update model card README.md
Browse files
README.md
CHANGED
|
@@ -1,49 +1,72 @@
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
|
|
|
| 3 |
tags:
|
| 4 |
-
-
|
| 5 |
-
|
| 6 |
-
-
|
| 7 |
-
|
|
|
|
|
|
|
| 8 |
---
|
| 9 |
|
| 10 |
-
|
|
|
|
| 11 |
|
| 12 |
-
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
-
##
|
| 18 |
|
| 19 |
-
|
| 20 |
|
| 21 |
-
|
| 22 |
-
python -m pip install setfit
|
| 23 |
-
```
|
| 24 |
|
| 25 |
-
|
| 26 |
|
| 27 |
-
|
| 28 |
-
from setfit import SetFitModel
|
| 29 |
|
| 30 |
-
|
| 31 |
-
model = SetFitModel.from_pretrained("mtyrrell/IKT_classifier_mitigation_best")
|
| 32 |
-
# Run inference
|
| 33 |
-
preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
|
| 34 |
-
```
|
| 35 |
|
| 36 |
-
##
|
| 37 |
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
| 3 |
+
base_model: sentence-transformers/all-mpnet-base-v2
|
| 4 |
tags:
|
| 5 |
+
- generated_from_trainer
|
| 6 |
+
metrics:
|
| 7 |
+
- accuracy
|
| 8 |
+
model-index:
|
| 9 |
+
- name: IKT_classifier_mitigation_best
|
| 10 |
+
results: []
|
| 11 |
---
|
| 12 |
|
| 13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 14 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 15 |
|
| 16 |
+
# IKT_classifier_mitigation_best
|
| 17 |
|
| 18 |
+
This model is a fine-tuned version of [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) on the None dataset.
|
| 19 |
+
It achieves the following results on the evaluation set:
|
| 20 |
+
- Loss: 1.0515
|
| 21 |
+
- Precision Micro: 0.2570
|
| 22 |
+
- Precision Weighted: 0.2809
|
| 23 |
+
- Precision Samples: 0.2896
|
| 24 |
+
- Recall Micro: 0.6815
|
| 25 |
+
- Recall Weighted: 0.6815
|
| 26 |
+
- Recall Samples: 0.7119
|
| 27 |
+
- F1-score: 0.3907
|
| 28 |
+
- Accuracy: 0.0095
|
| 29 |
|
| 30 |
+
## Model description
|
| 31 |
|
| 32 |
+
More information needed
|
| 33 |
|
| 34 |
+
## Intended uses & limitations
|
|
|
|
|
|
|
| 35 |
|
| 36 |
+
More information needed
|
| 37 |
|
| 38 |
+
## Training and evaluation data
|
|
|
|
| 39 |
|
| 40 |
+
More information needed
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
+
## Training procedure
|
| 43 |
|
| 44 |
+
### Training hyperparameters
|
| 45 |
+
|
| 46 |
+
The following hyperparameters were used during training:
|
| 47 |
+
- learning_rate: 3.6181464293180716e-05
|
| 48 |
+
- train_batch_size: 3
|
| 49 |
+
- eval_batch_size: 3
|
| 50 |
+
- seed: 42
|
| 51 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 52 |
+
- lr_scheduler_type: linear
|
| 53 |
+
- lr_scheduler_warmup_steps: 300.0
|
| 54 |
+
- num_epochs: 5
|
| 55 |
+
|
| 56 |
+
### Training results
|
| 57 |
+
|
| 58 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision Micro | Precision Weighted | Precision Samples | Recall Micro | Recall Weighted | Recall Samples | F1-score | Accuracy |
|
| 59 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------------:|:------------------:|:-----------------:|:------------:|:---------------:|:--------------:|:--------:|:--------:|
|
| 60 |
+
| No log | 1.0 | 313 | 1.2909 | 0.1858 | 0.2078 | 0.1957 | 0.7185 | 0.7185 | 0.7222 | 0.2977 | 0.0 |
|
| 61 |
+
| 1.262 | 2.0 | 626 | 1.0875 | 0.2099 | 0.2605 | 0.2295 | 0.7852 | 0.7852 | 0.8071 | 0.3431 | 0.0 |
|
| 62 |
+
| 1.262 | 3.0 | 939 | 1.0171 | 0.2284 | 0.2612 | 0.2539 | 0.7630 | 0.7630 | 0.7746 | 0.3643 | 0.0095 |
|
| 63 |
+
| 1.0059 | 4.0 | 1252 | 1.0510 | 0.2519 | 0.2764 | 0.2914 | 0.7259 | 0.7259 | 0.7563 | 0.4013 | 0.0095 |
|
| 64 |
+
| 0.8421 | 5.0 | 1565 | 1.0515 | 0.2570 | 0.2809 | 0.2896 | 0.6815 | 0.6815 | 0.7119 | 0.3907 | 0.0095 |
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
### Framework versions
|
| 68 |
+
|
| 69 |
+
- Transformers 4.31.0
|
| 70 |
+
- Pytorch 2.0.1+cu118
|
| 71 |
+
- Datasets 2.13.1
|
| 72 |
+
- Tokenizers 0.13.3
|