gate_emb_q6_K | 6.9647 | 0.169 | 1.4196 | 0.0095 | 5.5326 | 0.1227 |
179
- | MXFP4_MOE-output_mxfp4-embd_q6_K | 6.9649 | 0.1691 | 1.4199 | 0.0095 | 5.5327 | 0.1226 |
180
- | MXFP4_MOE-output_mxfp4-embd_q8 | 6.9638 | 0.1691 | 1.4198 | 0.0095 | 5.5341 | 0.1227 |
181
- | MXFP4_MOE-output_mxfp4-router_gate_emb_q8 | 6.9638 | 0.1691 | 1.4198 | 0.0095 | 5.5341 | 0.1227 |
182
- | MXFP4_MOE | 7.1007 | 0.1728 | 1.4351 | 0.0097 | 5.636 | 0.1239 |
183
- | Q4_K_M | 7.0964 | 0.1759 | 1.4235 | 0.0098 | 5.7037 | 0.1303 |
 
 
 
 
 
 
 
 
 
 
 
 
 
184
 
185
  * gen = ppl_general
186
  * gen_er = ppl_general_error
@@ -196,20 +255,33 @@ Comparing to F16.
196
  | model_name | loss_general | loss_code | loss_math |
197
  | ---------- | ------------ | ---------- | ---------- |
198
  | F16 | 0 | 0 | 0 |
199
- | MXFP4_MOE-Q8 | -0.0566 | 0.0071 | -0.0018 |
200
- | Q8_0 | -0.0566 | 0.0071 | -0.0018 |
201
- | MXFP4_MOE-F16 | -0.0174 | 0.0212 | 0.0606 |
202
- | MXFP4_MOE-output_q6_K-router_gate_emb_q6_K | 0.0392 | -0.0142 | 0.134 |
203
- | MXFP4_MOE-Q6_K | 0.0595 | -0.0071 | 0.1175 |
204
- | Q6_K | 0.1553 | 0.0425 | 0.2974 |
205
- | Q5_K_M | 0.2409 | 0.276 | 0.2368 |
206
- | MXFP4_MOE-output_mxfp4-router_gate_emb_q6_K | 1.0768 | 0.4742 | 1.5622 |
207
- | MXFP4_MOE-output_mxfp4-embd_q6_K | 1.0797 | 0.4954 | 1.564 |
208
- | MXFP4_MOE-output_mxfp4-embd_q8 | 1.0638 | 0.4884 | 1.5897 |
209
- | MXFP4_MOE-output_mxfp4-router_gate_emb_q8 | 1.0638 | 0.4884 | 1.5897 |
210
- | MXFP4_MOE | 3.0506 | 1.5712 | 3.4603 |
211
- | Q4_K_M | 2.9882 | 0.7502 | 4.7031 |
 
 
 
 
 
 
 
 
 
 
 
 
 
212
 
213
  * loss_general = precision_loss_general_pct
214
  * loss_code = precision_loss_code_pct
215
- * loss_math = precision_loss_math_pct
 
21
 
22
  ## **Use The Following Models!**
23
 
24
+ * **MXFP4_MOE-output_q6_k-router_gate_emb_f16** (This is the special version)
25
+
26
+ 29.7% smaller than F16 • 1652.1 TPS • 0.04959% precision loss compared to F16
27
+
28
+ Why is this version special? Because precision loss on tiny models like this affect the model to the extreme. To achieve ~30% smaller size at this small of a precision loss is the exact trade off desired when needing to minimize the models size. This is the primary variant suggested for this model.
29
+
30
+ ---
31
+
32
  Stats compared against the standard Q8_0 (precision loss still compared to F16)
33
 
34
  * **MXFP4_MOE-output_q6_K-router_gate_emb_q6_K**
 
50
 
51
  # The Magic Model
52
 
53
+ #### MXFP4_MOE-output_q6_k-router_gate_emb_f16
54
+
55
+ > **(29.7% smaller than F16 • 1652.1 TPS • 0.04959% precision loss compared to F16)**
56
 
57
+ This... this is hot.. if I do say so myself.
58
+
59
+ The following was the conversion script:
60
+ ```bash
61
+ llama-quantize \
62
+ --tensor-type token_embd.weight=F16 \
63
+ --tensor-type output.weight=Q6_K \
64
+ --tensor-type 'router.*'=F16 \
65
+ --tensor-type 'gate.*'=F16 \
66
+ "Path_To_F16_GGUF.gguf" \
67
+ "Path_To_GGUF.gguf" \
68
+ mxfp4_moe
69
+ ```
70
 
71
 
72
  #### MXFP4_MOE-output_q6_K-router_gate_emb_q6_K
 
139
 
140
  Comparing to F16.
141
 
142
+ | model_name | size_reduction | tps_change |
143
+ | ---------- | -------------- | ---------- |
144
+ | MXFP4_MOE-output_q6_k-router_gate_emb_f16 | 29.69% | -11.37% |
145
+ | MXFP4_MOE-output_f16-router_gate_emb_f16 | 29.69% | -13.16% |
146
+ | MXFP4_MOE-output_q6_k-embd_f16 | 35.94% | -15.36% |
147
+ | MXFP4_MOE-F16 | 35.94% | -15.21% |
148
+ | MXFP4_MOE-output_f16-router_gate_emb_q6_k | 51.56% | -8.38% |
149
+ | MXFP4_MOE-output_mxfp4-router_gate_emb_f16 | 51.56% | -11.52% |
150
+ | MXFP4_MOE-output_q6_K-router_gate_emb_q6_K | 51.56% | -7.63% |
151
+ | MXFP4_MOE-Q6_K | 50% | -6.55% |
152
+ | MXFP4_MOE-Q8 | 46.88% | -6.77% |
153
+ | Q8_0 | 46.88% | -7.07% |
154
+ | Q6_K | 59.38% | -9.24% |
155
+ | MXFP4_MOE-output_mxfp4-embd_f16 | 35.94% | -11.02% |
156
+ | MXFP4_MOE-output_mxfp4-router_gate_emb_q6_K | 51.56% | -7.64% |
157
+ | MXFP4_MOE-output_mxfp4-embd_q6_K | 50% | -7.01% |
158
+ | MXFP4_MOE-output_mxfp4-embd_q8 | 46.88% | -7.39% |
159
+ | MXFP4_MOE-output_mxfp4-router_gate_emb_q8 | 46.88% | -6.63% |
160
+ | MXFP4_MOE-Q5_K | 51.56% | -6.49% |
161
+ | MXFP4_MOE-output_mxfp4-embd_q5_K | 51.56% | -6.37% |
162
+ | Q5_K_M | 62.5% | -8.98% |
163
+ | MXFP4_MOE-output_mxfp4-router_gate_emb_q5_K | 53.12% | -7.48% |
164
+ | MXFP4_MOE-output_mxfp4-router_gate_emb_q4_K | 56.25% | -6.61% |
165
+ | MXFP4_MOE-Q4_K | 53.12% | -6.47% |
166
+ | MXFP4_MOE-output_mxfp4-embd_q4_K | 53.12% | -6.23% |
167
+ | Q4_K_M | 67.19% | -8.45% |
168
+ | MXFP4_MOE-output_q8-embd_mxfp4 | 53.12% | -6.53% |
169
+ | MXFP4_MOE | 73.44% | -1.13% |
170
 
171
  * All percentages compared against the selected family F16 baseline.
172
 
 
174
 
175
  ### Table - File Size + TPS + Avg Precision Loss
176
 
177
+ | model_name | file_size_gb | bench_tps | avg_prec_loss |
178
+ | ---------- | ------------ | --------- | -------------- |
179
+ | F16 | 0.64 | 1863.96 | 0 |
180
+ | MXFP4_MOE-output_q6_k-router_gate_emb_f16 | 0.45 | 1652.1 | 0.0459 |
181
+ | MXFP4_MOE-output_f16-router_gate_emb_f16 | 0.45 | 1618.73 | 0.0934 |
182
+ | MXFP4_MOE-output_q6_k-embd_f16 | 0.41 | 1577.68 | 0.11 |
183
+ | MXFP4_MOE-F16 | 0.41 | 1580.44 | 0.12 |
184
+ | MXFP4_MOE-output_f16-router_gate_emb_q6_k | 0.31 | 1707.74 | 0.1855 |
185
+ | MXFP4_MOE-output_mxfp4-router_gate_emb_f16 | 0.31 | 1649.31 | 0.1855 |
186
+ | MXFP4_MOE-output_q6_K-router_gate_emb_q6_K | 0.31 | 1721.67 | 0.214 |
187
+ | MXFP4_MOE-Q6_K | 0.32 | 1741.83 | 0.2545 |
188
+ | MXFP4_MOE-Q8 | 0.34 | 1737.7 | 0.3695 |
189
+ | Q8_0 | 0.34 | 1732.23 | 0.3695 |
190
+ | Q6_K | 0.26 | 1691.78 | 0.6105 |
191
+ | MXFP4_MOE-output_mxfp4-embd_f16 | 0.41 | 1658.55 | 0.6519 |
192
+ | MXFP4_MOE-output_mxfp4-router_gate_emb_q6_K | 0.31 | 1721.57 | 0.693 |
193
+ | MXFP4_MOE-output_mxfp4-embd_q6_K | 0.32 | 1733.28 | 0.8372 |
194
+ | MXFP4_MOE-output_mxfp4-embd_q8 | 0.34 | 1726.18 | 0.8454 |
195
+ | MXFP4_MOE-output_mxfp4-router_gate_emb_q8 | 0.34 | 1740.43 | 0.8454 |
196
+ | MXFP4_MOE-Q5_K | 0.31 | 1742.99 | 2.1423 |
197
+ | MXFP4_MOE-output_mxfp4-embd_q5_K | 0.31 | 1745.27 | 2.6333 |
198
+ | Q5_K_M | 0.24 | 1696.53 | 2.9645 |
199
+ | MXFP4_MOE-output_mxfp4-router_gate_emb_q5_K | 0.3 | 1724.55 | 3.1646 |
200
+ | MXFP4_MOE-output_mxfp4-router_gate_emb_q4_K | 0.28 | 1740.67 | 4.3156 |
201
+ | MXFP4_MOE-Q4_K | 0.3 | 1743.34 | 4.5808 |
202
+ | MXFP4_MOE-output_mxfp4-embd_q4_K | 0.3 | 1747.89 | 4.7838 |
203
+ | Q4_K_M | 0.21 | 1706.54 | 12.1189 |
204
+ | MXFP4_MOE-output_q8-embd_mxfp4 | 0.3 | 1742.28 | 13.915 |
205
+ | MXFP4_MOE | 0.17 | 1842.9 | 8225.0298 |
206
 
207
  * Bench NGL was 35
208
  * Utilized CUDA
 
213
 
214
  | model_name | gen | gen_er | code | code_er | math | math_er |
215
  | ---------- | ---- | ------- | ----- | -------- | ------ | -------- |
216
+ | F16 | 18.1241 | 0.4654 | 1.9547 | 0.0175 | 10.2753 | 0.2312 |
217
+ | MXFP4_MOE-output_q6_k-router_gate_emb_f16 | 18.1547 | 0.4667 | 1.9543 | 0.0175 | 10.2742 | 0.2311 |
218
+ | MXFP4_MOE-output_f16-router_gate_emb_f16 | 18.1532 | 0.4667 | 1.9546 | 0.0175 | 10.2881 | 0.2316 |
219
+ | MXFP4_MOE-output_q6_k-embd_f16 | 18.1555 | 0.4664 | 1.9539 | 0.0175 | 10.2956 | 0.2317 |
220
+ | MXFP4_MOE-F16 | 18.1603 | 0.4666 | 1.9546 | 0.0175 | 10.2923 | 0.2317 |
221
+ | MXFP4_MOE-output_f16-router_gate_emb_q6_k | 18.1862 | 0.4686 | 1.9581 | 0.0175 | 10.2794 | 0.2314 |
222
+ | MXFP4_MOE-output_mxfp4-router_gate_emb_f16 | 18.1862 | 0.4686 | 1.9581 | 0.0175 | 10.2794 | 0.2314 |
223
+ | MXFP4_MOE-output_q6_K-router_gate_emb_q6_K | 18.2137 | 0.4694 | 1.9581 | 0.0175 | 10.2726 | 0.2311 |
224
+ | MXFP4_MOE-Q6_K | 18.2289 | 0.4697 | 1.9583 | 0.0175 | 10.2754 | 0.2311 |
225
+ | MXFP4_MOE-Q8 | 18.2363 | 0.4693 | 1.9558 | 0.0175 | 10.3198 | 0.2325 |
226
+ | Q8_0 | 18.2363 | 0.4693 | 1.9558 | 0.0175 | 10.3198 | 0.2325 |
227
+ | Q6_K | 18.3753 | 0.4719 | 1.9612 | 0.0175 | 10.2869 | 0.2294 |
228
+ | MXFP4_MOE-output_mxfp4-embd_f16 | 18.2903 | 0.4697 | 1.9572 | 0.0175 | 10.3689 | 0.2334 |
229
+ | MXFP4_MOE-output_mxfp4-router_gate_emb_q6_K | 18.334 | 0.472 | 1.9603 | 0.0175 | 10.3405 | 0.2326 |
230
+ | MXFP4_MOE-output_mxfp4-embd_q6_K | 18.3312 | 0.4717 | 1.9612 | 0.0175 | 10.3818 | 0.2338 |
231
+ | MXFP4_MOE-output_mxfp4-embd_q8 | 18.3491 | 0.4717 | 1.958 | 0.0175 | 10.391 | 0.234 |
232
+ | MXFP4_MOE-output_mxfp4-router_gate_emb_q8 | 18.3491 | 0.4717 | 1.958 | 0.0175 | 10.391 | 0.234 |
233
+ | MXFP4_MOE-Q5_K | 18.8193 | 0.4864 | 1.9665 | 0.0177 | 10.4795 | 0.2366 |
234
+ | MXFP4_MOE-output_mxfp4-embd_q5_K | 18.9164 | 0.4885 | 1.9678 | 0.0177 | 10.569 | 0.2391 |
235
+ | Q5_K_M | 18.9868 | 0.4897 | 1.9833 | 0.0179 | 10.5497 | 0.2372 |
236
+ | MXFP4_MOE-output_mxfp4-router_gate_emb_q5_K | 19.176 | 0.4956 | 1.9713 | 0.0178 | 10.5672 | 0.2381 |
237
+ | MXFP4_MOE-output_mxfp4-router_gate_emb_q4_K | 19.0072 | 0.4913 | 1.9966 | 0.0182 | 10.8847 | 0.2476 |
238
+ | MXFP4_MOE-Q4_K | 19.1505 | 0.4952 | 1.992 | 0.0181 | 10.9094 | 0.25 |
239
+ | MXFP4_MOE-output_mxfp4-embd_q4_K | 19.1528 | 0.4949 | 1.9946 | 0.0181 | 10.957 | 0.2506 |
240
+ | Q4_K_M | 21.3531 | 0.5635 | 2.0638 | 0.0194 | 11.6069 | 0.2693 |
241
+ | MXFP4_MOE-output_q8-embd_mxfp4 | 22.2013 | 0.5834 | 2.1047 | 0.0199 | 11.4647 | 0.2597 |
242
+ | MXFP4_MOE | 1172.2706 | 45.947 | 303.0942 | 7.7666 | 308.3771 | 10.9069 |
243
 
244
  * gen = ppl_general
245
  * gen_er = ppl_general_error
 
255
  | model_name | loss_general | loss_code | loss_math |
256
  | ---------- | ------------ | ---------- | ---------- |
257
  | F16 | 0 | 0 | 0 |
258
+ | MXFP4_MOE-output_q6_k-router_gate_emb_f16 | 0.1688 | -0.0205 | -0.0107 |
259
+ | MXFP4_MOE-output_f16-router_gate_emb_f16 | 0.1606 | -0.0051 | 0.1246 |
260
+ | MXFP4_MOE-output_q6_k-embd_f16 | 0.1732 | -0.0409 | 0.1976 |
261
+ | MXFP4_MOE-F16 | 0.1997 | -0.0051 | 0.1654 |
262
+ | MXFP4_MOE-output_f16-router_gate_emb_q6_k | 0.3426 | 0.1739 | 0.0399 |
263
+ | MXFP4_MOE-output_mxfp4-router_gate_emb_f16 | 0.3426 | 0.1739 | 0.0399 |
264
+ | MXFP4_MOE-output_q6_K-router_gate_emb_q6_K | 0.4944 | 0.1739 | -0.0263 |
265
+ | MXFP4_MOE-Q6_K | 0.5782 | 0.1842 | 0.001 |
266
+ | MXFP4_MOE-Q8 | 0.6191 | 0.0563 | 0.4331 |
267
+ | Q8_0 | 0.6191 | 0.0563 | 0.4331 |
268
+ | Q6_K | 1.386 | 0.3325 | 0.1129 |
269
+ | MXFP4_MOE-output_mxfp4-embd_f16 | 0.917 | 0.1279 | 0.9109 |
270
+ | MXFP4_MOE-output_mxfp4-router_gate_emb_q6_K | 1.1581 | 0.2865 | 0.6345 |
271
+ | MXFP4_MOE-output_mxfp4-embd_q6_K | 1.1427 | 0.3325 | 1.0365 |
272
+ | MXFP4_MOE-output_mxfp4-embd_q8 | 1.2414 | 0.1688 | 1.126 |
273
+ | MXFP4_MOE-output_mxfp4-router_gate_emb_q8 | 1.2414 | 0.1688 | 1.126 |
274
+ | MXFP4_MOE-Q5_K | 3.8358 | 0.6037 | 1.9873 |
275
+ | MXFP4_MOE-output_mxfp4-embd_q5_K | 4.3715 | 0.6702 | 2.8583 |
276
+ | Q5_K_M | 4.76 | 1.4631 | 2.6705 |
277
+ | MXFP4_MOE-output_mxfp4-router_gate_emb_q5_K | 5.8039 | 0.8492 | 2.8408 |
278
+ | MXFP4_MOE-output_mxfp4-router_gate_emb_q4_K | 4.8725 | 2.1436 | 5.9307 |
279
+ | MXFP4_MOE-Q4_K | 5.6632 | 1.9082 | 6.1711 |
280
+ | MXFP4_MOE-output_mxfp4-embd_q4_K | 5.6759 | 2.0412 | 6.6344 |
281
+ | Q4_K_M | 17.8161 | 5.5814 | 12.9592 |
282
+ | MXFP4_MOE-output_q8-embd_mxfp4 | 22.496 | 7.6738 | 11.5753 |
283
+ | MXFP4_MOE | 6368.021 | 15405.9191 | 2901.1494 |
284
 
285
  * loss_general = precision_loss_general_pct
286
  * loss_code = precision_loss_code_pct
287
+ * loss_math = precision_loss_math_pct
granite-4.0-h-350m-unsloth-MXFP4_MOE-output_q6_k-router_gate_emb_f16.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a6754b9f82a628193e355dd01e176a412266d9aa34597ab5e6248e3f6af9ec11
3
+ size 485063616