Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
base_model: mistralai/Mistral-7B-v0.1
|
| 3 |
+
tags:
|
| 4 |
+
- mistral
|
| 5 |
+
- instruct
|
| 6 |
+
- finetune
|
| 7 |
+
- chatml
|
| 8 |
+
- gpt4
|
| 9 |
+
- synthetic data
|
| 10 |
+
- distillation
|
| 11 |
+
- dpo
|
| 12 |
+
- rlhf
|
| 13 |
+
model-index:
|
| 14 |
+
- name: OpenHermes-2-Mistral-7B
|
| 15 |
+
results: []
|
| 16 |
+
license: apache-2.0
|
| 17 |
+
language:
|
| 18 |
+
- en
|
| 19 |
+
datasets:
|
| 20 |
+
- mlabonne/chatml_dpo_pairs
|
| 21 |
+
---
|
| 22 |
+
|
| 23 |
+
<center><img src="https://i.imgur.com/qIhaFNM.png"></center>
|
| 24 |
+
|
| 25 |
+
# NeuralHermes 2.5 - Mistral 7B
|
| 26 |
+
|
| 27 |
+
NeuralHermes is an [OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) model that has been further fine-tuned with Direct Preference Optimization (DPO) using the [mlabonne/chatml_dpo_pairs](https://huggingface.co/datasets/mlabonne/chatml_dpo_pairs) dataset.
|
| 28 |
+
|
| 29 |
+
It is directly inspired by the RLHF process described by [neural-chat-7b-v3-1](https://huggingface.co/Intel/neural-chat-7b-v3-1)'s authors to improve performance. I used the same dataset and reformatted it to apply the ChatML template. I haven't performed a comprehensive evaluation of the model, but it works great, nothing broken apparently! :)
|
| 30 |
+
|
| 31 |
+
The code to train this model is available on [Google Colab](https://colab.research.google.com/drive/15iFBr1xWgztXvhrj5I9fBv20c7CFOPBE?usp=sharing) and [GitHub](https://github.com/mlabonne/llm-course/tree/main). It required an A100 GPU for about an hour.
|
| 32 |
+
|
| 33 |
+
GGUF versions of this model are available here: [mlabonne/NeuralHermes-2.5-Mistral-7B-GGUF](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B-GGUF).
|
| 34 |
+
|
| 35 |
+
## Usage
|
| 36 |
+
|
| 37 |
+
You can run this model using [LM Studio](https://lmstudio.ai/) or any other frontend.
|
| 38 |
+
|
| 39 |
+
You can also run this model using the following code:
|
| 40 |
+
|
| 41 |
+
```python
|
| 42 |
+
import transformers
|
| 43 |
+
from transformers import AutoTokenizer
|
| 44 |
+
|
| 45 |
+
# Format prompt
|
| 46 |
+
message = [
|
| 47 |
+
{"role": "system", "content": "You are a helpful assistant chatbot."},
|
| 48 |
+
{"role": "user", "content": "What is a Large Language Model?"}
|
| 49 |
+
]
|
| 50 |
+
tokenizer = AutoTokenizer.from_pretrained(new_model)
|
| 51 |
+
prompt = tokenizer.apply_chat_template(message, add_generation_prompt=True, tokenize=False)
|
| 52 |
+
|
| 53 |
+
# Create pipeline
|
| 54 |
+
pipeline = transformers.pipeline(
|
| 55 |
+
"text-generation",
|
| 56 |
+
model=new_model,
|
| 57 |
+
tokenizer=tokenizer
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
# Generate text
|
| 61 |
+
sequences = pipeline(
|
| 62 |
+
prompt,
|
| 63 |
+
do_sample=True,
|
| 64 |
+
temperature=0.7,
|
| 65 |
+
top_p=0.9,
|
| 66 |
+
num_return_sequences=1,
|
| 67 |
+
max_length=200,
|
| 68 |
+
)
|
| 69 |
+
print(sequences[0]['generated_text'])
|
| 70 |
+
```
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
## Training hyperparameters
|
| 74 |
+
|
| 75 |
+
**LoRA**:
|
| 76 |
+
* r=16,
|
| 77 |
+
* lora_alpha=16,
|
| 78 |
+
* lora_dropout=0.05,
|
| 79 |
+
* bias="none",
|
| 80 |
+
* task_type="CAUSAL_LM",
|
| 81 |
+
* target_modules=['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj']
|
| 82 |
+
|
| 83 |
+
**Training arguments**:
|
| 84 |
+
* per_device_train_batch_size=4,
|
| 85 |
+
* gradient_accumulation_steps=4,
|
| 86 |
+
* gradient_checkpointing=True,
|
| 87 |
+
* learning_rate=5e-5,
|
| 88 |
+
* lr_scheduler_type="cosine",
|
| 89 |
+
* max_steps=200,
|
| 90 |
+
* optim="paged_adamw_32bit",
|
| 91 |
+
* warmup_steps=100,
|
| 92 |
+
|
| 93 |
+
**DPOTrainer**:
|
| 94 |
+
* beta=0.1,
|
| 95 |
+
* max_prompt_length=1024,
|
| 96 |
+
* max_length=1536,
|