--- base_model: EpistemeAI/metatune-gpt20b-R1.1 tags: - text-generation-inference - transformers - unsloth - gpt_oss - mlx license: apache-2.0 language: - en datasets: - EpistemeAI/recursive_self_improvement_dataset library_name: mlx pipeline_tag: text-generation --- # metatune-gpt20b-R1.1-qx86-hi-mlx Metrics aren't everything. The qx86-hi is more fun than q8-hi. Enjoy the quant. Sample output: ```bash ┌───────────────────────┐ ┌───────────────┐ ┌──────────────┐ │ UI / CLI │<------>| Agent |<-------->| Provider │ └───────────────────────┘ ├───────────────┤ └──────────────┘ │ Thread work │ │ HTTP, FILE, │ │ TOOL, etc. │ └───────┬───────┘ │ DB logging (SQLite) ▼ ┌───────────────────────┐ │ SQLite LOG DB │ └───────────────────────┘ ┌───────────────────────────────┐ │ PostgreSQL (orchestrator) │ └───────────────────────────────┘ +---------------------------+ +--------------------------+ | PL/Perl functions | | Tables & triggers | +---------------------------+ +--------------------------+ ``` It's really hard to line up ASCII code, but looked good on screen This model [metatune-gpt20b-R1.1-qx86-hi-mlx](https://huggingface.co/nightmedia/metatune-gpt20b-R1.1-qx86-hi-mlx) was converted to MLX format from [EpistemeAI/metatune-gpt20b-R1.1](https://huggingface.co/EpistemeAI/metatune-gpt20b-R1.1) using mlx-lm version **0.28.4**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("metatune-gpt20b-R1.1-qx86-hi-mlx") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```