--- library_name: transformers license: apache-2.0 base_model: openai/whisper-base tags: - generated_from_trainer metrics: - wer model-index: - name: ap-jxLlj8Cg75EMClO0ZGP7gX results: [] --- [Visualize in Weights & Biases](https://wandb.ai/dhaval-shah-doordash/whisper-finetuning/runs/2jblqgyj) [Visualize in Weights & Biases](https://wandb.ai/dhaval-shah-doordash/whisper-finetuning/runs/2jblqgyj) # ap-jxLlj8Cg75EMClO0ZGP7gX This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4326 - Model Preparation Time: 0.0053 - Wer: 0.1928 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 400 - num_epochs: 12 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Wer | |:-------------:|:-----:|:----:|:---------------:|:----------------------:|:------:| | 0.8692 | 1.0 | 13 | 1.5918 | 0.0053 | 0.2712 | | 0.2971 | 2.0 | 26 | 0.5042 | 0.0053 | 0.2033 | | 0.1803 | 3.0 | 39 | 0.2987 | 0.0053 | 0.1344 | | 0.0646 | 4.0 | 52 | 0.2941 | 0.0053 | 0.1340 | | 0.0386 | 5.0 | 65 | 0.3093 | 0.0053 | 0.1471 | | 0.0102 | 6.0 | 78 | 0.3861 | 0.0053 | 0.1438 | | 0.0183 | 7.0 | 91 | 0.3980 | 0.0053 | 0.1513 | | 0.037 | 8.0 | 104 | 0.4312 | 0.0053 | 0.1538 | | 0.0164 | 9.0 | 117 | 0.4298 | 0.0053 | 0.1699 | | 0.0132 | 10.0 | 130 | 0.3946 | 0.0053 | 0.1349 | | 0.018 | 11.0 | 143 | 0.4802 | 0.0053 | 0.3464 | | 0.0317 | 11.08 | 144 | 0.4326 | 0.0053 | 0.1928 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.1