Commit
·
c19219e
1
Parent(s):
aa2ee73
Added examples
Browse files- .gitignore +2 -0
- README.md +40 -1
.gitignore
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
.ipynb_checkpoints
|
| 2 |
+
test.ipynb
|
README.md
CHANGED
|
@@ -1,4 +1,43 @@
|
|
| 1 |
---
|
| 2 |
license: wtfpl
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
---
|
| 4 |
-
Segformer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
license: wtfpl
|
| 3 |
+
tags:
|
| 4 |
+
- vision
|
| 5 |
+
- image-segmentation
|
| 6 |
+
widget:
|
| 7 |
+
- src: https://images.unsplash.com/photo-1643310325061-2beef64926a5?ixlib=rb-4.0.3&ixid=MnwxMjA3fDB8MHxzZWFyY2h8Nnx8cmFjb29uc3xlbnwwfHwwfHw%3D&w=1000&q=80
|
| 8 |
+
example_title: Person
|
| 9 |
+
- src: https://freerangestock.com/sample/139043/young-man-standing-and-leaning-on-car.jpg
|
| 10 |
+
example_title: Person
|
| 11 |
---
|
| 12 |
+
# Segformer B2 fine-tuned for clothes segmentation
|
| 13 |
+
|
| 14 |
+
SegFormer model fine-tuned on [ATR dataset](https://github.com/lemondan/HumanParsing-Dataset) for clothes segmentation
|
| 15 |
+
|
| 16 |
+
```python
|
| 17 |
+
from transformers import AutoFeatureExtractor, SegformerForSemanticSegmentation
|
| 18 |
+
from PIL import Image
|
| 19 |
+
import requests
|
| 20 |
+
import matplotlib.pyplot as plt
|
| 21 |
+
import torch.nn as nn
|
| 22 |
+
|
| 23 |
+
extractor = AutoFeatureExtractor.from_pretrained("mattmdjaga/segformer_b2_clothes")
|
| 24 |
+
model = SegformerForSemanticSegmentation.from_pretrained("mattmdjaga/segformer_b2_clothes")
|
| 25 |
+
|
| 26 |
+
url = "https://plus.unsplash.com/premium_photo-1673210886161-bfcc40f54d1f?ixlib=rb-4.0.3&ixid=MnwxMjA3fDB8MHxzZWFyY2h8MXx8cGVyc29uJTIwc3RhbmRpbmd8ZW58MHx8MHx8&w=1000&q=80"
|
| 27 |
+
|
| 28 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
| 29 |
+
inputs = extractor(images=image, return_tensors="pt")
|
| 30 |
+
|
| 31 |
+
outputs = model(**inputs)
|
| 32 |
+
logits = outputs.logits.cpu()
|
| 33 |
+
|
| 34 |
+
upsampled_logits = nn.functional.interpolate(
|
| 35 |
+
logits,
|
| 36 |
+
size=image.size[::-1],
|
| 37 |
+
mode="bilinear",
|
| 38 |
+
align_corners=False,
|
| 39 |
+
)
|
| 40 |
+
|
| 41 |
+
pred_seg = upsampled_logits.argmax(dim=1)[0]
|
| 42 |
+
plt.imshow(pred_seg)
|
| 43 |
+
```
|