Upload 64 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- __pycache__/configuration_intern_vit.cpython-310.pyc +0 -0
- __pycache__/configuration_internlm2.cpython-310.pyc +0 -0
- __pycache__/configuration_phi3.cpython-310.pyc +0 -0
- __pycache__/configuration_sec.cpython-310.pyc +0 -0
- __pycache__/flash_attention.cpython-310.pyc +0 -0
- __pycache__/modeling_intern_vit.cpython-310.pyc +0 -0
- __pycache__/modeling_internlm2.cpython-310.pyc +0 -0
- __pycache__/modeling_phi3.cpython-310.pyc +0 -0
- __pycache__/modeling_sec.cpython-310.pyc +0 -0
- __pycache__/sam2_video_predictor.cpython-310.pyc +0 -0
- __pycache__/templates.cpython-310.pyc +0 -0
- sam2/__init__.py +13 -0
- sam2/__pycache__/__init__.cpython-310.pyc +0 -0
- sam2/__pycache__/sam2_video_predictor.cpython-310.pyc +0 -0
- sam2/configs/__init__.py +5 -0
- sam2/configs/__pycache__/__init__.cpython-310.pyc +0 -0
- sam2/configs/longsam2.1/longsam2.1_hiera_b+.yaml +116 -0
- sam2/configs/longsam2.1/longsam2.1_hiera_l.yaml +120 -0
- sam2/configs/longsam2.1/longsam2.1_hiera_s.yaml +119 -0
- sam2/configs/longsam2.1/longsam2.1_hiera_t.yaml +121 -0
- sam2/configs/sam2.1/sam2.1_hiera_b+.yaml +116 -0
- sam2/configs/sam2.1/sam2.1_hiera_l.yaml +120 -0
- sam2/configs/sam2.1/sam2.1_hiera_s.yaml +119 -0
- sam2/configs/sam2.1/sam2.1_hiera_t.yaml +121 -0
- sam2/configs/sam2/sam2_hiera_b+.yaml +113 -0
- sam2/configs/sam2/sam2_hiera_l.yaml +117 -0
- sam2/configs/sam2/sam2_hiera_s.yaml +116 -0
- sam2/configs/sam2/sam2_hiera_t.yaml +118 -0
- sam2/csrc/connected_components.cu +289 -0
- sam2/modeling/__init__.py +5 -0
- sam2/modeling/__pycache__/__init__.cpython-310.pyc +0 -0
- sam2/modeling/__pycache__/memory_attention.cpython-310.pyc +0 -0
- sam2/modeling/__pycache__/memory_encoder.cpython-310.pyc +0 -0
- sam2/modeling/__pycache__/position_encoding.cpython-310.pyc +0 -0
- sam2/modeling/__pycache__/sam2_base.cpython-310.pyc +0 -0
- sam2/modeling/__pycache__/sam2_utils.cpython-310.pyc +0 -0
- sam2/modeling/backbones/__init__.py +5 -0
- sam2/modeling/backbones/__pycache__/__init__.cpython-310.pyc +0 -0
- sam2/modeling/backbones/__pycache__/hieradet.cpython-310.pyc +0 -0
- sam2/modeling/backbones/__pycache__/image_encoder.cpython-310.pyc +0 -0
- sam2/modeling/backbones/__pycache__/utils.cpython-310.pyc +0 -0
- sam2/modeling/backbones/hieradet.py +317 -0
- sam2/modeling/backbones/image_encoder.py +134 -0
- sam2/modeling/backbones/utils.py +95 -0
- sam2/modeling/memory_attention.py +169 -0
- sam2/modeling/memory_encoder.py +182 -0
- sam2/modeling/position_encoding.py +221 -0
- sam2/modeling/sam/__init__.py +5 -0
- sam2/modeling/sam/__pycache__/__init__.cpython-310.pyc +0 -0
- sam2/modeling/sam/__pycache__/mask_decoder.cpython-310.pyc +0 -0
__pycache__/configuration_intern_vit.cpython-310.pyc
ADDED
|
Binary file (5.03 kB). View file
|
|
|
__pycache__/configuration_internlm2.cpython-310.pyc
ADDED
|
Binary file (5.54 kB). View file
|
|
|
__pycache__/configuration_phi3.cpython-310.pyc
ADDED
|
Binary file (8.67 kB). View file
|
|
|
__pycache__/configuration_sec.cpython-310.pyc
ADDED
|
Binary file (3.3 kB). View file
|
|
|
__pycache__/flash_attention.cpython-310.pyc
ADDED
|
Binary file (2.71 kB). View file
|
|
|
__pycache__/modeling_intern_vit.cpython-310.pyc
ADDED
|
Binary file (12.9 kB). View file
|
|
|
__pycache__/modeling_internlm2.cpython-310.pyc
ADDED
|
Binary file (42.9 kB). View file
|
|
|
__pycache__/modeling_phi3.cpython-310.pyc
ADDED
|
Binary file (44.2 kB). View file
|
|
|
__pycache__/modeling_sec.cpython-310.pyc
ADDED
|
Binary file (22 kB). View file
|
|
|
__pycache__/sam2_video_predictor.cpython-310.pyc
ADDED
|
Binary file (9.92 kB). View file
|
|
|
__pycache__/templates.cpython-310.pyc
ADDED
|
Binary file (3.86 kB). View file
|
|
|
sam2/__init__.py
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
| 2 |
+
# All rights reserved.
|
| 3 |
+
|
| 4 |
+
# This source code is licensed under the license found in the
|
| 5 |
+
# LICENSE file in the root directory of this source tree.
|
| 6 |
+
|
| 7 |
+
from hydra import initialize_config_module
|
| 8 |
+
from hydra.core.global_hydra import GlobalHydra
|
| 9 |
+
|
| 10 |
+
if GlobalHydra.instance().is_initialized():
|
| 11 |
+
GlobalHydra.instance().clear()
|
| 12 |
+
|
| 13 |
+
initialize_config_module("inference.sam2.configs", version_base="1.2")
|
sam2/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (415 Bytes). View file
|
|
|
sam2/__pycache__/sam2_video_predictor.cpython-310.pyc
ADDED
|
Binary file (23.2 kB). View file
|
|
|
sam2/configs/__init__.py
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
| 2 |
+
# All rights reserved.
|
| 3 |
+
|
| 4 |
+
# This source code is licensed under the license found in the
|
| 5 |
+
# LICENSE file in the root directory of this source tree.
|
sam2/configs/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (190 Bytes). View file
|
|
|
sam2/configs/longsam2.1/longsam2.1_hiera_b+.yaml
ADDED
|
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# @package _global_
|
| 2 |
+
|
| 3 |
+
# Model
|
| 4 |
+
model:
|
| 5 |
+
_target_: inference.sam2.modeling.sam2_base.SAM2Base
|
| 6 |
+
image_encoder:
|
| 7 |
+
_target_: inference.sam2.modeling.backbones.image_encoder.ImageEncoder
|
| 8 |
+
scalp: 1
|
| 9 |
+
trunk:
|
| 10 |
+
_target_: inference.sam2.modeling.backbones.hieradet.Hiera
|
| 11 |
+
embed_dim: 112
|
| 12 |
+
num_heads: 2
|
| 13 |
+
neck:
|
| 14 |
+
_target_: inference.sam2.modeling.backbones.image_encoder.FpnNeck
|
| 15 |
+
position_encoding:
|
| 16 |
+
_target_: inference.sam2.modeling.position_encoding.PositionEmbeddingSine
|
| 17 |
+
num_pos_feats: 256
|
| 18 |
+
normalize: true
|
| 19 |
+
scale: null
|
| 20 |
+
temperature: 10000
|
| 21 |
+
d_model: 256
|
| 22 |
+
backbone_channel_list: [896, 448, 224, 112]
|
| 23 |
+
fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
|
| 24 |
+
fpn_interp_model: nearest
|
| 25 |
+
|
| 26 |
+
memory_attention:
|
| 27 |
+
_target_: inference.sam2.modeling.memory_attention.MemoryAttention
|
| 28 |
+
d_model: 256
|
| 29 |
+
pos_enc_at_input: true
|
| 30 |
+
layer:
|
| 31 |
+
_target_: inference.sam2.modeling.memory_attention.MemoryAttentionLayer
|
| 32 |
+
activation: relu
|
| 33 |
+
dim_feedforward: 2048
|
| 34 |
+
dropout: 0.1
|
| 35 |
+
pos_enc_at_attn: false
|
| 36 |
+
self_attention:
|
| 37 |
+
_target_: inference.sam2.modeling.sam.transformer.RoPEAttention
|
| 38 |
+
rope_theta: 10000.0
|
| 39 |
+
feat_sizes: [32, 32]
|
| 40 |
+
embedding_dim: 256
|
| 41 |
+
num_heads: 1
|
| 42 |
+
downsample_rate: 1
|
| 43 |
+
dropout: 0.1
|
| 44 |
+
d_model: 256
|
| 45 |
+
pos_enc_at_cross_attn_keys: true
|
| 46 |
+
pos_enc_at_cross_attn_queries: false
|
| 47 |
+
cross_attention:
|
| 48 |
+
_target_: inference.sam2.modeling.sam.transformer.RoPEAttention
|
| 49 |
+
rope_theta: 10000.0
|
| 50 |
+
feat_sizes: [32, 32]
|
| 51 |
+
rope_k_repeat: True
|
| 52 |
+
embedding_dim: 256
|
| 53 |
+
num_heads: 1
|
| 54 |
+
downsample_rate: 1
|
| 55 |
+
dropout: 0.1
|
| 56 |
+
kv_in_dim: 64
|
| 57 |
+
num_layers: 4
|
| 58 |
+
|
| 59 |
+
memory_encoder:
|
| 60 |
+
_target_: inference.sam2.modeling.memory_encoder.MemoryEncoder
|
| 61 |
+
out_dim: 64
|
| 62 |
+
position_encoding:
|
| 63 |
+
_target_: inference.sam2.modeling.position_encoding.PositionEmbeddingSine
|
| 64 |
+
num_pos_feats: 64
|
| 65 |
+
normalize: true
|
| 66 |
+
scale: null
|
| 67 |
+
temperature: 10000
|
| 68 |
+
mask_downsampler:
|
| 69 |
+
_target_: inference.sam2.modeling.memory_encoder.MaskDownSampler
|
| 70 |
+
kernel_size: 3
|
| 71 |
+
stride: 2
|
| 72 |
+
padding: 1
|
| 73 |
+
fuser:
|
| 74 |
+
_target_: inference.sam2.modeling.memory_encoder.Fuser
|
| 75 |
+
layer:
|
| 76 |
+
_target_: inference.sam2.modeling.memory_encoder.CXBlock
|
| 77 |
+
dim: 256
|
| 78 |
+
kernel_size: 7
|
| 79 |
+
padding: 3
|
| 80 |
+
layer_scale_init_value: 1e-6
|
| 81 |
+
use_dwconv: True # depth-wise convs
|
| 82 |
+
num_layers: 2
|
| 83 |
+
|
| 84 |
+
num_maskmem: 22
|
| 85 |
+
image_size: 1024
|
| 86 |
+
# apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
|
| 87 |
+
sigmoid_scale_for_mem_enc: 20.0
|
| 88 |
+
sigmoid_bias_for_mem_enc: -10.0
|
| 89 |
+
use_mask_input_as_output_without_sam: true
|
| 90 |
+
# Memory
|
| 91 |
+
directly_add_no_mem_embed: true
|
| 92 |
+
no_obj_embed_spatial: true
|
| 93 |
+
# use high-resolution feature map in the SAM mask decoder
|
| 94 |
+
use_high_res_features_in_sam: true
|
| 95 |
+
# output 3 masks on the first click on initial conditioning frames
|
| 96 |
+
multimask_output_in_sam: true
|
| 97 |
+
# SAM heads
|
| 98 |
+
iou_prediction_use_sigmoid: True
|
| 99 |
+
# cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
|
| 100 |
+
use_obj_ptrs_in_encoder: true
|
| 101 |
+
add_tpos_enc_to_obj_ptrs: true
|
| 102 |
+
proj_tpos_enc_in_obj_ptrs: true
|
| 103 |
+
use_signed_tpos_enc_to_obj_ptrs: true
|
| 104 |
+
only_obj_ptrs_in_the_past_for_eval: true
|
| 105 |
+
# object occlusion prediction
|
| 106 |
+
pred_obj_scores: true
|
| 107 |
+
pred_obj_scores_mlp: true
|
| 108 |
+
fixed_no_obj_ptr: true
|
| 109 |
+
# multimask tracking settings
|
| 110 |
+
multimask_output_for_tracking: true
|
| 111 |
+
use_multimask_token_for_obj_ptr: true
|
| 112 |
+
multimask_min_pt_num: 0
|
| 113 |
+
multimask_max_pt_num: 1
|
| 114 |
+
use_mlp_for_obj_ptr_proj: true
|
| 115 |
+
# Compilation flag
|
| 116 |
+
compile_image_encoder: False
|
sam2/configs/longsam2.1/longsam2.1_hiera_l.yaml
ADDED
|
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# @package _global_
|
| 2 |
+
|
| 3 |
+
# Model
|
| 4 |
+
model:
|
| 5 |
+
_target_: inference.sam2.modeling.sam2_base.SAM2Base
|
| 6 |
+
image_encoder:
|
| 7 |
+
_target_: inference.sam2.modeling.backbones.image_encoder.ImageEncoder
|
| 8 |
+
scalp: 1
|
| 9 |
+
trunk:
|
| 10 |
+
_target_: inference.sam2.modeling.backbones.hieradet.Hiera
|
| 11 |
+
embed_dim: 144
|
| 12 |
+
num_heads: 2
|
| 13 |
+
stages: [2, 6, 36, 4]
|
| 14 |
+
global_att_blocks: [23, 33, 43]
|
| 15 |
+
window_pos_embed_bkg_spatial_size: [7, 7]
|
| 16 |
+
window_spec: [8, 4, 16, 8]
|
| 17 |
+
neck:
|
| 18 |
+
_target_: inference.sam2.modeling.backbones.image_encoder.FpnNeck
|
| 19 |
+
position_encoding:
|
| 20 |
+
_target_: inference.sam2.modeling.position_encoding.PositionEmbeddingSine
|
| 21 |
+
num_pos_feats: 256
|
| 22 |
+
normalize: true
|
| 23 |
+
scale: null
|
| 24 |
+
temperature: 10000
|
| 25 |
+
d_model: 256
|
| 26 |
+
backbone_channel_list: [1152, 576, 288, 144]
|
| 27 |
+
fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
|
| 28 |
+
fpn_interp_model: nearest
|
| 29 |
+
|
| 30 |
+
memory_attention:
|
| 31 |
+
_target_: inference.sam2.modeling.memory_attention.MemoryAttention
|
| 32 |
+
d_model: 256
|
| 33 |
+
pos_enc_at_input: true
|
| 34 |
+
layer:
|
| 35 |
+
_target_: inference.sam2.modeling.memory_attention.MemoryAttentionLayer
|
| 36 |
+
activation: relu
|
| 37 |
+
dim_feedforward: 2048
|
| 38 |
+
dropout: 0.1
|
| 39 |
+
pos_enc_at_attn: false
|
| 40 |
+
self_attention:
|
| 41 |
+
_target_: inference.sam2.modeling.sam.transformer.RoPEAttention
|
| 42 |
+
rope_theta: 10000.0
|
| 43 |
+
feat_sizes: [32, 32]
|
| 44 |
+
embedding_dim: 256
|
| 45 |
+
num_heads: 1
|
| 46 |
+
downsample_rate: 1
|
| 47 |
+
dropout: 0.1
|
| 48 |
+
d_model: 256
|
| 49 |
+
pos_enc_at_cross_attn_keys: true
|
| 50 |
+
pos_enc_at_cross_attn_queries: false
|
| 51 |
+
cross_attention:
|
| 52 |
+
_target_: inference.sam2.modeling.sam.transformer.RoPEAttention
|
| 53 |
+
rope_theta: 10000.0
|
| 54 |
+
feat_sizes: [32, 32]
|
| 55 |
+
rope_k_repeat: True
|
| 56 |
+
embedding_dim: 256
|
| 57 |
+
num_heads: 1
|
| 58 |
+
downsample_rate: 1
|
| 59 |
+
dropout: 0.1
|
| 60 |
+
kv_in_dim: 64
|
| 61 |
+
num_layers: 4
|
| 62 |
+
|
| 63 |
+
memory_encoder:
|
| 64 |
+
_target_: inference.sam2.modeling.memory_encoder.MemoryEncoder
|
| 65 |
+
out_dim: 64
|
| 66 |
+
position_encoding:
|
| 67 |
+
_target_: inference.sam2.modeling.position_encoding.PositionEmbeddingSine
|
| 68 |
+
num_pos_feats: 64
|
| 69 |
+
normalize: true
|
| 70 |
+
scale: null
|
| 71 |
+
temperature: 10000
|
| 72 |
+
mask_downsampler:
|
| 73 |
+
_target_: inference.sam2.modeling.memory_encoder.MaskDownSampler
|
| 74 |
+
kernel_size: 3
|
| 75 |
+
stride: 2
|
| 76 |
+
padding: 1
|
| 77 |
+
fuser:
|
| 78 |
+
_target_: inference.sam2.modeling.memory_encoder.Fuser
|
| 79 |
+
layer:
|
| 80 |
+
_target_: inference.sam2.modeling.memory_encoder.CXBlock
|
| 81 |
+
dim: 256
|
| 82 |
+
kernel_size: 7
|
| 83 |
+
padding: 3
|
| 84 |
+
layer_scale_init_value: 1e-6
|
| 85 |
+
use_dwconv: True # depth-wise convs
|
| 86 |
+
num_layers: 2
|
| 87 |
+
|
| 88 |
+
num_maskmem: 22
|
| 89 |
+
image_size: 1024
|
| 90 |
+
# apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
|
| 91 |
+
sigmoid_scale_for_mem_enc: 20.0
|
| 92 |
+
sigmoid_bias_for_mem_enc: -10.0
|
| 93 |
+
use_mask_input_as_output_without_sam: true
|
| 94 |
+
# Memory
|
| 95 |
+
directly_add_no_mem_embed: true
|
| 96 |
+
no_obj_embed_spatial: true
|
| 97 |
+
# use high-resolution feature map in the SAM mask decoder
|
| 98 |
+
use_high_res_features_in_sam: true
|
| 99 |
+
# output 3 masks on the first click on initial conditioning frames
|
| 100 |
+
multimask_output_in_sam: true
|
| 101 |
+
# SAM heads
|
| 102 |
+
iou_prediction_use_sigmoid: True
|
| 103 |
+
# cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
|
| 104 |
+
use_obj_ptrs_in_encoder: true
|
| 105 |
+
add_tpos_enc_to_obj_ptrs: true
|
| 106 |
+
proj_tpos_enc_in_obj_ptrs: true
|
| 107 |
+
use_signed_tpos_enc_to_obj_ptrs: true
|
| 108 |
+
only_obj_ptrs_in_the_past_for_eval: true
|
| 109 |
+
# object occlusion prediction
|
| 110 |
+
pred_obj_scores: true
|
| 111 |
+
pred_obj_scores_mlp: true
|
| 112 |
+
fixed_no_obj_ptr: true
|
| 113 |
+
# multimask tracking settings
|
| 114 |
+
multimask_output_for_tracking: true
|
| 115 |
+
use_multimask_token_for_obj_ptr: true
|
| 116 |
+
multimask_min_pt_num: 0
|
| 117 |
+
multimask_max_pt_num: 1
|
| 118 |
+
use_mlp_for_obj_ptr_proj: true
|
| 119 |
+
# Compilation flag
|
| 120 |
+
compile_image_encoder: False
|
sam2/configs/longsam2.1/longsam2.1_hiera_s.yaml
ADDED
|
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# @package _global_
|
| 2 |
+
|
| 3 |
+
# Model
|
| 4 |
+
model:
|
| 5 |
+
_target_: inference.sam2.modeling.sam2_base.SAM2Base
|
| 6 |
+
image_encoder:
|
| 7 |
+
_target_: inference.sam2.modeling.backbones.image_encoder.ImageEncoder
|
| 8 |
+
scalp: 1
|
| 9 |
+
trunk:
|
| 10 |
+
_target_: inference.sam2.modeling.backbones.hieradet.Hiera
|
| 11 |
+
embed_dim: 96
|
| 12 |
+
num_heads: 1
|
| 13 |
+
stages: [1, 2, 11, 2]
|
| 14 |
+
global_att_blocks: [7, 10, 13]
|
| 15 |
+
window_pos_embed_bkg_spatial_size: [7, 7]
|
| 16 |
+
neck:
|
| 17 |
+
_target_: inference.sam2.modeling.backbones.image_encoder.FpnNeck
|
| 18 |
+
position_encoding:
|
| 19 |
+
_target_: inference.sam2.modeling.position_encoding.PositionEmbeddingSine
|
| 20 |
+
num_pos_feats: 256
|
| 21 |
+
normalize: true
|
| 22 |
+
scale: null
|
| 23 |
+
temperature: 10000
|
| 24 |
+
d_model: 256
|
| 25 |
+
backbone_channel_list: [768, 384, 192, 96]
|
| 26 |
+
fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
|
| 27 |
+
fpn_interp_model: nearest
|
| 28 |
+
|
| 29 |
+
memory_attention:
|
| 30 |
+
_target_: inference.sam2.modeling.memory_attention.MemoryAttention
|
| 31 |
+
d_model: 256
|
| 32 |
+
pos_enc_at_input: true
|
| 33 |
+
layer:
|
| 34 |
+
_target_: inference.sam2.modeling.memory_attention.MemoryAttentionLayer
|
| 35 |
+
activation: relu
|
| 36 |
+
dim_feedforward: 2048
|
| 37 |
+
dropout: 0.1
|
| 38 |
+
pos_enc_at_attn: false
|
| 39 |
+
self_attention:
|
| 40 |
+
_target_: inference.sam2.modeling.sam.transformer.RoPEAttention
|
| 41 |
+
rope_theta: 10000.0
|
| 42 |
+
feat_sizes: [32, 32]
|
| 43 |
+
embedding_dim: 256
|
| 44 |
+
num_heads: 1
|
| 45 |
+
downsample_rate: 1
|
| 46 |
+
dropout: 0.1
|
| 47 |
+
d_model: 256
|
| 48 |
+
pos_enc_at_cross_attn_keys: true
|
| 49 |
+
pos_enc_at_cross_attn_queries: false
|
| 50 |
+
cross_attention:
|
| 51 |
+
_target_: inference.sam2.modeling.sam.transformer.RoPEAttention
|
| 52 |
+
rope_theta: 10000.0
|
| 53 |
+
feat_sizes: [32, 32]
|
| 54 |
+
rope_k_repeat: True
|
| 55 |
+
embedding_dim: 256
|
| 56 |
+
num_heads: 1
|
| 57 |
+
downsample_rate: 1
|
| 58 |
+
dropout: 0.1
|
| 59 |
+
kv_in_dim: 64
|
| 60 |
+
num_layers: 4
|
| 61 |
+
|
| 62 |
+
memory_encoder:
|
| 63 |
+
_target_: inference.sam2.modeling.memory_encoder.MemoryEncoder
|
| 64 |
+
out_dim: 64
|
| 65 |
+
position_encoding:
|
| 66 |
+
_target_: inference.sam2.modeling.position_encoding.PositionEmbeddingSine
|
| 67 |
+
num_pos_feats: 64
|
| 68 |
+
normalize: true
|
| 69 |
+
scale: null
|
| 70 |
+
temperature: 10000
|
| 71 |
+
mask_downsampler:
|
| 72 |
+
_target_: inference.sam2.modeling.memory_encoder.MaskDownSampler
|
| 73 |
+
kernel_size: 3
|
| 74 |
+
stride: 2
|
| 75 |
+
padding: 1
|
| 76 |
+
fuser:
|
| 77 |
+
_target_: inference.sam2.modeling.memory_encoder.Fuser
|
| 78 |
+
layer:
|
| 79 |
+
_target_: inference.sam2.modeling.memory_encoder.CXBlock
|
| 80 |
+
dim: 256
|
| 81 |
+
kernel_size: 7
|
| 82 |
+
padding: 3
|
| 83 |
+
layer_scale_init_value: 1e-6
|
| 84 |
+
use_dwconv: True # depth-wise convs
|
| 85 |
+
num_layers: 2
|
| 86 |
+
|
| 87 |
+
num_maskmem: 22
|
| 88 |
+
image_size: 1024
|
| 89 |
+
# apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
|
| 90 |
+
sigmoid_scale_for_mem_enc: 20.0
|
| 91 |
+
sigmoid_bias_for_mem_enc: -10.0
|
| 92 |
+
use_mask_input_as_output_without_sam: true
|
| 93 |
+
# Memory
|
| 94 |
+
directly_add_no_mem_embed: true
|
| 95 |
+
no_obj_embed_spatial: true
|
| 96 |
+
# use high-resolution feature map in the SAM mask decoder
|
| 97 |
+
use_high_res_features_in_sam: true
|
| 98 |
+
# output 3 masks on the first click on initial conditioning frames
|
| 99 |
+
multimask_output_in_sam: true
|
| 100 |
+
# SAM heads
|
| 101 |
+
iou_prediction_use_sigmoid: True
|
| 102 |
+
# cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
|
| 103 |
+
use_obj_ptrs_in_encoder: true
|
| 104 |
+
add_tpos_enc_to_obj_ptrs: true
|
| 105 |
+
proj_tpos_enc_in_obj_ptrs: true
|
| 106 |
+
use_signed_tpos_enc_to_obj_ptrs: true
|
| 107 |
+
only_obj_ptrs_in_the_past_for_eval: true
|
| 108 |
+
# object occlusion prediction
|
| 109 |
+
pred_obj_scores: true
|
| 110 |
+
pred_obj_scores_mlp: true
|
| 111 |
+
fixed_no_obj_ptr: true
|
| 112 |
+
# multimask tracking settings
|
| 113 |
+
multimask_output_for_tracking: true
|
| 114 |
+
use_multimask_token_for_obj_ptr: true
|
| 115 |
+
multimask_min_pt_num: 0
|
| 116 |
+
multimask_max_pt_num: 1
|
| 117 |
+
use_mlp_for_obj_ptr_proj: true
|
| 118 |
+
# Compilation flag
|
| 119 |
+
compile_image_encoder: False
|
sam2/configs/longsam2.1/longsam2.1_hiera_t.yaml
ADDED
|
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# @package _global_
|
| 2 |
+
|
| 3 |
+
# Model
|
| 4 |
+
model:
|
| 5 |
+
_target_: inference.sam2.modeling.sam2_base.SAM2Base
|
| 6 |
+
image_encoder:
|
| 7 |
+
_target_: inference.sam2.modeling.backbones.image_encoder.ImageEncoder
|
| 8 |
+
scalp: 1
|
| 9 |
+
trunk:
|
| 10 |
+
_target_: inference.sam2.modeling.backbones.hieradet.Hiera
|
| 11 |
+
embed_dim: 96
|
| 12 |
+
num_heads: 1
|
| 13 |
+
stages: [1, 2, 7, 2]
|
| 14 |
+
global_att_blocks: [5, 7, 9]
|
| 15 |
+
window_pos_embed_bkg_spatial_size: [7, 7]
|
| 16 |
+
neck:
|
| 17 |
+
_target_: inference.sam2.modeling.backbones.image_encoder.FpnNeck
|
| 18 |
+
position_encoding:
|
| 19 |
+
_target_: inference.sam2.modeling.position_encoding.PositionEmbeddingSine
|
| 20 |
+
num_pos_feats: 256
|
| 21 |
+
normalize: true
|
| 22 |
+
scale: null
|
| 23 |
+
temperature: 10000
|
| 24 |
+
d_model: 256
|
| 25 |
+
backbone_channel_list: [768, 384, 192, 96]
|
| 26 |
+
fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
|
| 27 |
+
fpn_interp_model: nearest
|
| 28 |
+
|
| 29 |
+
memory_attention:
|
| 30 |
+
_target_: inference.sam2.modeling.memory_attention.MemoryAttention
|
| 31 |
+
d_model: 256
|
| 32 |
+
pos_enc_at_input: true
|
| 33 |
+
layer:
|
| 34 |
+
_target_: inference.sam2.modeling.memory_attention.MemoryAttentionLayer
|
| 35 |
+
activation: relu
|
| 36 |
+
dim_feedforward: 2048
|
| 37 |
+
dropout: 0.1
|
| 38 |
+
pos_enc_at_attn: false
|
| 39 |
+
self_attention:
|
| 40 |
+
_target_: inference.sam2.modeling.sam.transformer.RoPEAttention
|
| 41 |
+
rope_theta: 10000.0
|
| 42 |
+
feat_sizes: [32, 32]
|
| 43 |
+
embedding_dim: 256
|
| 44 |
+
num_heads: 1
|
| 45 |
+
downsample_rate: 1
|
| 46 |
+
dropout: 0.1
|
| 47 |
+
d_model: 256
|
| 48 |
+
pos_enc_at_cross_attn_keys: true
|
| 49 |
+
pos_enc_at_cross_attn_queries: false
|
| 50 |
+
cross_attention:
|
| 51 |
+
_target_: inference.sam2.modeling.sam.transformer.RoPEAttention
|
| 52 |
+
rope_theta: 10000.0
|
| 53 |
+
feat_sizes: [32, 32]
|
| 54 |
+
rope_k_repeat: True
|
| 55 |
+
embedding_dim: 256
|
| 56 |
+
num_heads: 1
|
| 57 |
+
downsample_rate: 1
|
| 58 |
+
dropout: 0.1
|
| 59 |
+
kv_in_dim: 64
|
| 60 |
+
num_layers: 4
|
| 61 |
+
|
| 62 |
+
memory_encoder:
|
| 63 |
+
_target_: inference.sam2.modeling.memory_encoder.MemoryEncoder
|
| 64 |
+
out_dim: 64
|
| 65 |
+
position_encoding:
|
| 66 |
+
_target_: inference.sam2.modeling.position_encoding.PositionEmbeddingSine
|
| 67 |
+
num_pos_feats: 64
|
| 68 |
+
normalize: true
|
| 69 |
+
scale: null
|
| 70 |
+
temperature: 10000
|
| 71 |
+
mask_downsampler:
|
| 72 |
+
_target_: inference.sam2.modeling.memory_encoder.MaskDownSampler
|
| 73 |
+
kernel_size: 3
|
| 74 |
+
stride: 2
|
| 75 |
+
padding: 1
|
| 76 |
+
fuser:
|
| 77 |
+
_target_: inference.sam2.modeling.memory_encoder.Fuser
|
| 78 |
+
layer:
|
| 79 |
+
_target_: inference.sam2.modeling.memory_encoder.CXBlock
|
| 80 |
+
dim: 256
|
| 81 |
+
kernel_size: 7
|
| 82 |
+
padding: 3
|
| 83 |
+
layer_scale_init_value: 1e-6
|
| 84 |
+
use_dwconv: True # depth-wise convs
|
| 85 |
+
num_layers: 2
|
| 86 |
+
|
| 87 |
+
num_maskmem: 22
|
| 88 |
+
image_size: 1024
|
| 89 |
+
# apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
|
| 90 |
+
# SAM decoder
|
| 91 |
+
sigmoid_scale_for_mem_enc: 20.0
|
| 92 |
+
sigmoid_bias_for_mem_enc: -10.0
|
| 93 |
+
use_mask_input_as_output_without_sam: true
|
| 94 |
+
# Memory
|
| 95 |
+
directly_add_no_mem_embed: true
|
| 96 |
+
no_obj_embed_spatial: true
|
| 97 |
+
# use high-resolution feature map in the SAM mask decoder
|
| 98 |
+
use_high_res_features_in_sam: true
|
| 99 |
+
# output 3 masks on the first click on initial conditioning frames
|
| 100 |
+
multimask_output_in_sam: true
|
| 101 |
+
# SAM heads
|
| 102 |
+
iou_prediction_use_sigmoid: True
|
| 103 |
+
# cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
|
| 104 |
+
use_obj_ptrs_in_encoder: true
|
| 105 |
+
add_tpos_enc_to_obj_ptrs: true
|
| 106 |
+
proj_tpos_enc_in_obj_ptrs: true
|
| 107 |
+
use_signed_tpos_enc_to_obj_ptrs: true
|
| 108 |
+
only_obj_ptrs_in_the_past_for_eval: true
|
| 109 |
+
# object occlusion prediction
|
| 110 |
+
pred_obj_scores: true
|
| 111 |
+
pred_obj_scores_mlp: true
|
| 112 |
+
fixed_no_obj_ptr: true
|
| 113 |
+
# multimask tracking settings
|
| 114 |
+
multimask_output_for_tracking: true
|
| 115 |
+
use_multimask_token_for_obj_ptr: true
|
| 116 |
+
multimask_min_pt_num: 0
|
| 117 |
+
multimask_max_pt_num: 1
|
| 118 |
+
use_mlp_for_obj_ptr_proj: true
|
| 119 |
+
# Compilation flag
|
| 120 |
+
# HieraT does not currently support compilation, should always be set to False
|
| 121 |
+
compile_image_encoder: False
|
sam2/configs/sam2.1/sam2.1_hiera_b+.yaml
ADDED
|
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# @package _global_
|
| 2 |
+
|
| 3 |
+
# Model
|
| 4 |
+
model:
|
| 5 |
+
_target_: inference.sam2.modeling.sam2_base.SAM2Base
|
| 6 |
+
image_encoder:
|
| 7 |
+
_target_: inference.sam2.modeling.backbones.image_encoder.ImageEncoder
|
| 8 |
+
scalp: 1
|
| 9 |
+
trunk:
|
| 10 |
+
_target_: inference.sam2.modeling.backbones.hieradet.Hiera
|
| 11 |
+
embed_dim: 112
|
| 12 |
+
num_heads: 2
|
| 13 |
+
neck:
|
| 14 |
+
_target_: inference.sam2.modeling.backbones.image_encoder.FpnNeck
|
| 15 |
+
position_encoding:
|
| 16 |
+
_target_: inference.sam2.modeling.position_encoding.PositionEmbeddingSine
|
| 17 |
+
num_pos_feats: 256
|
| 18 |
+
normalize: true
|
| 19 |
+
scale: null
|
| 20 |
+
temperature: 10000
|
| 21 |
+
d_model: 256
|
| 22 |
+
backbone_channel_list: [896, 448, 224, 112]
|
| 23 |
+
fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
|
| 24 |
+
fpn_interp_model: nearest
|
| 25 |
+
|
| 26 |
+
memory_attention:
|
| 27 |
+
_target_: inference.sam2.modeling.memory_attention.MemoryAttention
|
| 28 |
+
d_model: 256
|
| 29 |
+
pos_enc_at_input: true
|
| 30 |
+
layer:
|
| 31 |
+
_target_: inference.sam2.modeling.memory_attention.MemoryAttentionLayer
|
| 32 |
+
activation: relu
|
| 33 |
+
dim_feedforward: 2048
|
| 34 |
+
dropout: 0.1
|
| 35 |
+
pos_enc_at_attn: false
|
| 36 |
+
self_attention:
|
| 37 |
+
_target_: inference.sam2.modeling.sam.transformer.RoPEAttention
|
| 38 |
+
rope_theta: 10000.0
|
| 39 |
+
feat_sizes: [32, 32]
|
| 40 |
+
embedding_dim: 256
|
| 41 |
+
num_heads: 1
|
| 42 |
+
downsample_rate: 1
|
| 43 |
+
dropout: 0.1
|
| 44 |
+
d_model: 256
|
| 45 |
+
pos_enc_at_cross_attn_keys: true
|
| 46 |
+
pos_enc_at_cross_attn_queries: false
|
| 47 |
+
cross_attention:
|
| 48 |
+
_target_: inference.sam2.modeling.sam.transformer.RoPEAttention
|
| 49 |
+
rope_theta: 10000.0
|
| 50 |
+
feat_sizes: [32, 32]
|
| 51 |
+
rope_k_repeat: True
|
| 52 |
+
embedding_dim: 256
|
| 53 |
+
num_heads: 1
|
| 54 |
+
downsample_rate: 1
|
| 55 |
+
dropout: 0.1
|
| 56 |
+
kv_in_dim: 64
|
| 57 |
+
num_layers: 4
|
| 58 |
+
|
| 59 |
+
memory_encoder:
|
| 60 |
+
_target_: inference.sam2.modeling.memory_encoder.MemoryEncoder
|
| 61 |
+
out_dim: 64
|
| 62 |
+
position_encoding:
|
| 63 |
+
_target_: inference.sam2.modeling.position_encoding.PositionEmbeddingSine
|
| 64 |
+
num_pos_feats: 64
|
| 65 |
+
normalize: true
|
| 66 |
+
scale: null
|
| 67 |
+
temperature: 10000
|
| 68 |
+
mask_downsampler:
|
| 69 |
+
_target_: inference.sam2.modeling.memory_encoder.MaskDownSampler
|
| 70 |
+
kernel_size: 3
|
| 71 |
+
stride: 2
|
| 72 |
+
padding: 1
|
| 73 |
+
fuser:
|
| 74 |
+
_target_: inference.sam2.modeling.memory_encoder.Fuser
|
| 75 |
+
layer:
|
| 76 |
+
_target_: inference.sam2.modeling.memory_encoder.CXBlock
|
| 77 |
+
dim: 256
|
| 78 |
+
kernel_size: 7
|
| 79 |
+
padding: 3
|
| 80 |
+
layer_scale_init_value: 1e-6
|
| 81 |
+
use_dwconv: True # depth-wise convs
|
| 82 |
+
num_layers: 2
|
| 83 |
+
|
| 84 |
+
num_maskmem: 7
|
| 85 |
+
image_size: 1024
|
| 86 |
+
# apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
|
| 87 |
+
sigmoid_scale_for_mem_enc: 20.0
|
| 88 |
+
sigmoid_bias_for_mem_enc: -10.0
|
| 89 |
+
use_mask_input_as_output_without_sam: true
|
| 90 |
+
# Memory
|
| 91 |
+
directly_add_no_mem_embed: true
|
| 92 |
+
no_obj_embed_spatial: true
|
| 93 |
+
# use high-resolution feature map in the SAM mask decoder
|
| 94 |
+
use_high_res_features_in_sam: true
|
| 95 |
+
# output 3 masks on the first click on initial conditioning frames
|
| 96 |
+
multimask_output_in_sam: true
|
| 97 |
+
# SAM heads
|
| 98 |
+
iou_prediction_use_sigmoid: True
|
| 99 |
+
# cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
|
| 100 |
+
use_obj_ptrs_in_encoder: true
|
| 101 |
+
add_tpos_enc_to_obj_ptrs: true
|
| 102 |
+
proj_tpos_enc_in_obj_ptrs: true
|
| 103 |
+
use_signed_tpos_enc_to_obj_ptrs: true
|
| 104 |
+
only_obj_ptrs_in_the_past_for_eval: true
|
| 105 |
+
# object occlusion prediction
|
| 106 |
+
pred_obj_scores: true
|
| 107 |
+
pred_obj_scores_mlp: true
|
| 108 |
+
fixed_no_obj_ptr: true
|
| 109 |
+
# multimask tracking settings
|
| 110 |
+
multimask_output_for_tracking: true
|
| 111 |
+
use_multimask_token_for_obj_ptr: true
|
| 112 |
+
multimask_min_pt_num: 0
|
| 113 |
+
multimask_max_pt_num: 1
|
| 114 |
+
use_mlp_for_obj_ptr_proj: true
|
| 115 |
+
# Compilation flag
|
| 116 |
+
compile_image_encoder: False
|
sam2/configs/sam2.1/sam2.1_hiera_l.yaml
ADDED
|
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# @package _global_
|
| 2 |
+
|
| 3 |
+
# Model
|
| 4 |
+
model:
|
| 5 |
+
_target_: inference.sam2.modeling.sam2_base.SAM2Base
|
| 6 |
+
image_encoder:
|
| 7 |
+
_target_: inference.sam2.modeling.backbones.image_encoder.ImageEncoder
|
| 8 |
+
scalp: 1
|
| 9 |
+
trunk:
|
| 10 |
+
_target_: inference.sam2.modeling.backbones.hieradet.Hiera
|
| 11 |
+
embed_dim: 144
|
| 12 |
+
num_heads: 2
|
| 13 |
+
stages: [2, 6, 36, 4]
|
| 14 |
+
global_att_blocks: [23, 33, 43]
|
| 15 |
+
window_pos_embed_bkg_spatial_size: [7, 7]
|
| 16 |
+
window_spec: [8, 4, 16, 8]
|
| 17 |
+
neck:
|
| 18 |
+
_target_: inference.sam2.modeling.backbones.image_encoder.FpnNeck
|
| 19 |
+
position_encoding:
|
| 20 |
+
_target_: inference.sam2.modeling.position_encoding.PositionEmbeddingSine
|
| 21 |
+
num_pos_feats: 256
|
| 22 |
+
normalize: true
|
| 23 |
+
scale: null
|
| 24 |
+
temperature: 10000
|
| 25 |
+
d_model: 256
|
| 26 |
+
backbone_channel_list: [1152, 576, 288, 144]
|
| 27 |
+
fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
|
| 28 |
+
fpn_interp_model: nearest
|
| 29 |
+
|
| 30 |
+
memory_attention:
|
| 31 |
+
_target_: inference.sam2.modeling.memory_attention.MemoryAttention
|
| 32 |
+
d_model: 256
|
| 33 |
+
pos_enc_at_input: true
|
| 34 |
+
layer:
|
| 35 |
+
_target_: inference.sam2.modeling.memory_attention.MemoryAttentionLayer
|
| 36 |
+
activation: relu
|
| 37 |
+
dim_feedforward: 2048
|
| 38 |
+
dropout: 0.1
|
| 39 |
+
pos_enc_at_attn: false
|
| 40 |
+
self_attention:
|
| 41 |
+
_target_: inference.sam2.modeling.sam.transformer.RoPEAttention
|
| 42 |
+
rope_theta: 10000.0
|
| 43 |
+
feat_sizes: [32, 32]
|
| 44 |
+
embedding_dim: 256
|
| 45 |
+
num_heads: 1
|
| 46 |
+
downsample_rate: 1
|
| 47 |
+
dropout: 0.1
|
| 48 |
+
d_model: 256
|
| 49 |
+
pos_enc_at_cross_attn_keys: true
|
| 50 |
+
pos_enc_at_cross_attn_queries: false
|
| 51 |
+
cross_attention:
|
| 52 |
+
_target_: inference.sam2.modeling.sam.transformer.RoPEAttention
|
| 53 |
+
rope_theta: 10000.0
|
| 54 |
+
feat_sizes: [32, 32]
|
| 55 |
+
rope_k_repeat: True
|
| 56 |
+
embedding_dim: 256
|
| 57 |
+
num_heads: 1
|
| 58 |
+
downsample_rate: 1
|
| 59 |
+
dropout: 0.1
|
| 60 |
+
kv_in_dim: 64
|
| 61 |
+
num_layers: 4
|
| 62 |
+
|
| 63 |
+
memory_encoder:
|
| 64 |
+
_target_: inference.sam2.modeling.memory_encoder.MemoryEncoder
|
| 65 |
+
out_dim: 64
|
| 66 |
+
position_encoding:
|
| 67 |
+
_target_: inference.sam2.modeling.position_encoding.PositionEmbeddingSine
|
| 68 |
+
num_pos_feats: 64
|
| 69 |
+
normalize: true
|
| 70 |
+
scale: null
|
| 71 |
+
temperature: 10000
|
| 72 |
+
mask_downsampler:
|
| 73 |
+
_target_: inference.sam2.modeling.memory_encoder.MaskDownSampler
|
| 74 |
+
kernel_size: 3
|
| 75 |
+
stride: 2
|
| 76 |
+
padding: 1
|
| 77 |
+
fuser:
|
| 78 |
+
_target_: inference.sam2.modeling.memory_encoder.Fuser
|
| 79 |
+
layer:
|
| 80 |
+
_target_: inference.sam2.modeling.memory_encoder.CXBlock
|
| 81 |
+
dim: 256
|
| 82 |
+
kernel_size: 7
|
| 83 |
+
padding: 3
|
| 84 |
+
layer_scale_init_value: 1e-6
|
| 85 |
+
use_dwconv: True # depth-wise convs
|
| 86 |
+
num_layers: 2
|
| 87 |
+
|
| 88 |
+
num_maskmem: 7
|
| 89 |
+
image_size: 1024
|
| 90 |
+
# apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
|
| 91 |
+
sigmoid_scale_for_mem_enc: 20.0
|
| 92 |
+
sigmoid_bias_for_mem_enc: -10.0
|
| 93 |
+
use_mask_input_as_output_without_sam: true
|
| 94 |
+
# Memory
|
| 95 |
+
directly_add_no_mem_embed: true
|
| 96 |
+
no_obj_embed_spatial: true
|
| 97 |
+
# use high-resolution feature map in the SAM mask decoder
|
| 98 |
+
use_high_res_features_in_sam: true
|
| 99 |
+
# output 3 masks on the first click on initial conditioning frames
|
| 100 |
+
multimask_output_in_sam: true
|
| 101 |
+
# SAM heads
|
| 102 |
+
iou_prediction_use_sigmoid: True
|
| 103 |
+
# cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
|
| 104 |
+
use_obj_ptrs_in_encoder: true
|
| 105 |
+
add_tpos_enc_to_obj_ptrs: true
|
| 106 |
+
proj_tpos_enc_in_obj_ptrs: true
|
| 107 |
+
use_signed_tpos_enc_to_obj_ptrs: true
|
| 108 |
+
only_obj_ptrs_in_the_past_for_eval: true
|
| 109 |
+
# object occlusion prediction
|
| 110 |
+
pred_obj_scores: true
|
| 111 |
+
pred_obj_scores_mlp: true
|
| 112 |
+
fixed_no_obj_ptr: true
|
| 113 |
+
# multimask tracking settings
|
| 114 |
+
multimask_output_for_tracking: true
|
| 115 |
+
use_multimask_token_for_obj_ptr: true
|
| 116 |
+
multimask_min_pt_num: 0
|
| 117 |
+
multimask_max_pt_num: 1
|
| 118 |
+
use_mlp_for_obj_ptr_proj: true
|
| 119 |
+
# Compilation flag
|
| 120 |
+
compile_image_encoder: False
|
sam2/configs/sam2.1/sam2.1_hiera_s.yaml
ADDED
|
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# @package _global_
|
| 2 |
+
|
| 3 |
+
# Model
|
| 4 |
+
model:
|
| 5 |
+
_target_: inference.sam2.modeling.sam2_base.SAM2Base
|
| 6 |
+
image_encoder:
|
| 7 |
+
_target_: inference.sam2.modeling.backbones.image_encoder.ImageEncoder
|
| 8 |
+
scalp: 1
|
| 9 |
+
trunk:
|
| 10 |
+
_target_: inference.sam2.modeling.backbones.hieradet.Hiera
|
| 11 |
+
embed_dim: 96
|
| 12 |
+
num_heads: 1
|
| 13 |
+
stages: [1, 2, 11, 2]
|
| 14 |
+
global_att_blocks: [7, 10, 13]
|
| 15 |
+
window_pos_embed_bkg_spatial_size: [7, 7]
|
| 16 |
+
neck:
|
| 17 |
+
_target_: inference.sam2.modeling.backbones.image_encoder.FpnNeck
|
| 18 |
+
position_encoding:
|
| 19 |
+
_target_: inference.sam2.modeling.position_encoding.PositionEmbeddingSine
|
| 20 |
+
num_pos_feats: 256
|
| 21 |
+
normalize: true
|
| 22 |
+
scale: null
|
| 23 |
+
temperature: 10000
|
| 24 |
+
d_model: 256
|
| 25 |
+
backbone_channel_list: [768, 384, 192, 96]
|
| 26 |
+
fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
|
| 27 |
+
fpn_interp_model: nearest
|
| 28 |
+
|
| 29 |
+
memory_attention:
|
| 30 |
+
_target_: inference.sam2.modeling.memory_attention.MemoryAttention
|
| 31 |
+
d_model: 256
|
| 32 |
+
pos_enc_at_input: true
|
| 33 |
+
layer:
|
| 34 |
+
_target_: inference.sam2.modeling.memory_attention.MemoryAttentionLayer
|
| 35 |
+
activation: relu
|
| 36 |
+
dim_feedforward: 2048
|
| 37 |
+
dropout: 0.1
|
| 38 |
+
pos_enc_at_attn: false
|
| 39 |
+
self_attention:
|
| 40 |
+
_target_: inference.sam2.modeling.sam.transformer.RoPEAttention
|
| 41 |
+
rope_theta: 10000.0
|
| 42 |
+
feat_sizes: [32, 32]
|
| 43 |
+
embedding_dim: 256
|
| 44 |
+
num_heads: 1
|
| 45 |
+
downsample_rate: 1
|
| 46 |
+
dropout: 0.1
|
| 47 |
+
d_model: 256
|
| 48 |
+
pos_enc_at_cross_attn_keys: true
|
| 49 |
+
pos_enc_at_cross_attn_queries: false
|
| 50 |
+
cross_attention:
|
| 51 |
+
_target_: inference.sam2.modeling.sam.transformer.RoPEAttention
|
| 52 |
+
rope_theta: 10000.0
|
| 53 |
+
feat_sizes: [32, 32]
|
| 54 |
+
rope_k_repeat: True
|
| 55 |
+
embedding_dim: 256
|
| 56 |
+
num_heads: 1
|
| 57 |
+
downsample_rate: 1
|
| 58 |
+
dropout: 0.1
|
| 59 |
+
kv_in_dim: 64
|
| 60 |
+
num_layers: 4
|
| 61 |
+
|
| 62 |
+
memory_encoder:
|
| 63 |
+
_target_: inference.sam2.modeling.memory_encoder.MemoryEncoder
|
| 64 |
+
out_dim: 64
|
| 65 |
+
position_encoding:
|
| 66 |
+
_target_: inference.sam2.modeling.position_encoding.PositionEmbeddingSine
|
| 67 |
+
num_pos_feats: 64
|
| 68 |
+
normalize: true
|
| 69 |
+
scale: null
|
| 70 |
+
temperature: 10000
|
| 71 |
+
mask_downsampler:
|
| 72 |
+
_target_: inference.sam2.modeling.memory_encoder.MaskDownSampler
|
| 73 |
+
kernel_size: 3
|
| 74 |
+
stride: 2
|
| 75 |
+
padding: 1
|
| 76 |
+
fuser:
|
| 77 |
+
_target_: inference.sam2.modeling.memory_encoder.Fuser
|
| 78 |
+
layer:
|
| 79 |
+
_target_: inference.sam2.modeling.memory_encoder.CXBlock
|
| 80 |
+
dim: 256
|
| 81 |
+
kernel_size: 7
|
| 82 |
+
padding: 3
|
| 83 |
+
layer_scale_init_value: 1e-6
|
| 84 |
+
use_dwconv: True # depth-wise convs
|
| 85 |
+
num_layers: 2
|
| 86 |
+
|
| 87 |
+
num_maskmem: 7
|
| 88 |
+
image_size: 1024
|
| 89 |
+
# apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
|
| 90 |
+
sigmoid_scale_for_mem_enc: 20.0
|
| 91 |
+
sigmoid_bias_for_mem_enc: -10.0
|
| 92 |
+
use_mask_input_as_output_without_sam: true
|
| 93 |
+
# Memory
|
| 94 |
+
directly_add_no_mem_embed: true
|
| 95 |
+
no_obj_embed_spatial: true
|
| 96 |
+
# use high-resolution feature map in the SAM mask decoder
|
| 97 |
+
use_high_res_features_in_sam: true
|
| 98 |
+
# output 3 masks on the first click on initial conditioning frames
|
| 99 |
+
multimask_output_in_sam: true
|
| 100 |
+
# SAM heads
|
| 101 |
+
iou_prediction_use_sigmoid: True
|
| 102 |
+
# cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
|
| 103 |
+
use_obj_ptrs_in_encoder: true
|
| 104 |
+
add_tpos_enc_to_obj_ptrs: true
|
| 105 |
+
proj_tpos_enc_in_obj_ptrs: true
|
| 106 |
+
use_signed_tpos_enc_to_obj_ptrs: true
|
| 107 |
+
only_obj_ptrs_in_the_past_for_eval: true
|
| 108 |
+
# object occlusion prediction
|
| 109 |
+
pred_obj_scores: true
|
| 110 |
+
pred_obj_scores_mlp: true
|
| 111 |
+
fixed_no_obj_ptr: true
|
| 112 |
+
# multimask tracking settings
|
| 113 |
+
multimask_output_for_tracking: true
|
| 114 |
+
use_multimask_token_for_obj_ptr: true
|
| 115 |
+
multimask_min_pt_num: 0
|
| 116 |
+
multimask_max_pt_num: 1
|
| 117 |
+
use_mlp_for_obj_ptr_proj: true
|
| 118 |
+
# Compilation flag
|
| 119 |
+
compile_image_encoder: False
|
sam2/configs/sam2.1/sam2.1_hiera_t.yaml
ADDED
|
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# @package _global_
|
| 2 |
+
|
| 3 |
+
# Model
|
| 4 |
+
model:
|
| 5 |
+
_target_: inference.sam2.modeling.sam2_base.SAM2Base
|
| 6 |
+
image_encoder:
|
| 7 |
+
_target_: inference.sam2.modeling.backbones.image_encoder.ImageEncoder
|
| 8 |
+
scalp: 1
|
| 9 |
+
trunk:
|
| 10 |
+
_target_: inference.sam2.modeling.backbones.hieradet.Hiera
|
| 11 |
+
embed_dim: 96
|
| 12 |
+
num_heads: 1
|
| 13 |
+
stages: [1, 2, 7, 2]
|
| 14 |
+
global_att_blocks: [5, 7, 9]
|
| 15 |
+
window_pos_embed_bkg_spatial_size: [7, 7]
|
| 16 |
+
neck:
|
| 17 |
+
_target_: inference.sam2.modeling.backbones.image_encoder.FpnNeck
|
| 18 |
+
position_encoding:
|
| 19 |
+
_target_: inference.sam2.modeling.position_encoding.PositionEmbeddingSine
|
| 20 |
+
num_pos_feats: 256
|
| 21 |
+
normalize: true
|
| 22 |
+
scale: null
|
| 23 |
+
temperature: 10000
|
| 24 |
+
d_model: 256
|
| 25 |
+
backbone_channel_list: [768, 384, 192, 96]
|
| 26 |
+
fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
|
| 27 |
+
fpn_interp_model: nearest
|
| 28 |
+
|
| 29 |
+
memory_attention:
|
| 30 |
+
_target_: inference.sam2.modeling.memory_attention.MemoryAttention
|
| 31 |
+
d_model: 256
|
| 32 |
+
pos_enc_at_input: true
|
| 33 |
+
layer:
|
| 34 |
+
_target_: inference.sam2.modeling.memory_attention.MemoryAttentionLayer
|
| 35 |
+
activation: relu
|
| 36 |
+
dim_feedforward: 2048
|
| 37 |
+
dropout: 0.1
|
| 38 |
+
pos_enc_at_attn: false
|
| 39 |
+
self_attention:
|
| 40 |
+
_target_: inference.sam2.modeling.sam.transformer.RoPEAttention
|
| 41 |
+
rope_theta: 10000.0
|
| 42 |
+
feat_sizes: [32, 32]
|
| 43 |
+
embedding_dim: 256
|
| 44 |
+
num_heads: 1
|
| 45 |
+
downsample_rate: 1
|
| 46 |
+
dropout: 0.1
|
| 47 |
+
d_model: 256
|
| 48 |
+
pos_enc_at_cross_attn_keys: true
|
| 49 |
+
pos_enc_at_cross_attn_queries: false
|
| 50 |
+
cross_attention:
|
| 51 |
+
_target_: inference.sam2.modeling.sam.transformer.RoPEAttention
|
| 52 |
+
rope_theta: 10000.0
|
| 53 |
+
feat_sizes: [32, 32]
|
| 54 |
+
rope_k_repeat: True
|
| 55 |
+
embedding_dim: 256
|
| 56 |
+
num_heads: 1
|
| 57 |
+
downsample_rate: 1
|
| 58 |
+
dropout: 0.1
|
| 59 |
+
kv_in_dim: 64
|
| 60 |
+
num_layers: 4
|
| 61 |
+
|
| 62 |
+
memory_encoder:
|
| 63 |
+
_target_: inference.sam2.modeling.memory_encoder.MemoryEncoder
|
| 64 |
+
out_dim: 64
|
| 65 |
+
position_encoding:
|
| 66 |
+
_target_: inference.sam2.modeling.position_encoding.PositionEmbeddingSine
|
| 67 |
+
num_pos_feats: 64
|
| 68 |
+
normalize: true
|
| 69 |
+
scale: null
|
| 70 |
+
temperature: 10000
|
| 71 |
+
mask_downsampler:
|
| 72 |
+
_target_: inference.sam2.modeling.memory_encoder.MaskDownSampler
|
| 73 |
+
kernel_size: 3
|
| 74 |
+
stride: 2
|
| 75 |
+
padding: 1
|
| 76 |
+
fuser:
|
| 77 |
+
_target_: inference.sam2.modeling.memory_encoder.Fuser
|
| 78 |
+
layer:
|
| 79 |
+
_target_: inference.sam2.modeling.memory_encoder.CXBlock
|
| 80 |
+
dim: 256
|
| 81 |
+
kernel_size: 7
|
| 82 |
+
padding: 3
|
| 83 |
+
layer_scale_init_value: 1e-6
|
| 84 |
+
use_dwconv: True # depth-wise convs
|
| 85 |
+
num_layers: 2
|
| 86 |
+
|
| 87 |
+
num_maskmem: 7
|
| 88 |
+
image_size: 1024
|
| 89 |
+
# apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
|
| 90 |
+
# SAM decoder
|
| 91 |
+
sigmoid_scale_for_mem_enc: 20.0
|
| 92 |
+
sigmoid_bias_for_mem_enc: -10.0
|
| 93 |
+
use_mask_input_as_output_without_sam: true
|
| 94 |
+
# Memory
|
| 95 |
+
directly_add_no_mem_embed: true
|
| 96 |
+
no_obj_embed_spatial: true
|
| 97 |
+
# use high-resolution feature map in the SAM mask decoder
|
| 98 |
+
use_high_res_features_in_sam: true
|
| 99 |
+
# output 3 masks on the first click on initial conditioning frames
|
| 100 |
+
multimask_output_in_sam: true
|
| 101 |
+
# SAM heads
|
| 102 |
+
iou_prediction_use_sigmoid: True
|
| 103 |
+
# cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
|
| 104 |
+
use_obj_ptrs_in_encoder: true
|
| 105 |
+
add_tpos_enc_to_obj_ptrs: true
|
| 106 |
+
proj_tpos_enc_in_obj_ptrs: true
|
| 107 |
+
use_signed_tpos_enc_to_obj_ptrs: true
|
| 108 |
+
only_obj_ptrs_in_the_past_for_eval: true
|
| 109 |
+
# object occlusion prediction
|
| 110 |
+
pred_obj_scores: true
|
| 111 |
+
pred_obj_scores_mlp: true
|
| 112 |
+
fixed_no_obj_ptr: true
|
| 113 |
+
# multimask tracking settings
|
| 114 |
+
multimask_output_for_tracking: true
|
| 115 |
+
use_multimask_token_for_obj_ptr: true
|
| 116 |
+
multimask_min_pt_num: 0
|
| 117 |
+
multimask_max_pt_num: 1
|
| 118 |
+
use_mlp_for_obj_ptr_proj: true
|
| 119 |
+
# Compilation flag
|
| 120 |
+
# HieraT does not currently support compilation, should always be set to False
|
| 121 |
+
compile_image_encoder: False
|
sam2/configs/sam2/sam2_hiera_b+.yaml
ADDED
|
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# @package _global_
|
| 2 |
+
|
| 3 |
+
# Model
|
| 4 |
+
model:
|
| 5 |
+
_target_: inference.sam2.modeling.sam2_base.SAM2Base
|
| 6 |
+
image_encoder:
|
| 7 |
+
_target_: inference.sam2.modeling.backbones.image_encoder.ImageEncoder
|
| 8 |
+
scalp: 1
|
| 9 |
+
trunk:
|
| 10 |
+
_target_: inference.sam2.modeling.backbones.hieradet.Hiera
|
| 11 |
+
embed_dim: 112
|
| 12 |
+
num_heads: 2
|
| 13 |
+
neck:
|
| 14 |
+
_target_: inference.sam2.modeling.backbones.image_encoder.FpnNeck
|
| 15 |
+
position_encoding:
|
| 16 |
+
_target_: inference.sam2.modeling.position_encoding.PositionEmbeddingSine
|
| 17 |
+
num_pos_feats: 256
|
| 18 |
+
normalize: true
|
| 19 |
+
scale: null
|
| 20 |
+
temperature: 10000
|
| 21 |
+
d_model: 256
|
| 22 |
+
backbone_channel_list: [896, 448, 224, 112]
|
| 23 |
+
fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
|
| 24 |
+
fpn_interp_model: nearest
|
| 25 |
+
|
| 26 |
+
memory_attention:
|
| 27 |
+
_target_: inference.sam2.modeling.memory_attention.MemoryAttention
|
| 28 |
+
d_model: 256
|
| 29 |
+
pos_enc_at_input: true
|
| 30 |
+
layer:
|
| 31 |
+
_target_: inference.sam2.modeling.memory_attention.MemoryAttentionLayer
|
| 32 |
+
activation: relu
|
| 33 |
+
dim_feedforward: 2048
|
| 34 |
+
dropout: 0.1
|
| 35 |
+
pos_enc_at_attn: false
|
| 36 |
+
self_attention:
|
| 37 |
+
_target_: inference.sam2.modeling.sam.transformer.RoPEAttention
|
| 38 |
+
rope_theta: 10000.0
|
| 39 |
+
feat_sizes: [32, 32]
|
| 40 |
+
embedding_dim: 256
|
| 41 |
+
num_heads: 1
|
| 42 |
+
downsample_rate: 1
|
| 43 |
+
dropout: 0.1
|
| 44 |
+
d_model: 256
|
| 45 |
+
pos_enc_at_cross_attn_keys: true
|
| 46 |
+
pos_enc_at_cross_attn_queries: false
|
| 47 |
+
cross_attention:
|
| 48 |
+
_target_: inference.sam2.modeling.sam.transformer.RoPEAttention
|
| 49 |
+
rope_theta: 10000.0
|
| 50 |
+
feat_sizes: [32, 32]
|
| 51 |
+
rope_k_repeat: True
|
| 52 |
+
embedding_dim: 256
|
| 53 |
+
num_heads: 1
|
| 54 |
+
downsample_rate: 1
|
| 55 |
+
dropout: 0.1
|
| 56 |
+
kv_in_dim: 64
|
| 57 |
+
num_layers: 4
|
| 58 |
+
|
| 59 |
+
memory_encoder:
|
| 60 |
+
_target_: inference.sam2.modeling.memory_encoder.MemoryEncoder
|
| 61 |
+
out_dim: 64
|
| 62 |
+
position_encoding:
|
| 63 |
+
_target_: inference.sam2.modeling.position_encoding.PositionEmbeddingSine
|
| 64 |
+
num_pos_feats: 64
|
| 65 |
+
normalize: true
|
| 66 |
+
scale: null
|
| 67 |
+
temperature: 10000
|
| 68 |
+
mask_downsampler:
|
| 69 |
+
_target_: inference.sam2.modeling.memory_encoder.MaskDownSampler
|
| 70 |
+
kernel_size: 3
|
| 71 |
+
stride: 2
|
| 72 |
+
padding: 1
|
| 73 |
+
fuser:
|
| 74 |
+
_target_: inference.sam2.modeling.memory_encoder.Fuser
|
| 75 |
+
layer:
|
| 76 |
+
_target_: inference.sam2.modeling.memory_encoder.CXBlock
|
| 77 |
+
dim: 256
|
| 78 |
+
kernel_size: 7
|
| 79 |
+
padding: 3
|
| 80 |
+
layer_scale_init_value: 1e-6
|
| 81 |
+
use_dwconv: True # depth-wise convs
|
| 82 |
+
num_layers: 2
|
| 83 |
+
|
| 84 |
+
num_maskmem: 7
|
| 85 |
+
image_size: 1024
|
| 86 |
+
# apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
|
| 87 |
+
sigmoid_scale_for_mem_enc: 20.0
|
| 88 |
+
sigmoid_bias_for_mem_enc: -10.0
|
| 89 |
+
use_mask_input_as_output_without_sam: true
|
| 90 |
+
# Memory
|
| 91 |
+
directly_add_no_mem_embed: true
|
| 92 |
+
# use high-resolution feature map in the SAM mask decoder
|
| 93 |
+
use_high_res_features_in_sam: true
|
| 94 |
+
# output 3 masks on the first click on initial conditioning frames
|
| 95 |
+
multimask_output_in_sam: true
|
| 96 |
+
# SAM heads
|
| 97 |
+
iou_prediction_use_sigmoid: True
|
| 98 |
+
# cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
|
| 99 |
+
use_obj_ptrs_in_encoder: true
|
| 100 |
+
add_tpos_enc_to_obj_ptrs: false
|
| 101 |
+
only_obj_ptrs_in_the_past_for_eval: true
|
| 102 |
+
# object occlusion prediction
|
| 103 |
+
pred_obj_scores: true
|
| 104 |
+
pred_obj_scores_mlp: true
|
| 105 |
+
fixed_no_obj_ptr: true
|
| 106 |
+
# multimask tracking settings
|
| 107 |
+
multimask_output_for_tracking: true
|
| 108 |
+
use_multimask_token_for_obj_ptr: true
|
| 109 |
+
multimask_min_pt_num: 0
|
| 110 |
+
multimask_max_pt_num: 1
|
| 111 |
+
use_mlp_for_obj_ptr_proj: true
|
| 112 |
+
# Compilation flag
|
| 113 |
+
compile_image_encoder: False
|
sam2/configs/sam2/sam2_hiera_l.yaml
ADDED
|
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# @package _global_
|
| 2 |
+
|
| 3 |
+
# Model
|
| 4 |
+
model:
|
| 5 |
+
_target_: inference.sam2.modeling.sam2_base.SAM2Base
|
| 6 |
+
image_encoder:
|
| 7 |
+
_target_: inference.sam2.modeling.backbones.image_encoder.ImageEncoder
|
| 8 |
+
scalp: 1
|
| 9 |
+
trunk:
|
| 10 |
+
_target_: inference.sam2.modeling.backbones.hieradet.Hiera
|
| 11 |
+
embed_dim: 144
|
| 12 |
+
num_heads: 2
|
| 13 |
+
stages: [2, 6, 36, 4]
|
| 14 |
+
global_att_blocks: [23, 33, 43]
|
| 15 |
+
window_pos_embed_bkg_spatial_size: [7, 7]
|
| 16 |
+
window_spec: [8, 4, 16, 8]
|
| 17 |
+
neck:
|
| 18 |
+
_target_: inference.sam2.modeling.backbones.image_encoder.FpnNeck
|
| 19 |
+
position_encoding:
|
| 20 |
+
_target_: inference.sam2.modeling.position_encoding.PositionEmbeddingSine
|
| 21 |
+
num_pos_feats: 256
|
| 22 |
+
normalize: true
|
| 23 |
+
scale: null
|
| 24 |
+
temperature: 10000
|
| 25 |
+
d_model: 256
|
| 26 |
+
backbone_channel_list: [1152, 576, 288, 144]
|
| 27 |
+
fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
|
| 28 |
+
fpn_interp_model: nearest
|
| 29 |
+
|
| 30 |
+
memory_attention:
|
| 31 |
+
_target_: inference.sam2.modeling.memory_attention.MemoryAttention
|
| 32 |
+
d_model: 256
|
| 33 |
+
pos_enc_at_input: true
|
| 34 |
+
layer:
|
| 35 |
+
_target_: inference.sam2.modeling.memory_attention.MemoryAttentionLayer
|
| 36 |
+
activation: relu
|
| 37 |
+
dim_feedforward: 2048
|
| 38 |
+
dropout: 0.1
|
| 39 |
+
pos_enc_at_attn: false
|
| 40 |
+
self_attention:
|
| 41 |
+
_target_: inference.sam2.modeling.sam.transformer.RoPEAttention
|
| 42 |
+
rope_theta: 10000.0
|
| 43 |
+
feat_sizes: [32, 32]
|
| 44 |
+
embedding_dim: 256
|
| 45 |
+
num_heads: 1
|
| 46 |
+
downsample_rate: 1
|
| 47 |
+
dropout: 0.1
|
| 48 |
+
d_model: 256
|
| 49 |
+
pos_enc_at_cross_attn_keys: true
|
| 50 |
+
pos_enc_at_cross_attn_queries: false
|
| 51 |
+
cross_attention:
|
| 52 |
+
_target_: inference.sam2.modeling.sam.transformer.RoPEAttention
|
| 53 |
+
rope_theta: 10000.0
|
| 54 |
+
feat_sizes: [32, 32]
|
| 55 |
+
rope_k_repeat: True
|
| 56 |
+
embedding_dim: 256
|
| 57 |
+
num_heads: 1
|
| 58 |
+
downsample_rate: 1
|
| 59 |
+
dropout: 0.1
|
| 60 |
+
kv_in_dim: 64
|
| 61 |
+
num_layers: 4
|
| 62 |
+
|
| 63 |
+
memory_encoder:
|
| 64 |
+
_target_: inference.sam2.modeling.memory_encoder.MemoryEncoder
|
| 65 |
+
out_dim: 64
|
| 66 |
+
position_encoding:
|
| 67 |
+
_target_: inference.sam2.modeling.position_encoding.PositionEmbeddingSine
|
| 68 |
+
num_pos_feats: 64
|
| 69 |
+
normalize: true
|
| 70 |
+
scale: null
|
| 71 |
+
temperature: 10000
|
| 72 |
+
mask_downsampler:
|
| 73 |
+
_target_: inference.sam2.modeling.memory_encoder.MaskDownSampler
|
| 74 |
+
kernel_size: 3
|
| 75 |
+
stride: 2
|
| 76 |
+
padding: 1
|
| 77 |
+
fuser:
|
| 78 |
+
_target_: inference.sam2.modeling.memory_encoder.Fuser
|
| 79 |
+
layer:
|
| 80 |
+
_target_: inference.sam2.modeling.memory_encoder.CXBlock
|
| 81 |
+
dim: 256
|
| 82 |
+
kernel_size: 7
|
| 83 |
+
padding: 3
|
| 84 |
+
layer_scale_init_value: 1e-6
|
| 85 |
+
use_dwconv: True # depth-wise convs
|
| 86 |
+
num_layers: 2
|
| 87 |
+
|
| 88 |
+
num_maskmem: 7
|
| 89 |
+
image_size: 1024
|
| 90 |
+
# apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
|
| 91 |
+
sigmoid_scale_for_mem_enc: 20.0
|
| 92 |
+
sigmoid_bias_for_mem_enc: -10.0
|
| 93 |
+
use_mask_input_as_output_without_sam: true
|
| 94 |
+
# Memory
|
| 95 |
+
directly_add_no_mem_embed: true
|
| 96 |
+
# use high-resolution feature map in the SAM mask decoder
|
| 97 |
+
use_high_res_features_in_sam: true
|
| 98 |
+
# output 3 masks on the first click on initial conditioning frames
|
| 99 |
+
multimask_output_in_sam: true
|
| 100 |
+
# SAM heads
|
| 101 |
+
iou_prediction_use_sigmoid: True
|
| 102 |
+
# cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
|
| 103 |
+
use_obj_ptrs_in_encoder: true
|
| 104 |
+
add_tpos_enc_to_obj_ptrs: false
|
| 105 |
+
only_obj_ptrs_in_the_past_for_eval: true
|
| 106 |
+
# object occlusion prediction
|
| 107 |
+
pred_obj_scores: true
|
| 108 |
+
pred_obj_scores_mlp: true
|
| 109 |
+
fixed_no_obj_ptr: true
|
| 110 |
+
# multimask tracking settings
|
| 111 |
+
multimask_output_for_tracking: true
|
| 112 |
+
use_multimask_token_for_obj_ptr: true
|
| 113 |
+
multimask_min_pt_num: 0
|
| 114 |
+
multimask_max_pt_num: 1
|
| 115 |
+
use_mlp_for_obj_ptr_proj: true
|
| 116 |
+
# Compilation flag
|
| 117 |
+
compile_image_encoder: False
|
sam2/configs/sam2/sam2_hiera_s.yaml
ADDED
|
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# @package _global_
|
| 2 |
+
|
| 3 |
+
# Model
|
| 4 |
+
model:
|
| 5 |
+
_target_: inference.sam2.modeling.sam2_base.SAM2Base
|
| 6 |
+
image_encoder:
|
| 7 |
+
_target_: inference.sam2.modeling.backbones.image_encoder.ImageEncoder
|
| 8 |
+
scalp: 1
|
| 9 |
+
trunk:
|
| 10 |
+
_target_: inference.sam2.modeling.backbones.hieradet.Hiera
|
| 11 |
+
embed_dim: 96
|
| 12 |
+
num_heads: 1
|
| 13 |
+
stages: [1, 2, 11, 2]
|
| 14 |
+
global_att_blocks: [7, 10, 13]
|
| 15 |
+
window_pos_embed_bkg_spatial_size: [7, 7]
|
| 16 |
+
neck:
|
| 17 |
+
_target_: inference.sam2.modeling.backbones.image_encoder.FpnNeck
|
| 18 |
+
position_encoding:
|
| 19 |
+
_target_: inference.sam2.modeling.position_encoding.PositionEmbeddingSine
|
| 20 |
+
num_pos_feats: 256
|
| 21 |
+
normalize: true
|
| 22 |
+
scale: null
|
| 23 |
+
temperature: 10000
|
| 24 |
+
d_model: 256
|
| 25 |
+
backbone_channel_list: [768, 384, 192, 96]
|
| 26 |
+
fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
|
| 27 |
+
fpn_interp_model: nearest
|
| 28 |
+
|
| 29 |
+
memory_attention:
|
| 30 |
+
_target_: inference.sam2.modeling.memory_attention.MemoryAttention
|
| 31 |
+
d_model: 256
|
| 32 |
+
pos_enc_at_input: true
|
| 33 |
+
layer:
|
| 34 |
+
_target_: inference.sam2.modeling.memory_attention.MemoryAttentionLayer
|
| 35 |
+
activation: relu
|
| 36 |
+
dim_feedforward: 2048
|
| 37 |
+
dropout: 0.1
|
| 38 |
+
pos_enc_at_attn: false
|
| 39 |
+
self_attention:
|
| 40 |
+
_target_: inference.sam2.modeling.sam.transformer.RoPEAttention
|
| 41 |
+
rope_theta: 10000.0
|
| 42 |
+
feat_sizes: [32, 32]
|
| 43 |
+
embedding_dim: 256
|
| 44 |
+
num_heads: 1
|
| 45 |
+
downsample_rate: 1
|
| 46 |
+
dropout: 0.1
|
| 47 |
+
d_model: 256
|
| 48 |
+
pos_enc_at_cross_attn_keys: true
|
| 49 |
+
pos_enc_at_cross_attn_queries: false
|
| 50 |
+
cross_attention:
|
| 51 |
+
_target_: inference.sam2.modeling.sam.transformer.RoPEAttention
|
| 52 |
+
rope_theta: 10000.0
|
| 53 |
+
feat_sizes: [32, 32]
|
| 54 |
+
rope_k_repeat: True
|
| 55 |
+
embedding_dim: 256
|
| 56 |
+
num_heads: 1
|
| 57 |
+
downsample_rate: 1
|
| 58 |
+
dropout: 0.1
|
| 59 |
+
kv_in_dim: 64
|
| 60 |
+
num_layers: 4
|
| 61 |
+
|
| 62 |
+
memory_encoder:
|
| 63 |
+
_target_: inference.sam2.modeling.memory_encoder.MemoryEncoder
|
| 64 |
+
out_dim: 64
|
| 65 |
+
position_encoding:
|
| 66 |
+
_target_: inference.sam2.modeling.position_encoding.PositionEmbeddingSine
|
| 67 |
+
num_pos_feats: 64
|
| 68 |
+
normalize: true
|
| 69 |
+
scale: null
|
| 70 |
+
temperature: 10000
|
| 71 |
+
mask_downsampler:
|
| 72 |
+
_target_: inference.sam2.modeling.memory_encoder.MaskDownSampler
|
| 73 |
+
kernel_size: 3
|
| 74 |
+
stride: 2
|
| 75 |
+
padding: 1
|
| 76 |
+
fuser:
|
| 77 |
+
_target_: inference.sam2.modeling.memory_encoder.Fuser
|
| 78 |
+
layer:
|
| 79 |
+
_target_: inference.sam2.modeling.memory_encoder.CXBlock
|
| 80 |
+
dim: 256
|
| 81 |
+
kernel_size: 7
|
| 82 |
+
padding: 3
|
| 83 |
+
layer_scale_init_value: 1e-6
|
| 84 |
+
use_dwconv: True # depth-wise convs
|
| 85 |
+
num_layers: 2
|
| 86 |
+
|
| 87 |
+
num_maskmem: 7
|
| 88 |
+
image_size: 1024
|
| 89 |
+
# apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
|
| 90 |
+
sigmoid_scale_for_mem_enc: 20.0
|
| 91 |
+
sigmoid_bias_for_mem_enc: -10.0
|
| 92 |
+
use_mask_input_as_output_without_sam: true
|
| 93 |
+
# Memory
|
| 94 |
+
directly_add_no_mem_embed: true
|
| 95 |
+
# use high-resolution feature map in the SAM mask decoder
|
| 96 |
+
use_high_res_features_in_sam: true
|
| 97 |
+
# output 3 masks on the first click on initial conditioning frames
|
| 98 |
+
multimask_output_in_sam: true
|
| 99 |
+
# SAM heads
|
| 100 |
+
iou_prediction_use_sigmoid: True
|
| 101 |
+
# cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
|
| 102 |
+
use_obj_ptrs_in_encoder: true
|
| 103 |
+
add_tpos_enc_to_obj_ptrs: false
|
| 104 |
+
only_obj_ptrs_in_the_past_for_eval: true
|
| 105 |
+
# object occlusion prediction
|
| 106 |
+
pred_obj_scores: true
|
| 107 |
+
pred_obj_scores_mlp: true
|
| 108 |
+
fixed_no_obj_ptr: true
|
| 109 |
+
# multimask tracking settings
|
| 110 |
+
multimask_output_for_tracking: true
|
| 111 |
+
use_multimask_token_for_obj_ptr: true
|
| 112 |
+
multimask_min_pt_num: 0
|
| 113 |
+
multimask_max_pt_num: 1
|
| 114 |
+
use_mlp_for_obj_ptr_proj: true
|
| 115 |
+
# Compilation flag
|
| 116 |
+
compile_image_encoder: False
|
sam2/configs/sam2/sam2_hiera_t.yaml
ADDED
|
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# @package _global_
|
| 2 |
+
|
| 3 |
+
# Model
|
| 4 |
+
model:
|
| 5 |
+
_target_: inference.sam2.modeling.sam2_base.SAM2Base
|
| 6 |
+
image_encoder:
|
| 7 |
+
_target_: inference.sam2.modeling.backbones.image_encoder.ImageEncoder
|
| 8 |
+
scalp: 1
|
| 9 |
+
trunk:
|
| 10 |
+
_target_: inference.sam2.modeling.backbones.hieradet.Hiera
|
| 11 |
+
embed_dim: 96
|
| 12 |
+
num_heads: 1
|
| 13 |
+
stages: [1, 2, 7, 2]
|
| 14 |
+
global_att_blocks: [5, 7, 9]
|
| 15 |
+
window_pos_embed_bkg_spatial_size: [7, 7]
|
| 16 |
+
neck:
|
| 17 |
+
_target_: inference.sam2.modeling.backbones.image_encoder.FpnNeck
|
| 18 |
+
position_encoding:
|
| 19 |
+
_target_: inference.sam2.modeling.position_encoding.PositionEmbeddingSine
|
| 20 |
+
num_pos_feats: 256
|
| 21 |
+
normalize: true
|
| 22 |
+
scale: null
|
| 23 |
+
temperature: 10000
|
| 24 |
+
d_model: 256
|
| 25 |
+
backbone_channel_list: [768, 384, 192, 96]
|
| 26 |
+
fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
|
| 27 |
+
fpn_interp_model: nearest
|
| 28 |
+
|
| 29 |
+
memory_attention:
|
| 30 |
+
_target_: inference.sam2.modeling.memory_attention.MemoryAttention
|
| 31 |
+
d_model: 256
|
| 32 |
+
pos_enc_at_input: true
|
| 33 |
+
layer:
|
| 34 |
+
_target_: inference.sam2.modeling.memory_attention.MemoryAttentionLayer
|
| 35 |
+
activation: relu
|
| 36 |
+
dim_feedforward: 2048
|
| 37 |
+
dropout: 0.1
|
| 38 |
+
pos_enc_at_attn: false
|
| 39 |
+
self_attention:
|
| 40 |
+
_target_: inference.sam2.modeling.sam.transformer.RoPEAttention
|
| 41 |
+
rope_theta: 10000.0
|
| 42 |
+
feat_sizes: [32, 32]
|
| 43 |
+
embedding_dim: 256
|
| 44 |
+
num_heads: 1
|
| 45 |
+
downsample_rate: 1
|
| 46 |
+
dropout: 0.1
|
| 47 |
+
d_model: 256
|
| 48 |
+
pos_enc_at_cross_attn_keys: true
|
| 49 |
+
pos_enc_at_cross_attn_queries: false
|
| 50 |
+
cross_attention:
|
| 51 |
+
_target_: inference.sam2.modeling.sam.transformer.RoPEAttention
|
| 52 |
+
rope_theta: 10000.0
|
| 53 |
+
feat_sizes: [32, 32]
|
| 54 |
+
rope_k_repeat: True
|
| 55 |
+
embedding_dim: 256
|
| 56 |
+
num_heads: 1
|
| 57 |
+
downsample_rate: 1
|
| 58 |
+
dropout: 0.1
|
| 59 |
+
kv_in_dim: 64
|
| 60 |
+
num_layers: 4
|
| 61 |
+
|
| 62 |
+
memory_encoder:
|
| 63 |
+
_target_: inference.sam2.modeling.memory_encoder.MemoryEncoder
|
| 64 |
+
out_dim: 64
|
| 65 |
+
position_encoding:
|
| 66 |
+
_target_: inference.sam2.modeling.position_encoding.PositionEmbeddingSine
|
| 67 |
+
num_pos_feats: 64
|
| 68 |
+
normalize: true
|
| 69 |
+
scale: null
|
| 70 |
+
temperature: 10000
|
| 71 |
+
mask_downsampler:
|
| 72 |
+
_target_: inference.sam2.modeling.memory_encoder.MaskDownSampler
|
| 73 |
+
kernel_size: 3
|
| 74 |
+
stride: 2
|
| 75 |
+
padding: 1
|
| 76 |
+
fuser:
|
| 77 |
+
_target_: inference.sam2.modeling.memory_encoder.Fuser
|
| 78 |
+
layer:
|
| 79 |
+
_target_: inference.sam2.modeling.memory_encoder.CXBlock
|
| 80 |
+
dim: 256
|
| 81 |
+
kernel_size: 7
|
| 82 |
+
padding: 3
|
| 83 |
+
layer_scale_init_value: 1e-6
|
| 84 |
+
use_dwconv: True # depth-wise convs
|
| 85 |
+
num_layers: 2
|
| 86 |
+
|
| 87 |
+
num_maskmem: 7
|
| 88 |
+
image_size: 1024
|
| 89 |
+
# apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
|
| 90 |
+
# SAM decoder
|
| 91 |
+
sigmoid_scale_for_mem_enc: 20.0
|
| 92 |
+
sigmoid_bias_for_mem_enc: -10.0
|
| 93 |
+
use_mask_input_as_output_without_sam: true
|
| 94 |
+
# Memory
|
| 95 |
+
directly_add_no_mem_embed: true
|
| 96 |
+
# use high-resolution feature map in the SAM mask decoder
|
| 97 |
+
use_high_res_features_in_sam: true
|
| 98 |
+
# output 3 masks on the first click on initial conditioning frames
|
| 99 |
+
multimask_output_in_sam: true
|
| 100 |
+
# SAM heads
|
| 101 |
+
iou_prediction_use_sigmoid: True
|
| 102 |
+
# cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
|
| 103 |
+
use_obj_ptrs_in_encoder: true
|
| 104 |
+
add_tpos_enc_to_obj_ptrs: false
|
| 105 |
+
only_obj_ptrs_in_the_past_for_eval: true
|
| 106 |
+
# object occlusion prediction
|
| 107 |
+
pred_obj_scores: true
|
| 108 |
+
pred_obj_scores_mlp: true
|
| 109 |
+
fixed_no_obj_ptr: true
|
| 110 |
+
# multimask tracking settings
|
| 111 |
+
multimask_output_for_tracking: true
|
| 112 |
+
use_multimask_token_for_obj_ptr: true
|
| 113 |
+
multimask_min_pt_num: 0
|
| 114 |
+
multimask_max_pt_num: 1
|
| 115 |
+
use_mlp_for_obj_ptr_proj: true
|
| 116 |
+
# Compilation flag
|
| 117 |
+
# HieraT does not currently support compilation, should always be set to False
|
| 118 |
+
compile_image_encoder: False
|
sam2/csrc/connected_components.cu
ADDED
|
@@ -0,0 +1,289 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// Copyright (c) Meta Platforms, Inc. and affiliates.
|
| 2 |
+
// All rights reserved.
|
| 3 |
+
|
| 4 |
+
// This source code is licensed under the license found in the
|
| 5 |
+
// LICENSE file in the root directory of this source tree.
|
| 6 |
+
|
| 7 |
+
// adapted from https://github.com/zsef123/Connected_components_PyTorch
|
| 8 |
+
// with license found in the LICENSE_cctorch file in the root directory.
|
| 9 |
+
#include <ATen/cuda/CUDAContext.h>
|
| 10 |
+
#include <cuda.h>
|
| 11 |
+
#include <cuda_runtime.h>
|
| 12 |
+
#include <torch/extension.h>
|
| 13 |
+
#include <torch/script.h>
|
| 14 |
+
#include <vector>
|
| 15 |
+
|
| 16 |
+
// 2d
|
| 17 |
+
#define BLOCK_ROWS 16
|
| 18 |
+
#define BLOCK_COLS 16
|
| 19 |
+
|
| 20 |
+
namespace cc2d {
|
| 21 |
+
|
| 22 |
+
template <typename T>
|
| 23 |
+
__device__ __forceinline__ unsigned char hasBit(T bitmap, unsigned char pos) {
|
| 24 |
+
return (bitmap >> pos) & 1;
|
| 25 |
+
}
|
| 26 |
+
|
| 27 |
+
__device__ int32_t find(const int32_t* s_buf, int32_t n) {
|
| 28 |
+
while (s_buf[n] != n)
|
| 29 |
+
n = s_buf[n];
|
| 30 |
+
return n;
|
| 31 |
+
}
|
| 32 |
+
|
| 33 |
+
__device__ int32_t find_n_compress(int32_t* s_buf, int32_t n) {
|
| 34 |
+
const int32_t id = n;
|
| 35 |
+
while (s_buf[n] != n) {
|
| 36 |
+
n = s_buf[n];
|
| 37 |
+
s_buf[id] = n;
|
| 38 |
+
}
|
| 39 |
+
return n;
|
| 40 |
+
}
|
| 41 |
+
|
| 42 |
+
__device__ void union_(int32_t* s_buf, int32_t a, int32_t b) {
|
| 43 |
+
bool done;
|
| 44 |
+
do {
|
| 45 |
+
a = find(s_buf, a);
|
| 46 |
+
b = find(s_buf, b);
|
| 47 |
+
|
| 48 |
+
if (a < b) {
|
| 49 |
+
int32_t old = atomicMin(s_buf + b, a);
|
| 50 |
+
done = (old == b);
|
| 51 |
+
b = old;
|
| 52 |
+
} else if (b < a) {
|
| 53 |
+
int32_t old = atomicMin(s_buf + a, b);
|
| 54 |
+
done = (old == a);
|
| 55 |
+
a = old;
|
| 56 |
+
} else
|
| 57 |
+
done = true;
|
| 58 |
+
|
| 59 |
+
} while (!done);
|
| 60 |
+
}
|
| 61 |
+
|
| 62 |
+
__global__ void
|
| 63 |
+
init_labeling(int32_t* label, const uint32_t W, const uint32_t H) {
|
| 64 |
+
const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2;
|
| 65 |
+
const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2;
|
| 66 |
+
const uint32_t idx = row * W + col;
|
| 67 |
+
|
| 68 |
+
if (row < H && col < W)
|
| 69 |
+
label[idx] = idx;
|
| 70 |
+
}
|
| 71 |
+
|
| 72 |
+
__global__ void
|
| 73 |
+
merge(uint8_t* img, int32_t* label, const uint32_t W, const uint32_t H) {
|
| 74 |
+
const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2;
|
| 75 |
+
const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2;
|
| 76 |
+
const uint32_t idx = row * W + col;
|
| 77 |
+
|
| 78 |
+
if (row >= H || col >= W)
|
| 79 |
+
return;
|
| 80 |
+
|
| 81 |
+
uint32_t P = 0;
|
| 82 |
+
|
| 83 |
+
if (img[idx])
|
| 84 |
+
P |= 0x777;
|
| 85 |
+
if (row + 1 < H && img[idx + W])
|
| 86 |
+
P |= 0x777 << 4;
|
| 87 |
+
if (col + 1 < W && img[idx + 1])
|
| 88 |
+
P |= 0x777 << 1;
|
| 89 |
+
|
| 90 |
+
if (col == 0)
|
| 91 |
+
P &= 0xEEEE;
|
| 92 |
+
if (col + 1 >= W)
|
| 93 |
+
P &= 0x3333;
|
| 94 |
+
else if (col + 2 >= W)
|
| 95 |
+
P &= 0x7777;
|
| 96 |
+
|
| 97 |
+
if (row == 0)
|
| 98 |
+
P &= 0xFFF0;
|
| 99 |
+
if (row + 1 >= H)
|
| 100 |
+
P &= 0xFF;
|
| 101 |
+
|
| 102 |
+
if (P > 0) {
|
| 103 |
+
// If need check about top-left pixel(if flag the first bit) and hit the
|
| 104 |
+
// top-left pixel
|
| 105 |
+
if (hasBit(P, 0) && img[idx - W - 1]) {
|
| 106 |
+
union_(label, idx, idx - 2 * W - 2); // top left block
|
| 107 |
+
}
|
| 108 |
+
|
| 109 |
+
if ((hasBit(P, 1) && img[idx - W]) || (hasBit(P, 2) && img[idx - W + 1]))
|
| 110 |
+
union_(label, idx, idx - 2 * W); // top bottom block
|
| 111 |
+
|
| 112 |
+
if (hasBit(P, 3) && img[idx + 2 - W])
|
| 113 |
+
union_(label, idx, idx - 2 * W + 2); // top right block
|
| 114 |
+
|
| 115 |
+
if ((hasBit(P, 4) && img[idx - 1]) || (hasBit(P, 8) && img[idx + W - 1]))
|
| 116 |
+
union_(label, idx, idx - 2); // just left block
|
| 117 |
+
}
|
| 118 |
+
}
|
| 119 |
+
|
| 120 |
+
__global__ void compression(int32_t* label, const int32_t W, const int32_t H) {
|
| 121 |
+
const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2;
|
| 122 |
+
const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2;
|
| 123 |
+
const uint32_t idx = row * W + col;
|
| 124 |
+
|
| 125 |
+
if (row < H && col < W)
|
| 126 |
+
find_n_compress(label, idx);
|
| 127 |
+
}
|
| 128 |
+
|
| 129 |
+
__global__ void final_labeling(
|
| 130 |
+
const uint8_t* img,
|
| 131 |
+
int32_t* label,
|
| 132 |
+
const int32_t W,
|
| 133 |
+
const int32_t H) {
|
| 134 |
+
const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2;
|
| 135 |
+
const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2;
|
| 136 |
+
const uint32_t idx = row * W + col;
|
| 137 |
+
|
| 138 |
+
if (row >= H || col >= W)
|
| 139 |
+
return;
|
| 140 |
+
|
| 141 |
+
int32_t y = label[idx] + 1;
|
| 142 |
+
|
| 143 |
+
if (img[idx])
|
| 144 |
+
label[idx] = y;
|
| 145 |
+
else
|
| 146 |
+
label[idx] = 0;
|
| 147 |
+
|
| 148 |
+
if (col + 1 < W) {
|
| 149 |
+
if (img[idx + 1])
|
| 150 |
+
label[idx + 1] = y;
|
| 151 |
+
else
|
| 152 |
+
label[idx + 1] = 0;
|
| 153 |
+
|
| 154 |
+
if (row + 1 < H) {
|
| 155 |
+
if (img[idx + W + 1])
|
| 156 |
+
label[idx + W + 1] = y;
|
| 157 |
+
else
|
| 158 |
+
label[idx + W + 1] = 0;
|
| 159 |
+
}
|
| 160 |
+
}
|
| 161 |
+
|
| 162 |
+
if (row + 1 < H) {
|
| 163 |
+
if (img[idx + W])
|
| 164 |
+
label[idx + W] = y;
|
| 165 |
+
else
|
| 166 |
+
label[idx + W] = 0;
|
| 167 |
+
}
|
| 168 |
+
}
|
| 169 |
+
|
| 170 |
+
__global__ void init_counting(
|
| 171 |
+
const int32_t* label,
|
| 172 |
+
int32_t* count_init,
|
| 173 |
+
const int32_t W,
|
| 174 |
+
const int32_t H) {
|
| 175 |
+
const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y);
|
| 176 |
+
const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x);
|
| 177 |
+
const uint32_t idx = row * W + col;
|
| 178 |
+
|
| 179 |
+
if (row >= H || col >= W)
|
| 180 |
+
return;
|
| 181 |
+
|
| 182 |
+
int32_t y = label[idx];
|
| 183 |
+
if (y > 0) {
|
| 184 |
+
int32_t count_idx = y - 1;
|
| 185 |
+
atomicAdd(count_init + count_idx, 1);
|
| 186 |
+
}
|
| 187 |
+
}
|
| 188 |
+
|
| 189 |
+
__global__ void final_counting(
|
| 190 |
+
const int32_t* label,
|
| 191 |
+
const int32_t* count_init,
|
| 192 |
+
int32_t* count_final,
|
| 193 |
+
const int32_t W,
|
| 194 |
+
const int32_t H) {
|
| 195 |
+
const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y);
|
| 196 |
+
const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x);
|
| 197 |
+
const uint32_t idx = row * W + col;
|
| 198 |
+
|
| 199 |
+
if (row >= H || col >= W)
|
| 200 |
+
return;
|
| 201 |
+
|
| 202 |
+
int32_t y = label[idx];
|
| 203 |
+
if (y > 0) {
|
| 204 |
+
int32_t count_idx = y - 1;
|
| 205 |
+
count_final[idx] = count_init[count_idx];
|
| 206 |
+
} else {
|
| 207 |
+
count_final[idx] = 0;
|
| 208 |
+
}
|
| 209 |
+
}
|
| 210 |
+
|
| 211 |
+
} // namespace cc2d
|
| 212 |
+
|
| 213 |
+
std::vector<torch::Tensor> get_connected_componnets(
|
| 214 |
+
const torch::Tensor& inputs) {
|
| 215 |
+
AT_ASSERTM(inputs.is_cuda(), "inputs must be a CUDA tensor");
|
| 216 |
+
AT_ASSERTM(inputs.ndimension() == 4, "inputs must be [N, 1, H, W] shape");
|
| 217 |
+
AT_ASSERTM(
|
| 218 |
+
inputs.scalar_type() == torch::kUInt8, "inputs must be a uint8 type");
|
| 219 |
+
|
| 220 |
+
const uint32_t N = inputs.size(0);
|
| 221 |
+
const uint32_t C = inputs.size(1);
|
| 222 |
+
const uint32_t H = inputs.size(2);
|
| 223 |
+
const uint32_t W = inputs.size(3);
|
| 224 |
+
|
| 225 |
+
AT_ASSERTM(C == 1, "inputs must be [N, 1, H, W] shape");
|
| 226 |
+
AT_ASSERTM((H % 2) == 0, "height must be an even number");
|
| 227 |
+
AT_ASSERTM((W % 2) == 0, "width must be an even number");
|
| 228 |
+
|
| 229 |
+
// label must be uint32_t
|
| 230 |
+
auto label_options =
|
| 231 |
+
torch::TensorOptions().dtype(torch::kInt32).device(inputs.device());
|
| 232 |
+
torch::Tensor labels = torch::zeros({N, C, H, W}, label_options);
|
| 233 |
+
torch::Tensor counts_init = torch::zeros({N, C, H, W}, label_options);
|
| 234 |
+
torch::Tensor counts_final = torch::zeros({N, C, H, W}, label_options);
|
| 235 |
+
|
| 236 |
+
dim3 grid = dim3(
|
| 237 |
+
((W + 1) / 2 + BLOCK_COLS - 1) / BLOCK_COLS,
|
| 238 |
+
((H + 1) / 2 + BLOCK_ROWS - 1) / BLOCK_ROWS);
|
| 239 |
+
dim3 block = dim3(BLOCK_COLS, BLOCK_ROWS);
|
| 240 |
+
dim3 grid_count =
|
| 241 |
+
dim3((W + BLOCK_COLS) / BLOCK_COLS, (H + BLOCK_ROWS) / BLOCK_ROWS);
|
| 242 |
+
dim3 block_count = dim3(BLOCK_COLS, BLOCK_ROWS);
|
| 243 |
+
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
| 244 |
+
|
| 245 |
+
for (int n = 0; n < N; n++) {
|
| 246 |
+
uint32_t offset = n * H * W;
|
| 247 |
+
|
| 248 |
+
cc2d::init_labeling<<<grid, block, 0, stream>>>(
|
| 249 |
+
labels.data_ptr<int32_t>() + offset, W, H);
|
| 250 |
+
cc2d::merge<<<grid, block, 0, stream>>>(
|
| 251 |
+
inputs.data_ptr<uint8_t>() + offset,
|
| 252 |
+
labels.data_ptr<int32_t>() + offset,
|
| 253 |
+
W,
|
| 254 |
+
H);
|
| 255 |
+
cc2d::compression<<<grid, block, 0, stream>>>(
|
| 256 |
+
labels.data_ptr<int32_t>() + offset, W, H);
|
| 257 |
+
cc2d::final_labeling<<<grid, block, 0, stream>>>(
|
| 258 |
+
inputs.data_ptr<uint8_t>() + offset,
|
| 259 |
+
labels.data_ptr<int32_t>() + offset,
|
| 260 |
+
W,
|
| 261 |
+
H);
|
| 262 |
+
|
| 263 |
+
// get the counting of each pixel
|
| 264 |
+
cc2d::init_counting<<<grid_count, block_count, 0, stream>>>(
|
| 265 |
+
labels.data_ptr<int32_t>() + offset,
|
| 266 |
+
counts_init.data_ptr<int32_t>() + offset,
|
| 267 |
+
W,
|
| 268 |
+
H);
|
| 269 |
+
cc2d::final_counting<<<grid_count, block_count, 0, stream>>>(
|
| 270 |
+
labels.data_ptr<int32_t>() + offset,
|
| 271 |
+
counts_init.data_ptr<int32_t>() + offset,
|
| 272 |
+
counts_final.data_ptr<int32_t>() + offset,
|
| 273 |
+
W,
|
| 274 |
+
H);
|
| 275 |
+
}
|
| 276 |
+
|
| 277 |
+
// returned values are [labels, counts]
|
| 278 |
+
std::vector<torch::Tensor> outputs;
|
| 279 |
+
outputs.push_back(labels);
|
| 280 |
+
outputs.push_back(counts_final);
|
| 281 |
+
return outputs;
|
| 282 |
+
}
|
| 283 |
+
|
| 284 |
+
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
| 285 |
+
m.def(
|
| 286 |
+
"get_connected_componnets",
|
| 287 |
+
&get_connected_componnets,
|
| 288 |
+
"get_connected_componnets");
|
| 289 |
+
}
|
sam2/modeling/__init__.py
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
| 2 |
+
# All rights reserved.
|
| 3 |
+
|
| 4 |
+
# This source code is licensed under the license found in the
|
| 5 |
+
# LICENSE file in the root directory of this source tree.
|
sam2/modeling/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (191 Bytes). View file
|
|
|
sam2/modeling/__pycache__/memory_attention.cpython-310.pyc
ADDED
|
Binary file (3.99 kB). View file
|
|
|
sam2/modeling/__pycache__/memory_encoder.cpython-310.pyc
ADDED
|
Binary file (5.01 kB). View file
|
|
|
sam2/modeling/__pycache__/position_encoding.cpython-310.pyc
ADDED
|
Binary file (7.57 kB). View file
|
|
|
sam2/modeling/__pycache__/sam2_base.cpython-310.pyc
ADDED
|
Binary file (18.3 kB). View file
|
|
|
sam2/modeling/__pycache__/sam2_utils.cpython-310.pyc
ADDED
|
Binary file (11.1 kB). View file
|
|
|
sam2/modeling/backbones/__init__.py
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
| 2 |
+
# All rights reserved.
|
| 3 |
+
|
| 4 |
+
# This source code is licensed under the license found in the
|
| 5 |
+
# LICENSE file in the root directory of this source tree.
|
sam2/modeling/backbones/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (201 Bytes). View file
|
|
|
sam2/modeling/backbones/__pycache__/hieradet.cpython-310.pyc
ADDED
|
Binary file (7.74 kB). View file
|
|
|
sam2/modeling/backbones/__pycache__/image_encoder.cpython-310.pyc
ADDED
|
Binary file (3.47 kB). View file
|
|
|
sam2/modeling/backbones/__pycache__/utils.cpython-310.pyc
ADDED
|
Binary file (3.27 kB). View file
|
|
|
sam2/modeling/backbones/hieradet.py
ADDED
|
@@ -0,0 +1,317 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
| 2 |
+
# All rights reserved.
|
| 3 |
+
|
| 4 |
+
# This source code is licensed under the license found in the
|
| 5 |
+
# LICENSE file in the root directory of this source tree.
|
| 6 |
+
|
| 7 |
+
import logging
|
| 8 |
+
from functools import partial
|
| 9 |
+
from typing import List, Tuple, Union
|
| 10 |
+
|
| 11 |
+
import torch
|
| 12 |
+
import torch.nn as nn
|
| 13 |
+
import torch.nn.functional as F
|
| 14 |
+
from iopath.common.file_io import g_pathmgr
|
| 15 |
+
|
| 16 |
+
from .utils import (
|
| 17 |
+
PatchEmbed,
|
| 18 |
+
window_partition,
|
| 19 |
+
window_unpartition,
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
from ..sam2_utils import DropPath, MLP
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def do_pool(x: torch.Tensor, pool: nn.Module, norm: nn.Module = None) -> torch.Tensor:
|
| 26 |
+
if pool is None:
|
| 27 |
+
return x
|
| 28 |
+
# (B, H, W, C) -> (B, C, H, W)
|
| 29 |
+
x = x.permute(0, 3, 1, 2)
|
| 30 |
+
x = pool(x)
|
| 31 |
+
# (B, C, H', W') -> (B, H', W', C)
|
| 32 |
+
x = x.permute(0, 2, 3, 1)
|
| 33 |
+
if norm:
|
| 34 |
+
x = norm(x)
|
| 35 |
+
|
| 36 |
+
return x
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
class MultiScaleAttention(nn.Module):
|
| 40 |
+
def __init__(
|
| 41 |
+
self,
|
| 42 |
+
dim: int,
|
| 43 |
+
dim_out: int,
|
| 44 |
+
num_heads: int,
|
| 45 |
+
q_pool: nn.Module = None,
|
| 46 |
+
):
|
| 47 |
+
super().__init__()
|
| 48 |
+
|
| 49 |
+
self.dim = dim
|
| 50 |
+
self.dim_out = dim_out
|
| 51 |
+
self.num_heads = num_heads
|
| 52 |
+
self.q_pool = q_pool
|
| 53 |
+
self.qkv = nn.Linear(dim, dim_out * 3)
|
| 54 |
+
self.proj = nn.Linear(dim_out, dim_out)
|
| 55 |
+
|
| 56 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 57 |
+
B, H, W, _ = x.shape
|
| 58 |
+
# qkv with shape (B, H * W, 3, nHead, C)
|
| 59 |
+
qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1)
|
| 60 |
+
# q, k, v with shape (B, H * W, nheads, C)
|
| 61 |
+
q, k, v = torch.unbind(qkv, 2)
|
| 62 |
+
|
| 63 |
+
# Q pooling (for downsample at stage changes)
|
| 64 |
+
if self.q_pool:
|
| 65 |
+
q = do_pool(q.reshape(B, H, W, -1), self.q_pool)
|
| 66 |
+
H, W = q.shape[1:3] # downsampled shape
|
| 67 |
+
q = q.reshape(B, H * W, self.num_heads, -1)
|
| 68 |
+
|
| 69 |
+
# Torch's SDPA expects [B, nheads, H*W, C] so we transpose
|
| 70 |
+
x = F.scaled_dot_product_attention(
|
| 71 |
+
q.transpose(1, 2),
|
| 72 |
+
k.transpose(1, 2),
|
| 73 |
+
v.transpose(1, 2),
|
| 74 |
+
)
|
| 75 |
+
# Transpose back
|
| 76 |
+
x = x.transpose(1, 2)
|
| 77 |
+
x = x.reshape(B, H, W, -1)
|
| 78 |
+
|
| 79 |
+
x = self.proj(x)
|
| 80 |
+
|
| 81 |
+
return x
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
class MultiScaleBlock(nn.Module):
|
| 85 |
+
def __init__(
|
| 86 |
+
self,
|
| 87 |
+
dim: int,
|
| 88 |
+
dim_out: int,
|
| 89 |
+
num_heads: int,
|
| 90 |
+
mlp_ratio: float = 4.0,
|
| 91 |
+
drop_path: float = 0.0,
|
| 92 |
+
norm_layer: Union[nn.Module, str] = "LayerNorm",
|
| 93 |
+
q_stride: Tuple[int, int] = None,
|
| 94 |
+
act_layer: nn.Module = nn.GELU,
|
| 95 |
+
window_size: int = 0,
|
| 96 |
+
):
|
| 97 |
+
super().__init__()
|
| 98 |
+
|
| 99 |
+
if isinstance(norm_layer, str):
|
| 100 |
+
norm_layer = partial(getattr(nn, norm_layer), eps=1e-6)
|
| 101 |
+
|
| 102 |
+
self.dim = dim
|
| 103 |
+
self.dim_out = dim_out
|
| 104 |
+
self.norm1 = norm_layer(dim)
|
| 105 |
+
|
| 106 |
+
self.window_size = window_size
|
| 107 |
+
|
| 108 |
+
self.pool, self.q_stride = None, q_stride
|
| 109 |
+
if self.q_stride:
|
| 110 |
+
self.pool = nn.MaxPool2d(
|
| 111 |
+
kernel_size=q_stride, stride=q_stride, ceil_mode=False
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
self.attn = MultiScaleAttention(
|
| 115 |
+
dim,
|
| 116 |
+
dim_out,
|
| 117 |
+
num_heads=num_heads,
|
| 118 |
+
q_pool=self.pool,
|
| 119 |
+
)
|
| 120 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
| 121 |
+
|
| 122 |
+
self.norm2 = norm_layer(dim_out)
|
| 123 |
+
self.mlp = MLP(
|
| 124 |
+
dim_out,
|
| 125 |
+
int(dim_out * mlp_ratio),
|
| 126 |
+
dim_out,
|
| 127 |
+
num_layers=2,
|
| 128 |
+
activation=act_layer,
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
if dim != dim_out:
|
| 132 |
+
self.proj = nn.Linear(dim, dim_out)
|
| 133 |
+
|
| 134 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 135 |
+
shortcut = x # B, H, W, C
|
| 136 |
+
x = self.norm1(x)
|
| 137 |
+
|
| 138 |
+
# Skip connection
|
| 139 |
+
if self.dim != self.dim_out:
|
| 140 |
+
shortcut = do_pool(self.proj(x), self.pool)
|
| 141 |
+
|
| 142 |
+
# Window partition
|
| 143 |
+
window_size = self.window_size
|
| 144 |
+
if window_size > 0:
|
| 145 |
+
H, W = x.shape[1], x.shape[2]
|
| 146 |
+
x, pad_hw = window_partition(x, window_size)
|
| 147 |
+
|
| 148 |
+
# Window Attention + Q Pooling (if stage change)
|
| 149 |
+
x = self.attn(x)
|
| 150 |
+
if self.q_stride:
|
| 151 |
+
# Shapes have changed due to Q pooling
|
| 152 |
+
window_size = self.window_size // self.q_stride[0]
|
| 153 |
+
H, W = shortcut.shape[1:3]
|
| 154 |
+
|
| 155 |
+
pad_h = (window_size - H % window_size) % window_size
|
| 156 |
+
pad_w = (window_size - W % window_size) % window_size
|
| 157 |
+
pad_hw = (H + pad_h, W + pad_w)
|
| 158 |
+
|
| 159 |
+
# Reverse window partition
|
| 160 |
+
if self.window_size > 0:
|
| 161 |
+
x = window_unpartition(x, window_size, pad_hw, (H, W))
|
| 162 |
+
|
| 163 |
+
x = shortcut + self.drop_path(x)
|
| 164 |
+
# MLP
|
| 165 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
| 166 |
+
return x
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
class Hiera(nn.Module):
|
| 170 |
+
"""
|
| 171 |
+
Reference: https://arxiv.org/abs/2306.00989
|
| 172 |
+
"""
|
| 173 |
+
|
| 174 |
+
def __init__(
|
| 175 |
+
self,
|
| 176 |
+
embed_dim: int = 96, # initial embed dim
|
| 177 |
+
num_heads: int = 1, # initial number of heads
|
| 178 |
+
drop_path_rate: float = 0.0, # stochastic depth
|
| 179 |
+
q_pool: int = 3, # number of q_pool stages
|
| 180 |
+
q_stride: Tuple[int, int] = (2, 2), # downsample stride bet. stages
|
| 181 |
+
stages: Tuple[int, ...] = (2, 3, 16, 3), # blocks per stage
|
| 182 |
+
dim_mul: float = 2.0, # dim_mul factor at stage shift
|
| 183 |
+
head_mul: float = 2.0, # head_mul factor at stage shift
|
| 184 |
+
window_pos_embed_bkg_spatial_size: Tuple[int, int] = (14, 14),
|
| 185 |
+
# window size per stage, when not using global att.
|
| 186 |
+
window_spec: Tuple[int, ...] = (
|
| 187 |
+
8,
|
| 188 |
+
4,
|
| 189 |
+
14,
|
| 190 |
+
7,
|
| 191 |
+
),
|
| 192 |
+
# global attn in these blocks
|
| 193 |
+
global_att_blocks: Tuple[int, ...] = (
|
| 194 |
+
12,
|
| 195 |
+
16,
|
| 196 |
+
20,
|
| 197 |
+
),
|
| 198 |
+
weights_path=None,
|
| 199 |
+
return_interm_layers=True, # return feats from every stage
|
| 200 |
+
):
|
| 201 |
+
super().__init__()
|
| 202 |
+
|
| 203 |
+
assert len(stages) == len(window_spec)
|
| 204 |
+
self.window_spec = window_spec
|
| 205 |
+
|
| 206 |
+
depth = sum(stages)
|
| 207 |
+
self.q_stride = q_stride
|
| 208 |
+
self.stage_ends = [sum(stages[:i]) - 1 for i in range(1, len(stages) + 1)]
|
| 209 |
+
assert 0 <= q_pool <= len(self.stage_ends[:-1])
|
| 210 |
+
self.q_pool_blocks = [x + 1 for x in self.stage_ends[:-1]][:q_pool]
|
| 211 |
+
self.return_interm_layers = return_interm_layers
|
| 212 |
+
|
| 213 |
+
self.patch_embed = PatchEmbed(
|
| 214 |
+
embed_dim=embed_dim,
|
| 215 |
+
)
|
| 216 |
+
# Which blocks have global att?
|
| 217 |
+
self.global_att_blocks = global_att_blocks
|
| 218 |
+
|
| 219 |
+
# Windowed positional embedding (https://arxiv.org/abs/2311.05613)
|
| 220 |
+
self.window_pos_embed_bkg_spatial_size = window_pos_embed_bkg_spatial_size
|
| 221 |
+
self.pos_embed = nn.Parameter(
|
| 222 |
+
torch.zeros(1, embed_dim, *self.window_pos_embed_bkg_spatial_size)
|
| 223 |
+
)
|
| 224 |
+
self.pos_embed_window = nn.Parameter(
|
| 225 |
+
torch.zeros(1, embed_dim, self.window_spec[0], self.window_spec[0])
|
| 226 |
+
)
|
| 227 |
+
|
| 228 |
+
dpr = [
|
| 229 |
+
x.item() for x in torch.linspace(0, drop_path_rate, depth)
|
| 230 |
+
] # stochastic depth decay rule
|
| 231 |
+
|
| 232 |
+
cur_stage = 1
|
| 233 |
+
self.blocks = nn.ModuleList()
|
| 234 |
+
|
| 235 |
+
for i in range(depth):
|
| 236 |
+
dim_out = embed_dim
|
| 237 |
+
# lags by a block, so first block of
|
| 238 |
+
# next stage uses an initial window size
|
| 239 |
+
# of previous stage and final window size of current stage
|
| 240 |
+
window_size = self.window_spec[cur_stage - 1]
|
| 241 |
+
|
| 242 |
+
if self.global_att_blocks is not None:
|
| 243 |
+
window_size = 0 if i in self.global_att_blocks else window_size
|
| 244 |
+
|
| 245 |
+
if i - 1 in self.stage_ends:
|
| 246 |
+
dim_out = int(embed_dim * dim_mul)
|
| 247 |
+
num_heads = int(num_heads * head_mul)
|
| 248 |
+
cur_stage += 1
|
| 249 |
+
|
| 250 |
+
block = MultiScaleBlock(
|
| 251 |
+
dim=embed_dim,
|
| 252 |
+
dim_out=dim_out,
|
| 253 |
+
num_heads=num_heads,
|
| 254 |
+
drop_path=dpr[i],
|
| 255 |
+
q_stride=self.q_stride if i in self.q_pool_blocks else None,
|
| 256 |
+
window_size=window_size,
|
| 257 |
+
)
|
| 258 |
+
|
| 259 |
+
embed_dim = dim_out
|
| 260 |
+
self.blocks.append(block)
|
| 261 |
+
|
| 262 |
+
self.channel_list = (
|
| 263 |
+
[self.blocks[i].dim_out for i in self.stage_ends[::-1]]
|
| 264 |
+
if return_interm_layers
|
| 265 |
+
else [self.blocks[-1].dim_out]
|
| 266 |
+
)
|
| 267 |
+
|
| 268 |
+
if weights_path is not None:
|
| 269 |
+
with g_pathmgr.open(weights_path, "rb") as f:
|
| 270 |
+
chkpt = torch.load(f, map_location="cpu")
|
| 271 |
+
logging.info("loading Hiera", self.load_state_dict(chkpt, strict=False))
|
| 272 |
+
|
| 273 |
+
def _get_pos_embed(self, hw: Tuple[int, int]) -> torch.Tensor:
|
| 274 |
+
h, w = hw
|
| 275 |
+
window_embed = self.pos_embed_window
|
| 276 |
+
pos_embed = F.interpolate(self.pos_embed, size=(h, w), mode="bicubic")
|
| 277 |
+
pos_embed = pos_embed + window_embed.tile(
|
| 278 |
+
[x // y for x, y in zip(pos_embed.shape, window_embed.shape)]
|
| 279 |
+
)
|
| 280 |
+
pos_embed = pos_embed.permute(0, 2, 3, 1)
|
| 281 |
+
return pos_embed
|
| 282 |
+
|
| 283 |
+
def forward(self, x: torch.Tensor) -> List[torch.Tensor]:
|
| 284 |
+
x = self.patch_embed(x)
|
| 285 |
+
# x: (B, H, W, C)
|
| 286 |
+
|
| 287 |
+
# Add pos embed
|
| 288 |
+
x = x + self._get_pos_embed(x.shape[1:3])
|
| 289 |
+
|
| 290 |
+
outputs = []
|
| 291 |
+
for i, blk in enumerate(self.blocks):
|
| 292 |
+
x = blk(x)
|
| 293 |
+
if (i == self.stage_ends[-1]) or (
|
| 294 |
+
i in self.stage_ends and self.return_interm_layers
|
| 295 |
+
):
|
| 296 |
+
feats = x.permute(0, 3, 1, 2)
|
| 297 |
+
outputs.append(feats)
|
| 298 |
+
|
| 299 |
+
return outputs
|
| 300 |
+
|
| 301 |
+
def get_layer_id(self, layer_name):
|
| 302 |
+
# https://github.com/microsoft/unilm/blob/master/beit/optim_factory.py#L33
|
| 303 |
+
num_layers = self.get_num_layers()
|
| 304 |
+
|
| 305 |
+
if layer_name.find("rel_pos") != -1:
|
| 306 |
+
return num_layers + 1
|
| 307 |
+
elif layer_name.find("pos_embed") != -1:
|
| 308 |
+
return 0
|
| 309 |
+
elif layer_name.find("patch_embed") != -1:
|
| 310 |
+
return 0
|
| 311 |
+
elif layer_name.find("blocks") != -1:
|
| 312 |
+
return int(layer_name.split("blocks")[1].split(".")[1]) + 1
|
| 313 |
+
else:
|
| 314 |
+
return num_layers + 1
|
| 315 |
+
|
| 316 |
+
def get_num_layers(self) -> int:
|
| 317 |
+
return len(self.blocks)
|
sam2/modeling/backbones/image_encoder.py
ADDED
|
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
| 2 |
+
# All rights reserved.
|
| 3 |
+
|
| 4 |
+
# This source code is licensed under the license found in the
|
| 5 |
+
# LICENSE file in the root directory of this source tree.
|
| 6 |
+
|
| 7 |
+
from typing import List, Optional
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
import torch.nn as nn
|
| 11 |
+
import torch.nn.functional as F
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class ImageEncoder(nn.Module):
|
| 15 |
+
def __init__(
|
| 16 |
+
self,
|
| 17 |
+
trunk: nn.Module,
|
| 18 |
+
neck: nn.Module,
|
| 19 |
+
scalp: int = 0,
|
| 20 |
+
):
|
| 21 |
+
super().__init__()
|
| 22 |
+
self.trunk = trunk
|
| 23 |
+
self.neck = neck
|
| 24 |
+
self.scalp = scalp
|
| 25 |
+
assert (
|
| 26 |
+
self.trunk.channel_list == self.neck.backbone_channel_list
|
| 27 |
+
), f"Channel dims of trunk and neck do not match. Trunk: {self.trunk.channel_list}, neck: {self.neck.backbone_channel_list}"
|
| 28 |
+
|
| 29 |
+
def forward(self, sample: torch.Tensor):
|
| 30 |
+
# Forward through backbone
|
| 31 |
+
features, pos = self.neck(self.trunk(sample))
|
| 32 |
+
if self.scalp > 0:
|
| 33 |
+
# Discard the lowest resolution features
|
| 34 |
+
features, pos = features[: -self.scalp], pos[: -self.scalp]
|
| 35 |
+
|
| 36 |
+
src = features[-1]
|
| 37 |
+
output = {
|
| 38 |
+
"vision_features": src,
|
| 39 |
+
"vision_pos_enc": pos,
|
| 40 |
+
"backbone_fpn": features,
|
| 41 |
+
}
|
| 42 |
+
return output
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
class FpnNeck(nn.Module):
|
| 46 |
+
"""
|
| 47 |
+
A modified variant of Feature Pyramid Network (FPN) neck
|
| 48 |
+
(we remove output conv and also do bicubic interpolation similar to ViT
|
| 49 |
+
pos embed interpolation)
|
| 50 |
+
"""
|
| 51 |
+
|
| 52 |
+
def __init__(
|
| 53 |
+
self,
|
| 54 |
+
position_encoding: nn.Module,
|
| 55 |
+
d_model: int,
|
| 56 |
+
backbone_channel_list: List[int],
|
| 57 |
+
kernel_size: int = 1,
|
| 58 |
+
stride: int = 1,
|
| 59 |
+
padding: int = 0,
|
| 60 |
+
fpn_interp_model: str = "bilinear",
|
| 61 |
+
fuse_type: str = "sum",
|
| 62 |
+
fpn_top_down_levels: Optional[List[int]] = None,
|
| 63 |
+
):
|
| 64 |
+
"""Initialize the neck
|
| 65 |
+
:param trunk: the backbone
|
| 66 |
+
:param position_encoding: the positional encoding to use
|
| 67 |
+
:param d_model: the dimension of the model
|
| 68 |
+
:param neck_norm: the normalization to use
|
| 69 |
+
"""
|
| 70 |
+
super().__init__()
|
| 71 |
+
self.position_encoding = position_encoding
|
| 72 |
+
self.convs = nn.ModuleList()
|
| 73 |
+
self.backbone_channel_list = backbone_channel_list
|
| 74 |
+
self.d_model = d_model
|
| 75 |
+
for dim in backbone_channel_list:
|
| 76 |
+
current = nn.Sequential()
|
| 77 |
+
current.add_module(
|
| 78 |
+
"conv",
|
| 79 |
+
nn.Conv2d(
|
| 80 |
+
in_channels=dim,
|
| 81 |
+
out_channels=d_model,
|
| 82 |
+
kernel_size=kernel_size,
|
| 83 |
+
stride=stride,
|
| 84 |
+
padding=padding,
|
| 85 |
+
),
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
+
self.convs.append(current)
|
| 89 |
+
self.fpn_interp_model = fpn_interp_model
|
| 90 |
+
assert fuse_type in ["sum", "avg"]
|
| 91 |
+
self.fuse_type = fuse_type
|
| 92 |
+
|
| 93 |
+
# levels to have top-down features in its outputs
|
| 94 |
+
# e.g. if fpn_top_down_levels is [2, 3], then only outputs of level 2 and 3
|
| 95 |
+
# have top-down propagation, while outputs of level 0 and level 1 have only
|
| 96 |
+
# lateral features from the same backbone level.
|
| 97 |
+
if fpn_top_down_levels is None:
|
| 98 |
+
# default is to have top-down features on all levels
|
| 99 |
+
fpn_top_down_levels = range(len(self.convs))
|
| 100 |
+
self.fpn_top_down_levels = list(fpn_top_down_levels)
|
| 101 |
+
|
| 102 |
+
def forward(self, xs: List[torch.Tensor]):
|
| 103 |
+
|
| 104 |
+
out = [None] * len(self.convs)
|
| 105 |
+
pos = [None] * len(self.convs)
|
| 106 |
+
assert len(xs) == len(self.convs)
|
| 107 |
+
# fpn forward pass
|
| 108 |
+
# see https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/fpn.py
|
| 109 |
+
prev_features = None
|
| 110 |
+
# forward in top-down order (from low to high resolution)
|
| 111 |
+
n = len(self.convs) - 1
|
| 112 |
+
for i in range(n, -1, -1):
|
| 113 |
+
x = xs[i]
|
| 114 |
+
lateral_features = self.convs[n - i](x)
|
| 115 |
+
if i in self.fpn_top_down_levels and prev_features is not None:
|
| 116 |
+
top_down_features = F.interpolate(
|
| 117 |
+
prev_features.to(dtype=torch.float32),
|
| 118 |
+
scale_factor=2.0,
|
| 119 |
+
mode=self.fpn_interp_model,
|
| 120 |
+
align_corners=(
|
| 121 |
+
None if self.fpn_interp_model == "nearest" else False
|
| 122 |
+
),
|
| 123 |
+
antialias=False,
|
| 124 |
+
)
|
| 125 |
+
prev_features = lateral_features + top_down_features
|
| 126 |
+
if self.fuse_type == "avg":
|
| 127 |
+
prev_features /= 2
|
| 128 |
+
else:
|
| 129 |
+
prev_features = lateral_features
|
| 130 |
+
x_out = prev_features
|
| 131 |
+
out[i] = x_out
|
| 132 |
+
pos[i] = self.position_encoding(x_out).to(x_out.dtype)
|
| 133 |
+
|
| 134 |
+
return out, pos
|
sam2/modeling/backbones/utils.py
ADDED
|
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
| 2 |
+
# All rights reserved.
|
| 3 |
+
|
| 4 |
+
# This source code is licensed under the license found in the
|
| 5 |
+
# LICENSE file in the root directory of this source tree.
|
| 6 |
+
|
| 7 |
+
"""Some utilities for backbones, in particular for windowing"""
|
| 8 |
+
|
| 9 |
+
from typing import Tuple
|
| 10 |
+
|
| 11 |
+
import torch
|
| 12 |
+
import torch.nn as nn
|
| 13 |
+
import torch.nn.functional as F
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def window_partition(x, window_size):
|
| 17 |
+
"""
|
| 18 |
+
Partition into non-overlapping windows with padding if needed.
|
| 19 |
+
Args:
|
| 20 |
+
x (tensor): input tokens with [B, H, W, C].
|
| 21 |
+
window_size (int): window size.
|
| 22 |
+
Returns:
|
| 23 |
+
windows: windows after partition with [B * num_windows, window_size, window_size, C].
|
| 24 |
+
(Hp, Wp): padded height and width before partition
|
| 25 |
+
"""
|
| 26 |
+
B, H, W, C = x.shape
|
| 27 |
+
|
| 28 |
+
pad_h = (window_size - H % window_size) % window_size
|
| 29 |
+
pad_w = (window_size - W % window_size) % window_size
|
| 30 |
+
if pad_h > 0 or pad_w > 0:
|
| 31 |
+
x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
|
| 32 |
+
Hp, Wp = H + pad_h, W + pad_w
|
| 33 |
+
|
| 34 |
+
x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
|
| 35 |
+
windows = (
|
| 36 |
+
x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
| 37 |
+
)
|
| 38 |
+
return windows, (Hp, Wp)
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def window_unpartition(windows, window_size, pad_hw, hw):
|
| 42 |
+
"""
|
| 43 |
+
Window unpartition into original sequences and removing padding.
|
| 44 |
+
Args:
|
| 45 |
+
x (tensor): input tokens with [B * num_windows, window_size, window_size, C].
|
| 46 |
+
window_size (int): window size.
|
| 47 |
+
pad_hw (Tuple): padded height and width (Hp, Wp).
|
| 48 |
+
hw (Tuple): original height and width (H, W) before padding.
|
| 49 |
+
Returns:
|
| 50 |
+
x: unpartitioned sequences with [B, H, W, C].
|
| 51 |
+
"""
|
| 52 |
+
Hp, Wp = pad_hw
|
| 53 |
+
H, W = hw
|
| 54 |
+
B = windows.shape[0] // (Hp * Wp // window_size // window_size)
|
| 55 |
+
x = windows.view(
|
| 56 |
+
B, Hp // window_size, Wp // window_size, window_size, window_size, -1
|
| 57 |
+
)
|
| 58 |
+
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)
|
| 59 |
+
|
| 60 |
+
if Hp > H or Wp > W:
|
| 61 |
+
x = x[:, :H, :W, :].contiguous()
|
| 62 |
+
return x
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
class PatchEmbed(nn.Module):
|
| 66 |
+
"""
|
| 67 |
+
Image to Patch Embedding.
|
| 68 |
+
"""
|
| 69 |
+
|
| 70 |
+
def __init__(
|
| 71 |
+
self,
|
| 72 |
+
kernel_size: Tuple[int, ...] = (7, 7),
|
| 73 |
+
stride: Tuple[int, ...] = (4, 4),
|
| 74 |
+
padding: Tuple[int, ...] = (3, 3),
|
| 75 |
+
in_chans: int = 3,
|
| 76 |
+
embed_dim: int = 768,
|
| 77 |
+
):
|
| 78 |
+
"""
|
| 79 |
+
Args:
|
| 80 |
+
kernel_size (Tuple): kernel size of the projection layer.
|
| 81 |
+
stride (Tuple): stride of the projection layer.
|
| 82 |
+
padding (Tuple): padding size of the projection layer.
|
| 83 |
+
in_chans (int): Number of input image channels.
|
| 84 |
+
embed_dim (int): embed_dim (int): Patch embedding dimension.
|
| 85 |
+
"""
|
| 86 |
+
super().__init__()
|
| 87 |
+
self.proj = nn.Conv2d(
|
| 88 |
+
in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 92 |
+
x = self.proj(x)
|
| 93 |
+
# B C H W -> B H W C
|
| 94 |
+
x = x.permute(0, 2, 3, 1)
|
| 95 |
+
return x
|
sam2/modeling/memory_attention.py
ADDED
|
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
| 2 |
+
# All rights reserved.
|
| 3 |
+
|
| 4 |
+
# This source code is licensed under the license found in the
|
| 5 |
+
# LICENSE file in the root directory of this source tree.
|
| 6 |
+
|
| 7 |
+
from typing import Optional
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
from torch import nn, Tensor
|
| 11 |
+
|
| 12 |
+
from .sam.transformer import RoPEAttention
|
| 13 |
+
|
| 14 |
+
from .sam2_utils import get_activation_fn, get_clones
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
class MemoryAttentionLayer(nn.Module):
|
| 18 |
+
|
| 19 |
+
def __init__(
|
| 20 |
+
self,
|
| 21 |
+
activation: str,
|
| 22 |
+
cross_attention: nn.Module,
|
| 23 |
+
d_model: int,
|
| 24 |
+
dim_feedforward: int,
|
| 25 |
+
dropout: float,
|
| 26 |
+
pos_enc_at_attn: bool,
|
| 27 |
+
pos_enc_at_cross_attn_keys: bool,
|
| 28 |
+
pos_enc_at_cross_attn_queries: bool,
|
| 29 |
+
self_attention: nn.Module,
|
| 30 |
+
):
|
| 31 |
+
super().__init__()
|
| 32 |
+
self.d_model = d_model
|
| 33 |
+
self.dim_feedforward = dim_feedforward
|
| 34 |
+
self.dropout_value = dropout
|
| 35 |
+
self.self_attn = self_attention
|
| 36 |
+
self.cross_attn_image = cross_attention
|
| 37 |
+
|
| 38 |
+
# Implementation of Feedforward model
|
| 39 |
+
self.linear1 = nn.Linear(d_model, dim_feedforward)
|
| 40 |
+
self.dropout = nn.Dropout(dropout)
|
| 41 |
+
self.linear2 = nn.Linear(dim_feedforward, d_model)
|
| 42 |
+
|
| 43 |
+
self.norm1 = nn.LayerNorm(d_model)
|
| 44 |
+
self.norm2 = nn.LayerNorm(d_model)
|
| 45 |
+
self.norm3 = nn.LayerNorm(d_model)
|
| 46 |
+
self.dropout1 = nn.Dropout(dropout)
|
| 47 |
+
self.dropout2 = nn.Dropout(dropout)
|
| 48 |
+
self.dropout3 = nn.Dropout(dropout)
|
| 49 |
+
|
| 50 |
+
self.activation_str = activation
|
| 51 |
+
self.activation = get_activation_fn(activation)
|
| 52 |
+
|
| 53 |
+
# Where to add pos enc
|
| 54 |
+
self.pos_enc_at_attn = pos_enc_at_attn
|
| 55 |
+
self.pos_enc_at_cross_attn_queries = pos_enc_at_cross_attn_queries
|
| 56 |
+
self.pos_enc_at_cross_attn_keys = pos_enc_at_cross_attn_keys
|
| 57 |
+
|
| 58 |
+
def _forward_sa(self, tgt, query_pos):
|
| 59 |
+
# Self-Attention
|
| 60 |
+
tgt2 = self.norm1(tgt)
|
| 61 |
+
q = k = tgt2 + query_pos if self.pos_enc_at_attn else tgt2
|
| 62 |
+
tgt2 = self.self_attn(q, k, v=tgt2)
|
| 63 |
+
tgt = tgt + self.dropout1(tgt2)
|
| 64 |
+
return tgt
|
| 65 |
+
|
| 66 |
+
def _forward_ca(self, tgt, memory, query_pos, pos, num_k_exclude_rope=0):
|
| 67 |
+
kwds = {}
|
| 68 |
+
if num_k_exclude_rope > 0:
|
| 69 |
+
assert isinstance(self.cross_attn_image, RoPEAttention)
|
| 70 |
+
kwds = {"num_k_exclude_rope": num_k_exclude_rope}
|
| 71 |
+
|
| 72 |
+
# Cross-Attention
|
| 73 |
+
tgt2 = self.norm2(tgt)
|
| 74 |
+
tgt2 = self.cross_attn_image(
|
| 75 |
+
q=tgt2 + query_pos if self.pos_enc_at_cross_attn_queries else tgt2,
|
| 76 |
+
k=memory + pos if self.pos_enc_at_cross_attn_keys else memory,
|
| 77 |
+
v=memory,
|
| 78 |
+
**kwds,
|
| 79 |
+
)
|
| 80 |
+
tgt = tgt + self.dropout2(tgt2)
|
| 81 |
+
return tgt
|
| 82 |
+
|
| 83 |
+
def forward(
|
| 84 |
+
self,
|
| 85 |
+
tgt,
|
| 86 |
+
memory,
|
| 87 |
+
pos: Optional[Tensor] = None,
|
| 88 |
+
query_pos: Optional[Tensor] = None,
|
| 89 |
+
num_k_exclude_rope: int = 0,
|
| 90 |
+
) -> torch.Tensor:
|
| 91 |
+
|
| 92 |
+
# Self-Attn, Cross-Attn
|
| 93 |
+
tgt = self._forward_sa(tgt, query_pos)
|
| 94 |
+
tgt = self._forward_ca(tgt, memory, query_pos, pos, num_k_exclude_rope)
|
| 95 |
+
# MLP
|
| 96 |
+
tgt2 = self.norm3(tgt)
|
| 97 |
+
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
|
| 98 |
+
tgt = tgt + self.dropout3(tgt2)
|
| 99 |
+
return tgt
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
class MemoryAttention(nn.Module):
|
| 103 |
+
def __init__(
|
| 104 |
+
self,
|
| 105 |
+
d_model: int,
|
| 106 |
+
pos_enc_at_input: bool,
|
| 107 |
+
layer: nn.Module,
|
| 108 |
+
num_layers: int,
|
| 109 |
+
batch_first: bool = True, # Do layers expect batch first input?
|
| 110 |
+
):
|
| 111 |
+
super().__init__()
|
| 112 |
+
self.d_model = d_model
|
| 113 |
+
self.layers = get_clones(layer, num_layers)
|
| 114 |
+
self.num_layers = num_layers
|
| 115 |
+
self.norm = nn.LayerNorm(d_model)
|
| 116 |
+
self.pos_enc_at_input = pos_enc_at_input
|
| 117 |
+
self.batch_first = batch_first
|
| 118 |
+
|
| 119 |
+
def forward(
|
| 120 |
+
self,
|
| 121 |
+
curr: torch.Tensor, # self-attention inputs
|
| 122 |
+
memory: torch.Tensor, # cross-attention inputs
|
| 123 |
+
curr_pos: Optional[Tensor] = None, # pos_enc for self-attention inputs
|
| 124 |
+
memory_pos: Optional[Tensor] = None, # pos_enc for cross-attention inputs
|
| 125 |
+
num_obj_ptr_tokens: int = 0, # number of object pointer *tokens*
|
| 126 |
+
):
|
| 127 |
+
if isinstance(curr, list):
|
| 128 |
+
assert isinstance(curr_pos, list)
|
| 129 |
+
assert len(curr) == len(curr_pos) == 1
|
| 130 |
+
curr, curr_pos = (
|
| 131 |
+
curr[0],
|
| 132 |
+
curr_pos[0],
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
assert (
|
| 136 |
+
curr.shape[1] == memory.shape[1]
|
| 137 |
+
), "Batch size must be the same for curr and memory"
|
| 138 |
+
|
| 139 |
+
output = curr
|
| 140 |
+
if self.pos_enc_at_input and curr_pos is not None:
|
| 141 |
+
output = output + 0.1 * curr_pos
|
| 142 |
+
|
| 143 |
+
if self.batch_first:
|
| 144 |
+
# Convert to batch first
|
| 145 |
+
output = output.transpose(0, 1)
|
| 146 |
+
curr_pos = curr_pos.transpose(0, 1)
|
| 147 |
+
memory = memory.transpose(0, 1)
|
| 148 |
+
memory_pos = memory_pos.transpose(0, 1)
|
| 149 |
+
|
| 150 |
+
for layer in self.layers:
|
| 151 |
+
kwds = {}
|
| 152 |
+
if isinstance(layer.cross_attn_image, RoPEAttention):
|
| 153 |
+
kwds = {"num_k_exclude_rope": num_obj_ptr_tokens}
|
| 154 |
+
|
| 155 |
+
output = layer(
|
| 156 |
+
tgt=output,
|
| 157 |
+
memory=memory,
|
| 158 |
+
pos=memory_pos,
|
| 159 |
+
query_pos=curr_pos,
|
| 160 |
+
**kwds,
|
| 161 |
+
)
|
| 162 |
+
normed_output = self.norm(output)
|
| 163 |
+
|
| 164 |
+
if self.batch_first:
|
| 165 |
+
# Convert back to seq first
|
| 166 |
+
normed_output = normed_output.transpose(0, 1)
|
| 167 |
+
curr_pos = curr_pos.transpose(0, 1)
|
| 168 |
+
|
| 169 |
+
return normed_output
|
sam2/modeling/memory_encoder.py
ADDED
|
@@ -0,0 +1,182 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
| 2 |
+
# All rights reserved.
|
| 3 |
+
|
| 4 |
+
# This source code is licensed under the license found in the
|
| 5 |
+
# LICENSE file in the root directory of this source tree.
|
| 6 |
+
|
| 7 |
+
import math
|
| 8 |
+
from typing import Tuple
|
| 9 |
+
|
| 10 |
+
import torch
|
| 11 |
+
import torch.nn as nn
|
| 12 |
+
import torch.nn.functional as F
|
| 13 |
+
|
| 14 |
+
from .sam2_utils import DropPath, get_clones, LayerNorm2d
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
class MaskDownSampler(nn.Module):
|
| 18 |
+
"""
|
| 19 |
+
Progressively downsample a mask by total_stride, each time by stride.
|
| 20 |
+
Note that LayerNorm is applied per *token*, like in ViT.
|
| 21 |
+
|
| 22 |
+
With each downsample (by a factor stride**2), channel capacity increases by the same factor.
|
| 23 |
+
In the end, we linearly project to embed_dim channels.
|
| 24 |
+
"""
|
| 25 |
+
|
| 26 |
+
def __init__(
|
| 27 |
+
self,
|
| 28 |
+
embed_dim=256,
|
| 29 |
+
kernel_size=4,
|
| 30 |
+
stride=4,
|
| 31 |
+
padding=0,
|
| 32 |
+
total_stride=16,
|
| 33 |
+
activation=nn.GELU,
|
| 34 |
+
):
|
| 35 |
+
super().__init__()
|
| 36 |
+
num_layers = int(math.log2(total_stride) // math.log2(stride))
|
| 37 |
+
assert stride**num_layers == total_stride
|
| 38 |
+
self.encoder = nn.Sequential()
|
| 39 |
+
mask_in_chans, mask_out_chans = 1, 1
|
| 40 |
+
for _ in range(num_layers):
|
| 41 |
+
mask_out_chans = mask_in_chans * (stride**2)
|
| 42 |
+
self.encoder.append(
|
| 43 |
+
nn.Conv2d(
|
| 44 |
+
mask_in_chans,
|
| 45 |
+
mask_out_chans,
|
| 46 |
+
kernel_size=kernel_size,
|
| 47 |
+
stride=stride,
|
| 48 |
+
padding=padding,
|
| 49 |
+
)
|
| 50 |
+
)
|
| 51 |
+
self.encoder.append(LayerNorm2d(mask_out_chans))
|
| 52 |
+
self.encoder.append(activation())
|
| 53 |
+
mask_in_chans = mask_out_chans
|
| 54 |
+
|
| 55 |
+
self.encoder.append(nn.Conv2d(mask_out_chans, embed_dim, kernel_size=1))
|
| 56 |
+
|
| 57 |
+
def forward(self, x):
|
| 58 |
+
return self.encoder(x)
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
# Lightly adapted from ConvNext (https://github.com/facebookresearch/ConvNeXt)
|
| 62 |
+
class CXBlock(nn.Module):
|
| 63 |
+
r"""ConvNeXt Block. There are two equivalent implementations:
|
| 64 |
+
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
|
| 65 |
+
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
|
| 66 |
+
We use (2) as we find it slightly faster in PyTorch
|
| 67 |
+
|
| 68 |
+
Args:
|
| 69 |
+
dim (int): Number of input channels.
|
| 70 |
+
drop_path (float): Stochastic depth rate. Default: 0.0
|
| 71 |
+
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
|
| 72 |
+
"""
|
| 73 |
+
|
| 74 |
+
def __init__(
|
| 75 |
+
self,
|
| 76 |
+
dim,
|
| 77 |
+
kernel_size=7,
|
| 78 |
+
padding=3,
|
| 79 |
+
drop_path=0.0,
|
| 80 |
+
layer_scale_init_value=1e-6,
|
| 81 |
+
use_dwconv=True,
|
| 82 |
+
):
|
| 83 |
+
super().__init__()
|
| 84 |
+
self.dwconv = nn.Conv2d(
|
| 85 |
+
dim,
|
| 86 |
+
dim,
|
| 87 |
+
kernel_size=kernel_size,
|
| 88 |
+
padding=padding,
|
| 89 |
+
groups=dim if use_dwconv else 1,
|
| 90 |
+
) # depthwise conv
|
| 91 |
+
self.norm = LayerNorm2d(dim, eps=1e-6)
|
| 92 |
+
self.pwconv1 = nn.Linear(
|
| 93 |
+
dim, 4 * dim
|
| 94 |
+
) # pointwise/1x1 convs, implemented with linear layers
|
| 95 |
+
self.act = nn.GELU()
|
| 96 |
+
self.pwconv2 = nn.Linear(4 * dim, dim)
|
| 97 |
+
# self.gamma = (
|
| 98 |
+
self.g_weight = (
|
| 99 |
+
nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True)
|
| 100 |
+
if layer_scale_init_value > 0
|
| 101 |
+
else None
|
| 102 |
+
)
|
| 103 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
| 104 |
+
|
| 105 |
+
def forward(self, x):
|
| 106 |
+
input = x
|
| 107 |
+
x = self.dwconv(x)
|
| 108 |
+
x = self.norm(x)
|
| 109 |
+
x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C)
|
| 110 |
+
x = self.pwconv1(x)
|
| 111 |
+
x = self.act(x)
|
| 112 |
+
x = self.pwconv2(x)
|
| 113 |
+
if self.g_weight is not None:
|
| 114 |
+
x = self.g_weight * x
|
| 115 |
+
x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W)
|
| 116 |
+
|
| 117 |
+
x = input + self.drop_path(x)
|
| 118 |
+
return x
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
class Fuser(nn.Module):
|
| 122 |
+
def __init__(self, layer, num_layers, dim=None, input_projection=False):
|
| 123 |
+
super().__init__()
|
| 124 |
+
self.proj = nn.Identity()
|
| 125 |
+
self.layers = get_clones(layer, num_layers)
|
| 126 |
+
|
| 127 |
+
if input_projection:
|
| 128 |
+
assert dim is not None
|
| 129 |
+
self.proj = nn.Conv2d(dim, dim, kernel_size=1)
|
| 130 |
+
|
| 131 |
+
def forward(self, x):
|
| 132 |
+
# normally x: (N, C, H, W)
|
| 133 |
+
x = self.proj(x)
|
| 134 |
+
for layer in self.layers:
|
| 135 |
+
x = layer(x)
|
| 136 |
+
return x
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
class MemoryEncoder(nn.Module):
|
| 140 |
+
def __init__(
|
| 141 |
+
self,
|
| 142 |
+
out_dim,
|
| 143 |
+
mask_downsampler,
|
| 144 |
+
fuser,
|
| 145 |
+
position_encoding,
|
| 146 |
+
in_dim=256, # in_dim of pix_feats
|
| 147 |
+
):
|
| 148 |
+
super().__init__()
|
| 149 |
+
|
| 150 |
+
self.mask_downsampler = mask_downsampler
|
| 151 |
+
|
| 152 |
+
self.pix_feat_proj = nn.Conv2d(in_dim, in_dim, kernel_size=1)
|
| 153 |
+
self.fuser = fuser
|
| 154 |
+
self.position_encoding = position_encoding
|
| 155 |
+
self.out_proj = nn.Identity()
|
| 156 |
+
if out_dim != in_dim:
|
| 157 |
+
self.out_proj = nn.Conv2d(in_dim, out_dim, kernel_size=1)
|
| 158 |
+
|
| 159 |
+
def forward(
|
| 160 |
+
self,
|
| 161 |
+
pix_feat: torch.Tensor,
|
| 162 |
+
masks: torch.Tensor,
|
| 163 |
+
skip_mask_sigmoid: bool = False,
|
| 164 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 165 |
+
## Process masks
|
| 166 |
+
# sigmoid, so that less domain shift from gt masks which are bool
|
| 167 |
+
if not skip_mask_sigmoid:
|
| 168 |
+
masks = F.sigmoid(masks)
|
| 169 |
+
masks = self.mask_downsampler(masks)
|
| 170 |
+
|
| 171 |
+
## Fuse pix_feats and downsampled masks
|
| 172 |
+
# in case the visual features are on CPU, cast them to CUDA
|
| 173 |
+
pix_feat = pix_feat.to(masks.device)
|
| 174 |
+
|
| 175 |
+
x = self.pix_feat_proj(pix_feat)
|
| 176 |
+
x = x + masks
|
| 177 |
+
x = self.fuser(x)
|
| 178 |
+
x = self.out_proj(x)
|
| 179 |
+
|
| 180 |
+
pos = self.position_encoding(x).to(x.dtype)
|
| 181 |
+
|
| 182 |
+
return {"vision_features": x, "vision_pos_enc": [pos]}
|
sam2/modeling/position_encoding.py
ADDED
|
@@ -0,0 +1,221 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
| 2 |
+
# All rights reserved.
|
| 3 |
+
|
| 4 |
+
# This source code is licensed under the license found in the
|
| 5 |
+
# LICENSE file in the root directory of this source tree.
|
| 6 |
+
|
| 7 |
+
import math
|
| 8 |
+
from typing import Any, Optional, Tuple
|
| 9 |
+
|
| 10 |
+
import numpy as np
|
| 11 |
+
|
| 12 |
+
import torch
|
| 13 |
+
from torch import nn
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class PositionEmbeddingSine(nn.Module):
|
| 17 |
+
"""
|
| 18 |
+
This is a more standard version of the position embedding, very similar to the one
|
| 19 |
+
used by the Attention Is All You Need paper, generalized to work on images.
|
| 20 |
+
"""
|
| 21 |
+
|
| 22 |
+
def __init__(
|
| 23 |
+
self,
|
| 24 |
+
num_pos_feats,
|
| 25 |
+
temperature: int = 10000,
|
| 26 |
+
normalize: bool = True,
|
| 27 |
+
scale: Optional[float] = None,
|
| 28 |
+
):
|
| 29 |
+
super().__init__()
|
| 30 |
+
assert num_pos_feats % 2 == 0, "Expecting even model width"
|
| 31 |
+
self.num_pos_feats = num_pos_feats // 2
|
| 32 |
+
self.temperature = temperature
|
| 33 |
+
self.normalize = normalize
|
| 34 |
+
if scale is not None and normalize is False:
|
| 35 |
+
raise ValueError("normalize should be True if scale is passed")
|
| 36 |
+
if scale is None:
|
| 37 |
+
scale = 2 * math.pi
|
| 38 |
+
self.scale = scale
|
| 39 |
+
|
| 40 |
+
self.cache = {}
|
| 41 |
+
|
| 42 |
+
def _encode_xy(self, x, y):
|
| 43 |
+
# The positions are expected to be normalized
|
| 44 |
+
assert len(x) == len(y) and x.ndim == y.ndim == 1
|
| 45 |
+
x_embed = x * self.scale
|
| 46 |
+
y_embed = y * self.scale
|
| 47 |
+
|
| 48 |
+
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
|
| 49 |
+
dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
|
| 50 |
+
|
| 51 |
+
pos_x = x_embed[:, None] / dim_t
|
| 52 |
+
pos_y = y_embed[:, None] / dim_t
|
| 53 |
+
pos_x = torch.stack(
|
| 54 |
+
(pos_x[:, 0::2].sin(), pos_x[:, 1::2].cos()), dim=2
|
| 55 |
+
).flatten(1)
|
| 56 |
+
pos_y = torch.stack(
|
| 57 |
+
(pos_y[:, 0::2].sin(), pos_y[:, 1::2].cos()), dim=2
|
| 58 |
+
).flatten(1)
|
| 59 |
+
return pos_x, pos_y
|
| 60 |
+
|
| 61 |
+
@torch.no_grad()
|
| 62 |
+
def encode_boxes(self, x, y, w, h):
|
| 63 |
+
pos_x, pos_y = self._encode_xy(x, y)
|
| 64 |
+
pos = torch.cat((pos_y, pos_x, h[:, None], w[:, None]), dim=1)
|
| 65 |
+
return pos
|
| 66 |
+
|
| 67 |
+
encode = encode_boxes # Backwards compatibility
|
| 68 |
+
|
| 69 |
+
@torch.no_grad()
|
| 70 |
+
def encode_points(self, x, y, labels):
|
| 71 |
+
(bx, nx), (by, ny), (bl, nl) = x.shape, y.shape, labels.shape
|
| 72 |
+
assert bx == by and nx == ny and bx == bl and nx == nl
|
| 73 |
+
pos_x, pos_y = self._encode_xy(x.flatten(), y.flatten())
|
| 74 |
+
pos_x, pos_y = pos_x.reshape(bx, nx, -1), pos_y.reshape(by, ny, -1)
|
| 75 |
+
pos = torch.cat((pos_y, pos_x, labels[:, :, None]), dim=2)
|
| 76 |
+
return pos
|
| 77 |
+
|
| 78 |
+
@torch.no_grad()
|
| 79 |
+
def forward(self, x: torch.Tensor):
|
| 80 |
+
cache_key = (x.shape[-2], x.shape[-1])
|
| 81 |
+
if cache_key in self.cache:
|
| 82 |
+
return self.cache[cache_key][None].repeat(x.shape[0], 1, 1, 1)
|
| 83 |
+
y_embed = (
|
| 84 |
+
torch.arange(1, x.shape[-2] + 1, dtype=torch.float32, device=x.device)
|
| 85 |
+
.view(1, -1, 1)
|
| 86 |
+
.repeat(x.shape[0], 1, x.shape[-1])
|
| 87 |
+
)
|
| 88 |
+
x_embed = (
|
| 89 |
+
torch.arange(1, x.shape[-1] + 1, dtype=torch.float32, device=x.device)
|
| 90 |
+
.view(1, 1, -1)
|
| 91 |
+
.repeat(x.shape[0], x.shape[-2], 1)
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
if self.normalize:
|
| 95 |
+
eps = 1e-6
|
| 96 |
+
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
|
| 97 |
+
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
|
| 98 |
+
|
| 99 |
+
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
|
| 100 |
+
dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
|
| 101 |
+
|
| 102 |
+
pos_x = x_embed[:, :, :, None] / dim_t
|
| 103 |
+
pos_y = y_embed[:, :, :, None] / dim_t
|
| 104 |
+
pos_x = torch.stack(
|
| 105 |
+
(pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4
|
| 106 |
+
).flatten(3)
|
| 107 |
+
pos_y = torch.stack(
|
| 108 |
+
(pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4
|
| 109 |
+
).flatten(3)
|
| 110 |
+
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
|
| 111 |
+
self.cache[cache_key] = pos[0]
|
| 112 |
+
return pos
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
class PositionEmbeddingRandom(nn.Module):
|
| 116 |
+
"""
|
| 117 |
+
Positional encoding using random spatial frequencies.
|
| 118 |
+
"""
|
| 119 |
+
|
| 120 |
+
def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None:
|
| 121 |
+
super().__init__()
|
| 122 |
+
if scale is None or scale <= 0.0:
|
| 123 |
+
scale = 1.0
|
| 124 |
+
self.register_buffer(
|
| 125 |
+
"positional_encoding_gaussian_matrix",
|
| 126 |
+
scale * torch.randn((2, num_pos_feats)),
|
| 127 |
+
)
|
| 128 |
+
|
| 129 |
+
def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor:
|
| 130 |
+
"""Positionally encode points that are normalized to [0,1]."""
|
| 131 |
+
# assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape
|
| 132 |
+
coords = 2 * coords - 1
|
| 133 |
+
coords = coords @ self.positional_encoding_gaussian_matrix
|
| 134 |
+
coords = 2 * np.pi * coords
|
| 135 |
+
# outputs d_1 x ... x d_n x C shape
|
| 136 |
+
return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1)
|
| 137 |
+
|
| 138 |
+
def forward(self, size: Tuple[int, int]) -> torch.Tensor:
|
| 139 |
+
"""Generate positional encoding for a grid of the specified size."""
|
| 140 |
+
h, w = size
|
| 141 |
+
device: Any = self.positional_encoding_gaussian_matrix.device
|
| 142 |
+
grid = torch.ones((h, w), device=device, dtype=torch.float32)
|
| 143 |
+
y_embed = grid.cumsum(dim=0) - 0.5
|
| 144 |
+
x_embed = grid.cumsum(dim=1) - 0.5
|
| 145 |
+
y_embed = y_embed / h
|
| 146 |
+
x_embed = x_embed / w
|
| 147 |
+
|
| 148 |
+
pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1))
|
| 149 |
+
return pe.permute(2, 0, 1) # C x H x W
|
| 150 |
+
|
| 151 |
+
def forward_with_coords(
|
| 152 |
+
self, coords_input: torch.Tensor, image_size: Tuple[int, int]
|
| 153 |
+
) -> torch.Tensor:
|
| 154 |
+
"""Positionally encode points that are not normalized to [0,1]."""
|
| 155 |
+
coords = coords_input.clone()
|
| 156 |
+
coords[:, :, 0] = coords[:, :, 0] / image_size[1]
|
| 157 |
+
coords[:, :, 1] = coords[:, :, 1] / image_size[0]
|
| 158 |
+
return self._pe_encoding(coords.to(torch.float)) # B x N x C
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
# Rotary Positional Encoding, adapted from:
|
| 162 |
+
# 1. https://github.com/meta-llama/codellama/blob/main/llama/model.py
|
| 163 |
+
# 2. https://github.com/naver-ai/rope-vit
|
| 164 |
+
# 3. https://github.com/lucidrains/rotary-embedding-torch
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
def init_t_xy(end_x: int, end_y: int):
|
| 168 |
+
t = torch.arange(end_x * end_y, dtype=torch.float32)
|
| 169 |
+
t_x = (t % end_x).float()
|
| 170 |
+
t_y = torch.div(t, end_x, rounding_mode="floor").float()
|
| 171 |
+
return t_x, t_y
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
def compute_axial_cis(dim: int, end_x: int, end_y: int, theta: float = 10000.0):
|
| 175 |
+
freqs_x = 1.0 / (theta ** (torch.arange(0, dim, 4)[: (dim // 4)].float() / dim))
|
| 176 |
+
freqs_y = 1.0 / (theta ** (torch.arange(0, dim, 4)[: (dim // 4)].float() / dim))
|
| 177 |
+
|
| 178 |
+
t_x, t_y = init_t_xy(end_x, end_y)
|
| 179 |
+
freqs_x = torch.outer(t_x, freqs_x)
|
| 180 |
+
freqs_y = torch.outer(t_y, freqs_y)
|
| 181 |
+
freqs_cis_x = torch.polar(torch.ones_like(freqs_x), freqs_x)
|
| 182 |
+
freqs_cis_y = torch.polar(torch.ones_like(freqs_y), freqs_y)
|
| 183 |
+
return torch.cat([freqs_cis_x, freqs_cis_y], dim=-1)
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
|
| 187 |
+
ndim = x.ndim
|
| 188 |
+
assert 0 <= 1 < ndim
|
| 189 |
+
assert freqs_cis.shape == (x.shape[-2], x.shape[-1])
|
| 190 |
+
shape = [d if i >= ndim - 2 else 1 for i, d in enumerate(x.shape)]
|
| 191 |
+
return freqs_cis.view(*shape)
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
def apply_rotary_enc(
|
| 195 |
+
xq: torch.Tensor,
|
| 196 |
+
xk: torch.Tensor,
|
| 197 |
+
freqs_cis: torch.Tensor,
|
| 198 |
+
repeat_freqs_k: bool = False,
|
| 199 |
+
):
|
| 200 |
+
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
|
| 201 |
+
xk_ = (
|
| 202 |
+
torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
|
| 203 |
+
if xk.shape[-2] != 0
|
| 204 |
+
else None
|
| 205 |
+
)
|
| 206 |
+
freqs_cis = reshape_for_broadcast(freqs_cis, xq_)
|
| 207 |
+
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3)
|
| 208 |
+
if xk_ is None:
|
| 209 |
+
# no keys to rotate, due to dropout
|
| 210 |
+
return xq_out.type_as(xq).to(xq.device), xk
|
| 211 |
+
# repeat freqs along seq_len dim to match k seq_len
|
| 212 |
+
if repeat_freqs_k:
|
| 213 |
+
r = xk_.shape[-2] // xq_.shape[-2]
|
| 214 |
+
if freqs_cis.is_cuda:
|
| 215 |
+
freqs_cis = freqs_cis.repeat(*([1] * (freqs_cis.ndim - 2)), r, 1)
|
| 216 |
+
else:
|
| 217 |
+
# torch.repeat on complex numbers may not be supported on non-CUDA devices
|
| 218 |
+
# (freqs_cis has 4 dims and we repeat on dim 2) so we use expand + flatten
|
| 219 |
+
freqs_cis = freqs_cis.unsqueeze(2).expand(-1, -1, r, -1, -1).flatten(2, 3)
|
| 220 |
+
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3)
|
| 221 |
+
return xq_out.type_as(xq).to(xq.device), xk_out.type_as(xk).to(xk.device)
|
sam2/modeling/sam/__init__.py
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
| 2 |
+
# All rights reserved.
|
| 3 |
+
|
| 4 |
+
# This source code is licensed under the license found in the
|
| 5 |
+
# LICENSE file in the root directory of this source tree.
|
sam2/modeling/sam/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (195 Bytes). View file
|
|
|
sam2/modeling/sam/__pycache__/mask_decoder.cpython-310.pyc
ADDED
|
Binary file (7.77 kB). View file
|
|
|