Delete modeling_hf_nomic_bert.py
Browse files- modeling_hf_nomic_bert.py +0 -1221
modeling_hf_nomic_bert.py
DELETED
|
@@ -1,1221 +0,0 @@
|
|
| 1 |
-
# Copyright (c) 2022, Tri Dao.
|
| 2 |
-
# This BERT implementation is based on our MLPerf 2.0 and MLPerf 2.1 BERT implementation.
|
| 3 |
-
# https://github.com/mlcommons/training_results_v2.0/blob/main/HazyResearch/benchmarks/bert/implementations/pytorch/modeling.py
|
| 4 |
-
# https://github.com/mlcommons/training_results_v2.1/blob/main/Azure-HazyResearch/benchmarks/bert/implementations/ND96amsr_A100_v4/modeling.py
|
| 5 |
-
|
| 6 |
-
import logging
|
| 7 |
-
|
| 8 |
-
# Inspired by https://github.com/huggingface/transformers/blob/main/src/transformers/models/bert/modeling_bert.py
|
| 9 |
-
import os
|
| 10 |
-
import re
|
| 11 |
-
from collections import OrderedDict
|
| 12 |
-
from functools import partial
|
| 13 |
-
from typing import List, Optional, Tuple, Union
|
| 14 |
-
|
| 15 |
-
import torch
|
| 16 |
-
import torch.nn as nn
|
| 17 |
-
import torch.nn.functional as F
|
| 18 |
-
from einops import rearrange, repeat
|
| 19 |
-
from safetensors.torch import load_file as safe_load_file
|
| 20 |
-
from transformers import GPT2Config, PreTrainedModel
|
| 21 |
-
from transformers.models.bert.modeling_bert import (
|
| 22 |
-
BaseModelOutputWithPoolingAndCrossAttentions,
|
| 23 |
-
MaskedLMOutput,
|
| 24 |
-
SequenceClassifierOutput,
|
| 25 |
-
)
|
| 26 |
-
from transformers.utils import SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, WEIGHTS_INDEX_NAME, WEIGHTS_NAME
|
| 27 |
-
from transformers.utils.hub import cached_file, get_checkpoint_shard_files
|
| 28 |
-
|
| 29 |
-
from .configuration_hf_nomic_bert import NomicBertConfig
|
| 30 |
-
|
| 31 |
-
logger = logging.getLogger(__name__)
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
# adapted from flash attention, added safe serialization option for hf models
|
| 35 |
-
def state_dict_from_pretrained(model_name, safe_serialization=False, device=None, dtype=None):
|
| 36 |
-
# If not fp32, then we don't want to load directly to the GPU
|
| 37 |
-
mapped_device = "cpu" if dtype not in [torch.float32, None] else device
|
| 38 |
-
is_sharded = False
|
| 39 |
-
load_safe = False
|
| 40 |
-
resolved_archive_file = None
|
| 41 |
-
|
| 42 |
-
weights_path = os.path.join(model_name, WEIGHTS_NAME)
|
| 43 |
-
weights_index_path = os.path.join(model_name, WEIGHTS_INDEX_NAME)
|
| 44 |
-
safe_weights_path = os.path.join(model_name, SAFE_WEIGHTS_NAME)
|
| 45 |
-
safe_weights_index_path = os.path.join(model_name, SAFE_WEIGHTS_INDEX_NAME)
|
| 46 |
-
|
| 47 |
-
if os.path.isfile(weights_path):
|
| 48 |
-
resolved_archive_file = cached_file(model_name, WEIGHTS_NAME, _raise_exceptions_for_missing_entries=False)
|
| 49 |
-
elif os.path.isfile(weights_index_path):
|
| 50 |
-
resolved_archive_file = cached_file(model_name, WEIGHTS_INDEX_NAME, _raise_exceptions_for_missing_entries=False)
|
| 51 |
-
is_sharded = True
|
| 52 |
-
elif os.path.isfile(safe_weights_path):
|
| 53 |
-
resolved_archive_file = cached_file(model_name, SAFE_WEIGHTS_NAME, _raise_exceptions_for_missing_entries=False)
|
| 54 |
-
load_safe = True
|
| 55 |
-
elif os.path.isfile(safe_weights_index_path):
|
| 56 |
-
resolved_archive_file = cached_file(
|
| 57 |
-
model_name, SAFE_WEIGHTS_INDEX_NAME, _raise_exceptions_for_missing_entries=False
|
| 58 |
-
)
|
| 59 |
-
is_sharded = True
|
| 60 |
-
load_safe = True
|
| 61 |
-
else: # Try loading from HF hub instead of from local files
|
| 62 |
-
weight_name = WEIGHTS_NAME if not safe_serialization else SAFE_WEIGHTS_NAME
|
| 63 |
-
resolved_archive_file = cached_file(model_name, weight_name, _raise_exceptions_for_missing_entries=False)
|
| 64 |
-
if resolved_archive_file is None:
|
| 65 |
-
weight_index = WEIGHTS_INDEX_NAME if not safe_serialization else SAFE_WEIGHTS_INDEX_NAME
|
| 66 |
-
resolved_archive_file = cached_file(model_name, weight_index, _raise_exceptions_for_missing_entries=False)
|
| 67 |
-
if resolved_archive_file is not None:
|
| 68 |
-
is_sharded = True
|
| 69 |
-
|
| 70 |
-
load_safe = safe_serialization
|
| 71 |
-
|
| 72 |
-
if resolved_archive_file is None:
|
| 73 |
-
raise EnvironmentError(f"Model name {model_name} was not found.")
|
| 74 |
-
|
| 75 |
-
if load_safe:
|
| 76 |
-
loader = partial(safe_load_file, device=mapped_device)
|
| 77 |
-
else:
|
| 78 |
-
loader = partial(torch.load, map_location=mapped_device)
|
| 79 |
-
|
| 80 |
-
if is_sharded:
|
| 81 |
-
# resolved_archive_file becomes a list of files that point to the different
|
| 82 |
-
# checkpoint shards in this case.
|
| 83 |
-
resolved_archive_file, sharded_metadata = get_checkpoint_shard_files(model_name, resolved_archive_file)
|
| 84 |
-
state_dict = {}
|
| 85 |
-
for sharded_file in resolved_archive_file:
|
| 86 |
-
state_dict.update(loader(sharded_file))
|
| 87 |
-
else:
|
| 88 |
-
state_dict = loader(resolved_archive_file)
|
| 89 |
-
# Convert dtype before moving to GPU to save memory
|
| 90 |
-
if dtype is not None:
|
| 91 |
-
state_dict = {k: v.to(dtype=dtype) for k, v in state_dict.items()}
|
| 92 |
-
state_dict = {k: v.to(device=device) for k, v in state_dict.items()}
|
| 93 |
-
return state_dict
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
def filter_shapes(state_dict, model):
|
| 97 |
-
"""
|
| 98 |
-
Filters the state dict to match the current model shape.
|
| 99 |
-
"""
|
| 100 |
-
filtered_state_dict = {}
|
| 101 |
-
for key, value in state_dict.items():
|
| 102 |
-
if key in model.state_dict():
|
| 103 |
-
if value.shape == model.state_dict()[key].shape:
|
| 104 |
-
filtered_state_dict[key] = value
|
| 105 |
-
return filtered_state_dict
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
def remap_bert_state_dict(state_dict, config, remove_bert=False, remove_cls_weights=False, add_pooling_layer=False):
|
| 109 |
-
"""
|
| 110 |
-
Map the state_dict of a Huggingface BERT model to be flash_attn compatible.
|
| 111 |
-
"""
|
| 112 |
-
|
| 113 |
-
def add_bert_prefix(key):
|
| 114 |
-
# prepend bert. to the key
|
| 115 |
-
if key.startswith("bert.") or key.startswith("cls."):
|
| 116 |
-
return key
|
| 117 |
-
return f"bert.{key}"
|
| 118 |
-
|
| 119 |
-
state_dict = OrderedDict((add_bert_prefix(k), v) for k, v in state_dict.items())
|
| 120 |
-
|
| 121 |
-
# LayerNorm
|
| 122 |
-
def key_mapping_ln_gamma_beta(key):
|
| 123 |
-
key = re.sub(r"LayerNorm.gamma$", "LayerNorm.weight", key)
|
| 124 |
-
key = re.sub(r"LayerNorm.beta$", "LayerNorm.bias", key)
|
| 125 |
-
return key
|
| 126 |
-
|
| 127 |
-
state_dict = OrderedDict((key_mapping_ln_gamma_beta(k), v) for k, v in state_dict.items())
|
| 128 |
-
|
| 129 |
-
# Layers
|
| 130 |
-
def key_mapping_layers(key):
|
| 131 |
-
return re.sub(r"^bert.encoder.layer\.", "bert.encoder.layers.", key)
|
| 132 |
-
|
| 133 |
-
state_dict = OrderedDict((key_mapping_layers(k), v) for k, v in state_dict.items())
|
| 134 |
-
|
| 135 |
-
# LayerNorm
|
| 136 |
-
def key_mapping_ln(key):
|
| 137 |
-
key = re.sub(r"^bert.embeddings.LayerNorm.", "bert.emb_ln.", key)
|
| 138 |
-
key = re.sub(
|
| 139 |
-
r"^bert.encoder.layers.(\d+).attention.output.LayerNorm.(weight|bias)",
|
| 140 |
-
r"bert.encoder.layers.\1.norm1.\2",
|
| 141 |
-
key,
|
| 142 |
-
)
|
| 143 |
-
key = re.sub(
|
| 144 |
-
r"^bert.encoder.layers.(\d+).output.LayerNorm.(weight|bias)",
|
| 145 |
-
r"bert.encoder.layers.\1.norm2.\2",
|
| 146 |
-
key,
|
| 147 |
-
)
|
| 148 |
-
key = re.sub(
|
| 149 |
-
r"^cls.predictions.transform.LayerNorm.(weight|bias)",
|
| 150 |
-
r"cls.predictions.transform.layer_norm.\1",
|
| 151 |
-
key,
|
| 152 |
-
)
|
| 153 |
-
return key
|
| 154 |
-
|
| 155 |
-
state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
|
| 156 |
-
|
| 157 |
-
# MLP
|
| 158 |
-
def key_mapping_mlp(key):
|
| 159 |
-
key = re.sub(
|
| 160 |
-
r"^bert.encoder.layers.(\d+).intermediate.dense.(weight|bias)",
|
| 161 |
-
r"bert.encoder.layers.\1.mlp.fc1.\2",
|
| 162 |
-
key,
|
| 163 |
-
)
|
| 164 |
-
key = re.sub(
|
| 165 |
-
r"^bert.encoder.layers.(\d+).output.dense.(weight|bias)",
|
| 166 |
-
r"bert.encoder.layers.\1.mlp.fc2.\2",
|
| 167 |
-
key,
|
| 168 |
-
)
|
| 169 |
-
return key
|
| 170 |
-
|
| 171 |
-
state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())
|
| 172 |
-
|
| 173 |
-
# Attention
|
| 174 |
-
last_layer_subset = getattr(config, "last_layer_subset", False)
|
| 175 |
-
for d in range(config.num_hidden_layers):
|
| 176 |
-
if f"bert.encoder.layers.{d}.attention.self.query.weight" not in state_dict:
|
| 177 |
-
continue
|
| 178 |
-
Wq = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.query.weight")
|
| 179 |
-
Wk = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.key.weight")
|
| 180 |
-
Wv = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.value.weight")
|
| 181 |
-
bq = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.query.bias")
|
| 182 |
-
bk = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.key.bias")
|
| 183 |
-
bv = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.value.bias")
|
| 184 |
-
if not (last_layer_subset and d == config.num_hidden_layers - 1):
|
| 185 |
-
state_dict[f"bert.encoder.layers.{d}.attn.Wqkv.weight"] = torch.cat([Wq, Wk, Wv], dim=0)
|
| 186 |
-
state_dict[f"bert.encoder.layers.{d}.attn.Wqkv.bias"] = torch.cat([bq, bk, bv], dim=0)
|
| 187 |
-
else:
|
| 188 |
-
state_dict[f"bert.encoder.layers.{d}.attn.Wq.weight"] = Wq
|
| 189 |
-
state_dict[f"bert.encoder.layers.{d}.attn.Wkv.weight"] = torch.cat([Wk, Wv], dim=0)
|
| 190 |
-
state_dict[f"bert.encoder.layers.{d}.attn.Wq.bias"] = bq
|
| 191 |
-
state_dict[f"bert.encoder.layers.{d}.attn.Wkv.bias"] = torch.cat([bk, bv], dim=0)
|
| 192 |
-
|
| 193 |
-
def key_mapping_attn(key):
|
| 194 |
-
return re.sub(
|
| 195 |
-
r"^bert.encoder.layers.(\d+).attention.output.dense.(weight|bias)",
|
| 196 |
-
r"bert.encoder.layers.\1.attn.out_proj.\2",
|
| 197 |
-
key,
|
| 198 |
-
)
|
| 199 |
-
|
| 200 |
-
state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
|
| 201 |
-
|
| 202 |
-
def key_mapping_decoder_bias(key):
|
| 203 |
-
return re.sub(r"^cls.predictions.bias", "cls.predictions.decoder.bias", key)
|
| 204 |
-
|
| 205 |
-
# remove nsp weights, we don't use
|
| 206 |
-
state_dict.pop("cls.seq_relationship.weight", None)
|
| 207 |
-
state_dict.pop("cls.seq_relationship.bias", None)
|
| 208 |
-
state_dict.pop("bert.embeddings.position_ids", None)
|
| 209 |
-
|
| 210 |
-
state_dict = OrderedDict((key_mapping_decoder_bias(k), v) for k, v in state_dict.items())
|
| 211 |
-
|
| 212 |
-
if remove_cls_weights:
|
| 213 |
-
cls_weights = [
|
| 214 |
-
"cls.predictions.decoder.bias",
|
| 215 |
-
"cls.predictions.transform.dense.weight",
|
| 216 |
-
"cls.predictions.transform.dense.bias",
|
| 217 |
-
"cls.predictions.transform.layer_norm.weight",
|
| 218 |
-
"cls.predictions.transform.layer_norm.bias",
|
| 219 |
-
"cls.predictions.decoder.weight",
|
| 220 |
-
]
|
| 221 |
-
for weight in cls_weights:
|
| 222 |
-
state_dict.pop(weight, None)
|
| 223 |
-
|
| 224 |
-
# Word embedding
|
| 225 |
-
pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
|
| 226 |
-
if pad_vocab_size_multiple > 1:
|
| 227 |
-
word_embeddings = state_dict["bert.embeddings.word_embeddings.weight"]
|
| 228 |
-
state_dict["bert.embeddings.word_embeddings.weight"] = F.pad(
|
| 229 |
-
word_embeddings, (0, 0, 0, config.vocab_size - word_embeddings.shape[0])
|
| 230 |
-
)
|
| 231 |
-
if not remove_cls_weights:
|
| 232 |
-
decoder_weight = state_dict["cls.predictions.decoder.weight"]
|
| 233 |
-
state_dict["cls.predictions.decoder.weight"] = F.pad(
|
| 234 |
-
decoder_weight, (0, 0, 0, config.vocab_size - decoder_weight.shape[0])
|
| 235 |
-
)
|
| 236 |
-
# If the vocab was padded, we want to set the decoder bias for those padded indices to be
|
| 237 |
-
# strongly negative (i.e. the decoder shouldn't predict those indices).
|
| 238 |
-
# TD [2022-05-09]: I don't think it affects the MLPerf training.
|
| 239 |
-
if "cls.predictions.decoder.bias" in state_dict:
|
| 240 |
-
decoder_bias = state_dict["cls.predictions.decoder.bias"]
|
| 241 |
-
state_dict["cls.predictions.decoder.bias"] = F.pad(
|
| 242 |
-
decoder_bias, (0, config.vocab_size - decoder_bias.shape[0]), value=-100.0
|
| 243 |
-
)
|
| 244 |
-
|
| 245 |
-
if add_pooling_layer is False:
|
| 246 |
-
pooler_weights = [
|
| 247 |
-
"bert.pooler.dense.weight",
|
| 248 |
-
"bert.pooler.dense.bias",
|
| 249 |
-
]
|
| 250 |
-
for key in pooler_weights:
|
| 251 |
-
state_dict.pop(key, None)
|
| 252 |
-
|
| 253 |
-
if remove_bert:
|
| 254 |
-
|
| 255 |
-
def remove_bert_prefix(key):
|
| 256 |
-
key = re.sub(r"^bert.", "", key)
|
| 257 |
-
return key
|
| 258 |
-
|
| 259 |
-
state_dict = OrderedDict((remove_bert_prefix(k), v) for k, v in state_dict.items())
|
| 260 |
-
|
| 261 |
-
return state_dict
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
class NomicBertPreTrainedModel(PreTrainedModel):
|
| 265 |
-
"""An abstract class to handle weights initialization and
|
| 266 |
-
a simple interface for dowloading and loading pretrained models.
|
| 267 |
-
"""
|
| 268 |
-
|
| 269 |
-
config_class = NomicBertConfig
|
| 270 |
-
base_model_prefix = "model"
|
| 271 |
-
supports_gradient_checkpointing = True
|
| 272 |
-
_no_split_modules = ["Block"]
|
| 273 |
-
_skip_keys_device_placement = "past_key_values"
|
| 274 |
-
|
| 275 |
-
def __init__(self, config, *inputs, **kwargs):
|
| 276 |
-
super().__init__(config)
|
| 277 |
-
if not isinstance(config, GPT2Config):
|
| 278 |
-
raise ValueError(
|
| 279 |
-
"Parameter config in `{}(config)` should be an instance of class `GPT2Config`. "
|
| 280 |
-
"To create a model from a Google pretrained model use "
|
| 281 |
-
"`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
|
| 282 |
-
self.__class__.__name__, self.__class__.__name__
|
| 283 |
-
)
|
| 284 |
-
)
|
| 285 |
-
self.config = config
|
| 286 |
-
|
| 287 |
-
@classmethod
|
| 288 |
-
def from_pretrained(cls, model_name, config=None, *inputs, **kwargs):
|
| 289 |
-
"""
|
| 290 |
-
Instantiate a NomicBertPreTrainedModel from a pre-trained model file or a pytorch state dict.
|
| 291 |
-
Download and cache the pre-trained model file if needed.
|
| 292 |
-
|
| 293 |
-
Params:
|
| 294 |
-
pretrained_model_name_or_path: either:
|
| 295 |
-
- a path or url to a pretrained model archive containing:
|
| 296 |
-
. `bert_config.json` a configuration file for the model
|
| 297 |
-
. `pytorch_model.bin` a PyTorch dump of a NomicBertForPretraining instance
|
| 298 |
-
- a path or url to a pretrained model archive containing:
|
| 299 |
-
. `bert_config.json` a configuration file for the model
|
| 300 |
-
. `model.chkpt` a TensorFlow checkpoint
|
| 301 |
-
*inputs, **kwargs: additional input for the specific NomicBert class
|
| 302 |
-
(ex: num_labels for NomicBertForSequenceClassification)
|
| 303 |
-
"""
|
| 304 |
-
# Instantiate model.
|
| 305 |
-
if config is None:
|
| 306 |
-
config = cls.config_class.from_pretrained(model_name)
|
| 307 |
-
remove_cls = cls != NomicBertForPreTraining
|
| 308 |
-
remove_bert_prefix = cls != NomicBertForPreTraining
|
| 309 |
-
ignore_mismatched_shapes = kwargs.pop("ignore_mismatched_sizes", False)
|
| 310 |
-
num_labels = kwargs.pop("num_labels", None)
|
| 311 |
-
rotary_scaling_factor = kwargs.pop("rotary_scaling_factor", None)
|
| 312 |
-
if rotary_scaling_factor:
|
| 313 |
-
config.rotary_scaling_factor = rotary_scaling_factor
|
| 314 |
-
|
| 315 |
-
if config.n_positions <= 0 and config.rotary_emb_fraction > 0:
|
| 316 |
-
config.n_positions = 2048
|
| 317 |
-
if num_labels:
|
| 318 |
-
config.num_labels = num_labels
|
| 319 |
-
|
| 320 |
-
if "add_pooling_layer" in kwargs:
|
| 321 |
-
model = cls(config, *inputs, add_pooling_layer=kwargs.pop("add_pooling_layer"))
|
| 322 |
-
else:
|
| 323 |
-
if cls == NomicBertModel:
|
| 324 |
-
model = cls(config, *inputs, add_pooling_layer=False)
|
| 325 |
-
else:
|
| 326 |
-
model = cls(config, *inputs)
|
| 327 |
-
# TODO: fix this
|
| 328 |
-
# Assuming we know what we're doing when loading from disk
|
| 329 |
-
# Prob a bad assumption but i'm tired and want to train this asap
|
| 330 |
-
if os.path.exists(model_name):
|
| 331 |
-
model_path = f"{model_name}/pytorch_model.bin"
|
| 332 |
-
if os.path.exists(model_path):
|
| 333 |
-
state_dict = torch.load(f"{model_name}/pytorch_model.bin")
|
| 334 |
-
else:
|
| 335 |
-
model_path = f"{model_name}/model.safetensors"
|
| 336 |
-
if not os.path.exists(model_path):
|
| 337 |
-
raise ValueError(f"Model path {model_path} not found")
|
| 338 |
-
state_dict = safe_load_file(model_path)
|
| 339 |
-
|
| 340 |
-
if ignore_mismatched_shapes:
|
| 341 |
-
state_dict = filter_shapes(state_dict, model)
|
| 342 |
-
load_return = model.load_state_dict(state_dict, strict=False)
|
| 343 |
-
else:
|
| 344 |
-
# TODO: can probably check config class and see if we need to remap from a bert model
|
| 345 |
-
state_dict = state_dict_from_pretrained(model_name, safe_serialization=kwargs.get("safe_serialization", False))
|
| 346 |
-
state_dict = remap_bert_state_dict(
|
| 347 |
-
state_dict,
|
| 348 |
-
config,
|
| 349 |
-
remove_bert=remove_bert_prefix,
|
| 350 |
-
remove_cls_weights=remove_cls,
|
| 351 |
-
add_pooling_layer=getattr(config, "add_pooling_layer", False),
|
| 352 |
-
)
|
| 353 |
-
if ignore_mismatched_shapes:
|
| 354 |
-
state_dict = filter_shapes(state_dict, model)
|
| 355 |
-
|
| 356 |
-
load_return = model.load_state_dict(state_dict, strict=True)
|
| 357 |
-
logger.warning(load_return)
|
| 358 |
-
return model
|
| 359 |
-
|
| 360 |
-
def _set_gradient_checkpointing(self, module, value=False):
|
| 361 |
-
if isinstance(module, NomicBertEncoder):
|
| 362 |
-
module.gradient_checkpointing = value
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
# https://github.com/huggingface/transformers/blob/7032e0203262ebb2ebf55da8d2e01f873973e835/src/transformers/models/bert/modeling_bert.py#L748
|
| 366 |
-
def _init_weights(module, initializer_range=0.02):
|
| 367 |
-
if isinstance(module, nn.Linear):
|
| 368 |
-
nn.init.normal_(module.weight, std=initializer_range)
|
| 369 |
-
if module.bias is not None:
|
| 370 |
-
nn.init.zeros_(module.bias)
|
| 371 |
-
elif isinstance(module, nn.Embedding):
|
| 372 |
-
nn.init.normal_(module.weight, std=initializer_range)
|
| 373 |
-
if module.padding_idx is not None:
|
| 374 |
-
nn.init.zeros_(module.weight[module.padding_idx])
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
class NomicBertEmbeddings(nn.Module):
|
| 378 |
-
def __init__(self, config):
|
| 379 |
-
"""
|
| 380 |
-
If max_position_embeddings <= 0, there's no position embeddings
|
| 381 |
-
If type_vocab_size <= 0, there's no token type embeddings
|
| 382 |
-
"""
|
| 383 |
-
super().__init__()
|
| 384 |
-
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
| 385 |
-
self.max_position_embeddings = config.max_position_embeddings if config.rotary_emb_fraction <= 0 else 0
|
| 386 |
-
self.type_vocab_size = config.type_vocab_size
|
| 387 |
-
if self.max_position_embeddings > 0 and config.rotary_emb_fraction <= 0:
|
| 388 |
-
self.position_embeddings = nn.Embedding(
|
| 389 |
-
config.max_position_embeddings,
|
| 390 |
-
config.hidden_size,
|
| 391 |
-
)
|
| 392 |
-
if self.type_vocab_size > 0:
|
| 393 |
-
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
|
| 394 |
-
|
| 395 |
-
def forward(self, input_ids, position_ids=None, token_type_ids=None):
|
| 396 |
-
"""
|
| 397 |
-
input_ids: (batch, seqlen)
|
| 398 |
-
position_ids: (batch, seqlen)
|
| 399 |
-
token_type_ids: (batch, seqlen)
|
| 400 |
-
"""
|
| 401 |
-
batch_size, seqlen = input_ids.shape
|
| 402 |
-
embeddings = self.word_embeddings(input_ids)
|
| 403 |
-
|
| 404 |
-
if self.type_vocab_size > 0:
|
| 405 |
-
if token_type_ids is None:
|
| 406 |
-
token_type_ids = torch.zeros(seqlen, dtype=torch.long, device=input_ids.device)
|
| 407 |
-
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
| 408 |
-
embeddings = embeddings + token_type_embeddings
|
| 409 |
-
|
| 410 |
-
if self.max_position_embeddings > 0:
|
| 411 |
-
if position_ids is None:
|
| 412 |
-
position_ids = torch.arange(seqlen, dtype=torch.long, device=input_ids.device)
|
| 413 |
-
position_embeddings = self.position_embeddings(position_ids)
|
| 414 |
-
embeddings = embeddings + position_embeddings
|
| 415 |
-
return embeddings
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
class NomicBertMLP(nn.Module):
|
| 419 |
-
def __init__(
|
| 420 |
-
self,
|
| 421 |
-
in_features,
|
| 422 |
-
hidden_features=None,
|
| 423 |
-
out_features=None,
|
| 424 |
-
activation=F.gelu,
|
| 425 |
-
bias1=True,
|
| 426 |
-
bias2=True,
|
| 427 |
-
return_residual=False,
|
| 428 |
-
fused_bias_fc=False,
|
| 429 |
-
):
|
| 430 |
-
super().__init__()
|
| 431 |
-
out_features = out_features if out_features is not None else in_features
|
| 432 |
-
hidden_features = hidden_features if hidden_features is not None else in_features * 4
|
| 433 |
-
self.return_residual = return_residual
|
| 434 |
-
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias1)
|
| 435 |
-
approximate = "tanh" if activation in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"] else "none"
|
| 436 |
-
self.activation = nn.GELU(approximate=approximate) if activation == "gelu" else activation
|
| 437 |
-
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias2)
|
| 438 |
-
|
| 439 |
-
def forward(self, x):
|
| 440 |
-
y = self.fc1(x)
|
| 441 |
-
y = self.activation(y)
|
| 442 |
-
y = self.fc2(y)
|
| 443 |
-
return y if not self.return_residual else (y, x)
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
class NomciBertGatedMLP(nn.Module):
|
| 447 |
-
def __init__(
|
| 448 |
-
self,
|
| 449 |
-
in_features,
|
| 450 |
-
hidden_features=None,
|
| 451 |
-
out_features=None,
|
| 452 |
-
activation=F.sigmoid,
|
| 453 |
-
bias1=True,
|
| 454 |
-
bias2=True,
|
| 455 |
-
multiple_of=256,
|
| 456 |
-
return_residual=False,
|
| 457 |
-
fused_bias_fc=True,
|
| 458 |
-
device=None,
|
| 459 |
-
dtype=None,
|
| 460 |
-
):
|
| 461 |
-
super().__init__()
|
| 462 |
-
out_features = out_features if out_features is not None else in_features
|
| 463 |
-
hidden_features = hidden_features if hidden_features is not None else int(8 * in_features / 3)
|
| 464 |
-
hidden_features = (hidden_features + multiple_of - 1) // multiple_of * multiple_of
|
| 465 |
-
self.return_residual = return_residual
|
| 466 |
-
|
| 467 |
-
self.fc11 = nn.Linear(in_features, hidden_features, bias=bias1)
|
| 468 |
-
self.fc12 = nn.Linear(in_features, hidden_features, bias=bias1)
|
| 469 |
-
self.activation = activation
|
| 470 |
-
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias2)
|
| 471 |
-
|
| 472 |
-
def forward(self, x):
|
| 473 |
-
y = self.fc11(x)
|
| 474 |
-
gate = self.fc12(x)
|
| 475 |
-
if self.activation == F.sigmoid: # Special case for GLU
|
| 476 |
-
y = F.glu(torch.cat([y, gate], dim=-1), dim=-1)
|
| 477 |
-
else:
|
| 478 |
-
y = y * self.activation(gate)
|
| 479 |
-
y = self.fc2(y)
|
| 480 |
-
return y if not self.return_residual else (y, x)
|
| 481 |
-
|
| 482 |
-
|
| 483 |
-
def rotate_half(x, interleaved=False):
|
| 484 |
-
if not interleaved:
|
| 485 |
-
x1, x2 = x.chunk(2, dim=-1)
|
| 486 |
-
return torch.cat((-x2, x1), dim=-1)
|
| 487 |
-
else:
|
| 488 |
-
x1, x2 = x[..., ::2], x[..., 1::2]
|
| 489 |
-
return rearrange(torch.stack((-x2, x1), dim=-1), "... d two -> ... (d two)", two=2)
|
| 490 |
-
|
| 491 |
-
|
| 492 |
-
def apply_rotary_emb(x, cos, sin, offset=0, interleaved=False):
|
| 493 |
-
"""
|
| 494 |
-
x: (batch_size, seqlen, nheads, headdim)
|
| 495 |
-
cos, sin: (seqlen, rotary_dim / 2) or (batch_size, seqlen, rotary_dim / 2)
|
| 496 |
-
"""
|
| 497 |
-
ro_dim = cos.shape[-1] * 2
|
| 498 |
-
assert ro_dim <= x.shape[-1]
|
| 499 |
-
cos, sin = (
|
| 500 |
-
cos[offset : offset + x.shape[1]],
|
| 501 |
-
sin[offset : offset + x.shape[1]],
|
| 502 |
-
)
|
| 503 |
-
cos = repeat(cos, "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)")
|
| 504 |
-
sin = repeat(sin, "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)")
|
| 505 |
-
return torch.cat(
|
| 506 |
-
[x[..., :ro_dim] * cos + rotate_half(x[..., :ro_dim], interleaved) * sin, x[..., ro_dim:]],
|
| 507 |
-
dim=-1,
|
| 508 |
-
)
|
| 509 |
-
|
| 510 |
-
|
| 511 |
-
class NomicBertRotaryEmbedding(nn.Module):
|
| 512 |
-
def __init__(
|
| 513 |
-
self,
|
| 514 |
-
dim: int,
|
| 515 |
-
base=10000.0,
|
| 516 |
-
interleaved=False,
|
| 517 |
-
scale_base=None,
|
| 518 |
-
pos_idx_in_fp32=True,
|
| 519 |
-
device=None,
|
| 520 |
-
):
|
| 521 |
-
"""
|
| 522 |
-
interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead
|
| 523 |
-
of 1st half and 2nd half (GPT-NeoX style).
|
| 524 |
-
pos_idx_in_fp32: if True, the position indices [0.0, ..., seqlen - 1] are in fp32,
|
| 525 |
-
otherwise they might be in lower precision.
|
| 526 |
-
This option was added because previously (before 2023-07-02), when we construct
|
| 527 |
-
the position indices, we use the dtype of self.inv_freq. In most cases this would
|
| 528 |
-
be fp32, but if the model is trained in pure bf16 (not mixed precision), then
|
| 529 |
-
self.inv_freq would be bf16, and the position indices are also in bf16.
|
| 530 |
-
Because of the limited precision of bf16 (e.g. 1995.0 is rounded to 2000.0), the
|
| 531 |
-
embeddings for some positions will coincide.
|
| 532 |
-
To maintain compatibility with models previously trained in pure bf16,
|
| 533 |
-
we add this option.
|
| 534 |
-
"""
|
| 535 |
-
super().__init__()
|
| 536 |
-
self.dim = dim
|
| 537 |
-
self.base = float(base)
|
| 538 |
-
self.pos_idx_in_fp32 = pos_idx_in_fp32
|
| 539 |
-
# Generate and save the inverse frequency buffer (non trainable)
|
| 540 |
-
inv_freq = self._compute_inv_freq(device)
|
| 541 |
-
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 542 |
-
self.interleaved = interleaved
|
| 543 |
-
self.scale_base = scale_base
|
| 544 |
-
scale = (
|
| 545 |
-
(torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim) / (1.4 * dim)
|
| 546 |
-
if scale_base is not None
|
| 547 |
-
else None
|
| 548 |
-
)
|
| 549 |
-
self.register_buffer("scale", scale, persistent=False)
|
| 550 |
-
|
| 551 |
-
self._seq_len_cached = 0
|
| 552 |
-
self._cos_cached = None
|
| 553 |
-
self._sin_cached = None
|
| 554 |
-
self._cos_k_cached = None
|
| 555 |
-
self._sin_k_cached = None
|
| 556 |
-
|
| 557 |
-
def _compute_inv_freq(self, device=None):
|
| 558 |
-
return 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim))
|
| 559 |
-
|
| 560 |
-
def _update_cos_sin_cache(self, seqlen, device=None, dtype=None):
|
| 561 |
-
# Reset the tables if the sequence length has changed,
|
| 562 |
-
# if we're on a new device (possibly due to tracing for instance),
|
| 563 |
-
# or if we're switching from inference mode to training
|
| 564 |
-
if (
|
| 565 |
-
seqlen > self._seq_len_cached
|
| 566 |
-
or self._cos_cached is None
|
| 567 |
-
or self._cos_cached.device != device
|
| 568 |
-
or self._cos_cached.dtype != dtype
|
| 569 |
-
or (self.training and self._cos_cached.is_inference())
|
| 570 |
-
):
|
| 571 |
-
self._seq_len_cached = seqlen
|
| 572 |
-
# We want fp32 here, not self.inv_freq.dtype, since the model could be loaded in bf16
|
| 573 |
-
# And the output of arange can be quite large, so bf16 would lose a lot of precision.
|
| 574 |
-
# However, for compatibility reason, we add an option to use the dtype of self.inv_freq.
|
| 575 |
-
if self.pos_idx_in_fp32:
|
| 576 |
-
t = torch.arange(seqlen, device=device, dtype=torch.float32)
|
| 577 |
-
# We want fp32 here as well since inv_freq will be multiplied with t, and the output
|
| 578 |
-
# will be large. Having it in bf16 will lose a lot of precision and cause the
|
| 579 |
-
# cos & sin output to change significantly.
|
| 580 |
-
# We want to recompute self.inv_freq if it was not loaded in fp32
|
| 581 |
-
if self.inv_freq.dtype != torch.float32:
|
| 582 |
-
inv_freq = self._compute_inv_freq(device=device)
|
| 583 |
-
else:
|
| 584 |
-
inv_freq = self.inv_freq
|
| 585 |
-
else:
|
| 586 |
-
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
|
| 587 |
-
inv_freq = self.inv_freq
|
| 588 |
-
# Don't do einsum, it converts fp32 to fp16 under AMP
|
| 589 |
-
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
| 590 |
-
freqs = torch.outer(t, inv_freq)
|
| 591 |
-
self._cos_cached = torch.cos(freqs).to(dtype)
|
| 592 |
-
self._sin_cached = torch.sin(freqs).to(dtype)
|
| 593 |
-
|
| 594 |
-
def forward(
|
| 595 |
-
self,
|
| 596 |
-
qkv: torch.Tensor,
|
| 597 |
-
kv: Optional[torch.Tensor] = None,
|
| 598 |
-
seqlen_offset: Union[int, torch.Tensor] = 0,
|
| 599 |
-
max_seqlen: Optional[int] = None,
|
| 600 |
-
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 601 |
-
"""
|
| 602 |
-
qkv: (batch, seqlen, 3, nheads, headdim) if kv is none,
|
| 603 |
-
else it's just q of shape (batch, seqlen, nheads, headdim)
|
| 604 |
-
kv: (batch, seqlen, 2, nheads, headdim)
|
| 605 |
-
seqlen_offset: (batch_size,) or int. Each sequence in x is shifted by this amount.
|
| 606 |
-
Most commonly used in inference when we have KV cache.
|
| 607 |
-
If it's a tensor of shape (batch_size,), then to update the cos / sin cache, one
|
| 608 |
-
should pass in max_seqlen, which will update the cos / sin cache up to that length.
|
| 609 |
-
Apply rotary embedding *inplace* to qkv and / or kv.
|
| 610 |
-
"""
|
| 611 |
-
seqlen = qkv.shape[1]
|
| 612 |
-
if seqlen > self._seq_len_cached:
|
| 613 |
-
self._update_cos_sin_cache(seqlen, device=qkv.device, dtype=qkv.dtype)
|
| 614 |
-
elif max_seqlen is not None:
|
| 615 |
-
self._update_cos_sin_cache(max_seqlen, device=qkv.device, dtype=qkv.dtype)
|
| 616 |
-
elif isinstance(seqlen_offset, int):
|
| 617 |
-
self._update_cos_sin_cache(seqlen + seqlen_offset, device=qkv.device, dtype=qkv.dtype)
|
| 618 |
-
|
| 619 |
-
q_rot = apply_rotary_emb(qkv[:, :, 0], self._cos_cached, self._sin_cached, seqlen_offset, self.interleaved)
|
| 620 |
-
k_rot = apply_rotary_emb(qkv[:, :, 1], self._cos_cached, self._sin_cached, seqlen_offset, self.interleaved)
|
| 621 |
-
return torch.stack((q_rot, k_rot, qkv[:, :, 2]), dim=2)
|
| 622 |
-
|
| 623 |
-
|
| 624 |
-
class NomicBertDynamicNTKRotaryEmbedding(NomicBertRotaryEmbedding):
|
| 625 |
-
def __init__(self, rotary_scaling_factor, max_position_embeddings, **kwargs):
|
| 626 |
-
super().__init__(**kwargs)
|
| 627 |
-
self.rotary_scaling_factor = rotary_scaling_factor
|
| 628 |
-
self.max_position_embeddings = max_position_embeddings
|
| 629 |
-
|
| 630 |
-
def _compute_inv_freq(self, base=None, device=None):
|
| 631 |
-
if base is None:
|
| 632 |
-
base = self.base
|
| 633 |
-
return 1.0 / (base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim))
|
| 634 |
-
|
| 635 |
-
def _update_cos_sin_cache(self, seqlen, device=None, dtype=None):
|
| 636 |
-
# Reset the tables if the sequence length has changed,
|
| 637 |
-
# if we're on a new device (possibly due to tracing for instance),
|
| 638 |
-
# or if we're switching from inference mode to training
|
| 639 |
-
if seqlen > self.max_position_embeddings:
|
| 640 |
-
base = self.base * (
|
| 641 |
-
(self.rotary_scaling_factor * seqlen / self.max_position_embeddings) - (self.rotary_scaling_factor - 1)
|
| 642 |
-
) ** (self.dim / (self.dim - 2))
|
| 643 |
-
inv_freq = self._compute_inv_freq(base=base, device=device)
|
| 644 |
-
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 645 |
-
|
| 646 |
-
if (
|
| 647 |
-
seqlen > self._seq_len_cached
|
| 648 |
-
or self._cos_cached is None
|
| 649 |
-
or self._cos_cached.device != device
|
| 650 |
-
or self._cos_cached.dtype != dtype
|
| 651 |
-
or (self.training and self._cos_cached.is_inference())
|
| 652 |
-
):
|
| 653 |
-
self._seq_len_cached = seqlen
|
| 654 |
-
# We want fp32 here, not self.inv_freq.dtype, since the model could be loaded in bf16
|
| 655 |
-
# And the output of arange can be quite large, so bf16 would lose a lot of precision.
|
| 656 |
-
# However, for compatibility reason, we add an option to use the dtype of self.inv_freq.
|
| 657 |
-
if self.pos_idx_in_fp32:
|
| 658 |
-
t = torch.arange(seqlen, device=device, dtype=torch.float32)
|
| 659 |
-
# We want fp32 here as well since inv_freq will be multiplied with t, and the output
|
| 660 |
-
# will be large. Having it in bf16 will lose a lot of precision and cause the
|
| 661 |
-
# cos & sin output to change significantly.
|
| 662 |
-
# We want to recompute self.inv_freq if it was not loaded in fp32
|
| 663 |
-
if self.inv_freq.dtype != torch.float32:
|
| 664 |
-
if seqlen > self.max_position_embeddings:
|
| 665 |
-
base = self.base * (
|
| 666 |
-
(self.scaling_factor * seqlen / self.max_position_embeddings) - (self.scaling_factor - 1)
|
| 667 |
-
) ** (self.dim / (self.dim - 2))
|
| 668 |
-
else:
|
| 669 |
-
base = self.base
|
| 670 |
-
inv_freq = self._compute_inv_freq(device=device, base=base)
|
| 671 |
-
else:
|
| 672 |
-
inv_freq = self.inv_freq
|
| 673 |
-
else:
|
| 674 |
-
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
|
| 675 |
-
inv_freq = self.inv_freq
|
| 676 |
-
# Don't do einsum, it converts fp32 to fp16 under AMP
|
| 677 |
-
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
| 678 |
-
freqs = torch.outer(t, inv_freq)
|
| 679 |
-
if self.scale is None:
|
| 680 |
-
self._cos_cached = torch.cos(freqs).to(dtype)
|
| 681 |
-
self._sin_cached = torch.sin(freqs).to(dtype)
|
| 682 |
-
else:
|
| 683 |
-
power = (
|
| 684 |
-
torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device) - seqlen // 2
|
| 685 |
-
) / self.scale_base
|
| 686 |
-
scale = self.scale.to(device=power.device) ** rearrange(power, "s -> s 1")
|
| 687 |
-
# We want the multiplication by scale to happen in fp32
|
| 688 |
-
self._cos_cached = (torch.cos(freqs) * scale).to(dtype)
|
| 689 |
-
self._sin_cached = (torch.sin(freqs) * scale).to(dtype)
|
| 690 |
-
self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype)
|
| 691 |
-
self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)
|
| 692 |
-
|
| 693 |
-
|
| 694 |
-
class NomicBertAttention(nn.Module):
|
| 695 |
-
"""Multi-head self-attention and cross-attention"""
|
| 696 |
-
|
| 697 |
-
def __init__(
|
| 698 |
-
self,
|
| 699 |
-
config,
|
| 700 |
-
) -> None:
|
| 701 |
-
"""
|
| 702 |
-
num_heads_kv: can be used to toggle MQA / GQA. If None, use num_heads.
|
| 703 |
-
return_residual: whether to return the input x along with the output. This is for
|
| 704 |
-
performance reason: for post-norm architecture, returning the input allows us
|
| 705 |
-
to fuse the backward of nn.Linear with the residual connection.
|
| 706 |
-
"""
|
| 707 |
-
super().__init__()
|
| 708 |
-
self.embed_dim = config.n_embd
|
| 709 |
-
self.use_flash_attn = config.use_flash_attn
|
| 710 |
-
self.fused_bias_fc = config.fused_bias_fc
|
| 711 |
-
|
| 712 |
-
self.num_heads = config.n_head
|
| 713 |
-
self.num_heads_kv = config.num_heads_kv if getattr(config, "num_heads_kv", None) is not None else self.num_heads
|
| 714 |
-
assert self.embed_dim % self.num_heads == 0, "embed_dim must be divisible by num_heads"
|
| 715 |
-
self.head_dim = self.embed_dim // self.num_heads
|
| 716 |
-
# we don't really support mqa / gqa for now
|
| 717 |
-
qkv_dim = self.head_dim * (self.num_heads + 2 * self.num_heads_kv)
|
| 718 |
-
|
| 719 |
-
self.register_buffer(
|
| 720 |
-
"norm_factor",
|
| 721 |
-
torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32)).to(torch.get_default_dtype()),
|
| 722 |
-
persistent=False,
|
| 723 |
-
)
|
| 724 |
-
|
| 725 |
-
self.rotary_emb_dim = self.head_dim * config.rotary_emb_fraction
|
| 726 |
-
if self.rotary_emb_dim > 0:
|
| 727 |
-
if config.rotary_scaling_factor:
|
| 728 |
-
self.rotary_emb = NomicBertDynamicNTKRotaryEmbedding(
|
| 729 |
-
dim=self.rotary_emb_dim,
|
| 730 |
-
base=config.rotary_emb_base,
|
| 731 |
-
scale_base=config.rotary_emb_scale_base,
|
| 732 |
-
interleaved=config.rotary_emb_interleaved,
|
| 733 |
-
rotary_scaling_factor=config.rotary_scaling_factor,
|
| 734 |
-
max_position_embeddings=config.max_trained_positions,
|
| 735 |
-
)
|
| 736 |
-
else:
|
| 737 |
-
self.rotary_emb = NomicBertRotaryEmbedding(
|
| 738 |
-
dim=self.rotary_emb_dim,
|
| 739 |
-
base=config.rotary_emb_base,
|
| 740 |
-
scale_base=config.rotary_emb_scale_base,
|
| 741 |
-
interleaved=config.rotary_emb_interleaved,
|
| 742 |
-
)
|
| 743 |
-
# bug in xformers: https://github.com/facebookresearch/xformers/issues/841
|
| 744 |
-
# uses the head dimension instead of the sequence dimension
|
| 745 |
-
self.rotary_head_dim = getattr(config, "rotary_head_dim", False)
|
| 746 |
-
|
| 747 |
-
self.Wqkv = nn.Linear(self.embed_dim, qkv_dim, bias=config.qkv_proj_bias)
|
| 748 |
-
|
| 749 |
-
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.qkv_proj_bias)
|
| 750 |
-
self.causal = config.causal
|
| 751 |
-
self.drop = nn.Dropout(config.attn_pdrop)
|
| 752 |
-
|
| 753 |
-
def forward(
|
| 754 |
-
self,
|
| 755 |
-
hidden_states: torch.Tensor,
|
| 756 |
-
attention_mask: Optional[torch.Tensor] = None,
|
| 757 |
-
position_ids: Optional[torch.LongTensor] = None,
|
| 758 |
-
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 759 |
-
output_attentions: bool = False,
|
| 760 |
-
use_cache: bool = False,
|
| 761 |
-
is_padded_inputs: Optional[bool] = True,
|
| 762 |
-
cu_seqlens: Optional[torch.Tensor] = None,
|
| 763 |
-
max_seq_len: Optional[int] = None,
|
| 764 |
-
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 765 |
-
|
| 766 |
-
has_layer_past = past_key_value is not None
|
| 767 |
-
|
| 768 |
-
if has_layer_past:
|
| 769 |
-
past_key_value = past_key_value[0]
|
| 770 |
-
past_len = past_key_value[1]
|
| 771 |
-
else:
|
| 772 |
-
past_len = 0
|
| 773 |
-
|
| 774 |
-
qkv = self.Wqkv(hidden_states)
|
| 775 |
-
qkv = rearrange(qkv, "... (three h d) -> ... three h d", three=3, d=self.head_dim)
|
| 776 |
-
|
| 777 |
-
past_key_value = (past_key_value, past_len + qkv.size(1)) if use_cache else None
|
| 778 |
-
|
| 779 |
-
if self.rotary_emb_dim > 0:
|
| 780 |
-
if self.rotary_head_dim:
|
| 781 |
-
qkv = rearrange(qkv, "b s three h d -> b h three s d")
|
| 782 |
-
qkv = self.rotary_emb(qkv, seqlen_offset=past_len)
|
| 783 |
-
|
| 784 |
-
if self.rotary_head_dim:
|
| 785 |
-
qkv = rearrange(qkv, "b h three s d -> b s three h d")
|
| 786 |
-
|
| 787 |
-
query, key, value = qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2]
|
| 788 |
-
|
| 789 |
-
query = query.permute(0, 2, 1, 3)
|
| 790 |
-
key = key.permute(0, 2, 1, 3)
|
| 791 |
-
value = value.permute(0, 2, 1, 3)
|
| 792 |
-
|
| 793 |
-
attention_scores = torch.matmul(query, key.transpose(-1, -2)) / self.norm_factor
|
| 794 |
-
if attention_mask is not None:
|
| 795 |
-
attention_scores = attention_scores + attention_mask
|
| 796 |
-
|
| 797 |
-
attentions_probs = F.softmax(attention_scores, dim=-1)
|
| 798 |
-
attentions_probs = self.drop(attentions_probs)
|
| 799 |
-
|
| 800 |
-
attn_output = torch.matmul(attentions_probs, value)
|
| 801 |
-
attn_output = rearrange(attn_output.permute(0, 2, 1, 3), "... h d -> ... (h d)")
|
| 802 |
-
|
| 803 |
-
attn_output = self.out_proj(attn_output)
|
| 804 |
-
|
| 805 |
-
return attn_output
|
| 806 |
-
|
| 807 |
-
|
| 808 |
-
class NomicBertBlock(NomicBertPreTrainedModel):
|
| 809 |
-
def __init__(
|
| 810 |
-
self,
|
| 811 |
-
config,
|
| 812 |
-
):
|
| 813 |
-
super().__init__(config=config)
|
| 814 |
-
self.prenorm = config.prenorm
|
| 815 |
-
self.fused_dropout_add_ln = config.fused_dropout_add_ln
|
| 816 |
-
|
| 817 |
-
self.attn = NomicBertAttention(config)
|
| 818 |
-
activation = (
|
| 819 |
-
F.sigmoid
|
| 820 |
-
if config.activation_function == "glu"
|
| 821 |
-
else (F.silu if config.activation_function == "swiglu" else F.gelu)
|
| 822 |
-
)
|
| 823 |
-
if config.activation_function in ["glu", "swiglu", "geglu"]:
|
| 824 |
-
self.mlp = NomciBertGatedMLP(
|
| 825 |
-
config.n_embd,
|
| 826 |
-
hidden_features=config.n_inner,
|
| 827 |
-
bias1=config.mlp_fc1_bias,
|
| 828 |
-
bias2=config.mlp_fc2_bias,
|
| 829 |
-
activation=activation,
|
| 830 |
-
fused_bias_fc=config.fused_bias_fc,
|
| 831 |
-
)
|
| 832 |
-
else:
|
| 833 |
-
self.mlp = NomicBertMLP(
|
| 834 |
-
config.n_embd,
|
| 835 |
-
hidden_features=config.n_inner,
|
| 836 |
-
bias1=config.mlp_fc1_bias,
|
| 837 |
-
bias2=config.mlp_fc2_bias,
|
| 838 |
-
activation=activation,
|
| 839 |
-
fused_bias_fc=config.fused_bias_fc,
|
| 840 |
-
)
|
| 841 |
-
|
| 842 |
-
self.dropout1 = nn.Dropout(config.resid_pdrop)
|
| 843 |
-
self.norm1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
| 844 |
-
self.norm2 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
| 845 |
-
self.dropout2 = nn.Dropout(config.resid_pdrop)
|
| 846 |
-
|
| 847 |
-
def forward(
|
| 848 |
-
self,
|
| 849 |
-
hidden_states: torch.Tensor,
|
| 850 |
-
hidden_states2: torch.Tensor,
|
| 851 |
-
residual: Optional[torch.Tensor] = None,
|
| 852 |
-
attention_mask: Optional[torch.Tensor] = None,
|
| 853 |
-
position_ids: Optional[torch.LongTensor] = None,
|
| 854 |
-
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 855 |
-
is_padded_inputs: Optional[bool] = True,
|
| 856 |
-
output_attentions: Optional[bool] = False,
|
| 857 |
-
use_cache: Optional[bool] = False,
|
| 858 |
-
cu_seqlens: Optional[torch.Tensor] = None,
|
| 859 |
-
max_seq_len: Optional[int] = None,
|
| 860 |
-
):
|
| 861 |
-
r"""Pass the input through the encoder layer.
|
| 862 |
-
|
| 863 |
-
Args:
|
| 864 |
-
hidden_states: the sequence to the encoder layer (required).
|
| 865 |
-
residual: if postnorm, residual=None, If prenorm, hidden_states = Attn/MLP(LN(residual))
|
| 866 |
-
mixer_subset: for cross-attention only. If not None, will take a subset of x
|
| 867 |
-
before applying the query projection. Useful for e.g., ViT where we only care
|
| 868 |
-
about the CLS token in the last layer.
|
| 869 |
-
"""
|
| 870 |
-
if self.prenorm:
|
| 871 |
-
dropped = self.dropout1(hidden_states)
|
| 872 |
-
residual = (dropped + residual) if residual is not None else dropped
|
| 873 |
-
hidden_states = self.norm1(residual.to(dtype=self.norm1.weight.dtype))
|
| 874 |
-
hidden_states = self.attn(
|
| 875 |
-
hidden_states,
|
| 876 |
-
attention_mask=attention_mask,
|
| 877 |
-
is_padded_inputs=is_padded_inputs,
|
| 878 |
-
cu_seqlens=cu_seqlens,
|
| 879 |
-
max_seq_len=max_seq_len,
|
| 880 |
-
)
|
| 881 |
-
|
| 882 |
-
dropped = self.dropout2(hidden_states)
|
| 883 |
-
residual = (dropped + residual) if residual is not None else dropped
|
| 884 |
-
hidden_states = self.norm2(residual.to(dtype=self.norm2.weight.dtype))
|
| 885 |
-
hidden_states = self.mlp(hidden_states)
|
| 886 |
-
|
| 887 |
-
return hidden_states, None, residual
|
| 888 |
-
else:
|
| 889 |
-
assert residual is None
|
| 890 |
-
attn_outputs = self.attn(
|
| 891 |
-
hidden_states,
|
| 892 |
-
attention_mask=attention_mask,
|
| 893 |
-
is_padded_inputs=is_padded_inputs,
|
| 894 |
-
cu_seqlens=cu_seqlens,
|
| 895 |
-
max_seq_len=max_seq_len,
|
| 896 |
-
)
|
| 897 |
-
hidden_states = self.norm1((self.dropout1(attn_outputs) + hidden_states).to(dtype=self.norm1.weight.dtype))
|
| 898 |
-
mlp_out = self.mlp(hidden_states)
|
| 899 |
-
|
| 900 |
-
hidden_states = self.norm2((self.dropout2(mlp_out) + hidden_states).to(dtype=self.norm2.weight.dtype))
|
| 901 |
-
return hidden_states, None, None
|
| 902 |
-
|
| 903 |
-
|
| 904 |
-
class NomicBertEncoder(nn.Module):
|
| 905 |
-
def __init__(self, config: GPT2Config):
|
| 906 |
-
super().__init__()
|
| 907 |
-
self.layers = nn.ModuleList([NomicBertBlock(config) for _ in range(config.n_layer)])
|
| 908 |
-
self.gradient_checkpointing = False
|
| 909 |
-
self.config = config
|
| 910 |
-
|
| 911 |
-
def forward(
|
| 912 |
-
self,
|
| 913 |
-
hidden_states: torch.LongTensor = None,
|
| 914 |
-
attention_mask: Optional[torch.Tensor] = None,
|
| 915 |
-
position_ids: Optional[torch.LongTensor] = None,
|
| 916 |
-
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 917 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 918 |
-
use_cache: Optional[bool] = None,
|
| 919 |
-
output_attentions: Optional[bool] = None,
|
| 920 |
-
output_hidden_states: Optional[bool] = None,
|
| 921 |
-
return_dict: Optional[bool] = None,
|
| 922 |
-
is_padded_inputs: Optional[bool] = True,
|
| 923 |
-
):
|
| 924 |
-
"""If subset_mask is not None, we only want output for the subset of the sequence.
|
| 925 |
-
This means that we only compute the last layer output for these tokens.
|
| 926 |
-
subset_mask: (batch, seqlen), dtype=torch.bool
|
| 927 |
-
"""
|
| 928 |
-
hidden_states2 = None
|
| 929 |
-
residual = None
|
| 930 |
-
|
| 931 |
-
for _, layer in enumerate(self.layers):
|
| 932 |
-
if self.gradient_checkpointing and self.training:
|
| 933 |
-
|
| 934 |
-
def create_custom_forward(module):
|
| 935 |
-
def custom_forward(*inputs):
|
| 936 |
-
# None for past_key_value
|
| 937 |
-
return module(*inputs)
|
| 938 |
-
|
| 939 |
-
return custom_forward
|
| 940 |
-
|
| 941 |
-
hidden_states, hidden_states2, residual = torch.utils.checkpoint.checkpoint(
|
| 942 |
-
create_custom_forward(layer),
|
| 943 |
-
hidden_states,
|
| 944 |
-
hidden_states2,
|
| 945 |
-
residual,
|
| 946 |
-
attention_mask,
|
| 947 |
-
None,
|
| 948 |
-
None,
|
| 949 |
-
is_padded_inputs,
|
| 950 |
-
# if you freeze ANY layers, you need `use_reentrant=False`
|
| 951 |
-
# https://github.com/huggingface/transformers/issues/21381
|
| 952 |
-
# https://discuss.pytorch.org/t/checkpoint-with-no-grad-requiring-inputs-problem/19117/7
|
| 953 |
-
use_reentrant=False,
|
| 954 |
-
)
|
| 955 |
-
|
| 956 |
-
else:
|
| 957 |
-
hidden_states, hidden_states2, residual = layer(
|
| 958 |
-
hidden_states,
|
| 959 |
-
hidden_states2,
|
| 960 |
-
residual,
|
| 961 |
-
attention_mask,
|
| 962 |
-
position_ids,
|
| 963 |
-
None,
|
| 964 |
-
is_padded_inputs,
|
| 965 |
-
output_attentions,
|
| 966 |
-
use_cache,
|
| 967 |
-
)
|
| 968 |
-
return hidden_states
|
| 969 |
-
|
| 970 |
-
|
| 971 |
-
class NomicBertPooler(nn.Module):
|
| 972 |
-
def __init__(self, config):
|
| 973 |
-
super().__init__()
|
| 974 |
-
self.dense = nn.Linear(config.n_embd, config.n_embd)
|
| 975 |
-
self.activation = nn.Tanh()
|
| 976 |
-
|
| 977 |
-
def forward(self, hidden_states, pool=True):
|
| 978 |
-
# We "pool" the model by simply taking the hidden state corresponding
|
| 979 |
-
# to the first token.
|
| 980 |
-
first_token_tensor = hidden_states[:, 0] if pool else hidden_states
|
| 981 |
-
pooled_output = self.dense(first_token_tensor)
|
| 982 |
-
pooled_output = self.activation(pooled_output)
|
| 983 |
-
return pooled_output
|
| 984 |
-
|
| 985 |
-
|
| 986 |
-
class NomicBertPredictionHeadTransform(nn.Module):
|
| 987 |
-
def __init__(self, config):
|
| 988 |
-
super().__init__()
|
| 989 |
-
self.dense = nn.Linear(config.n_embd, config.n_embd, bias=config.mlp_fc1_bias)
|
| 990 |
-
approximate = "tanh" if config.activation_function in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"] else "none"
|
| 991 |
-
if config.activation_function == "swiglu":
|
| 992 |
-
self.transform_act_fn = F.silu
|
| 993 |
-
else:
|
| 994 |
-
self.transform_act_fn = nn.GELU(approximate=approximate)
|
| 995 |
-
|
| 996 |
-
self.layer_norm = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
| 997 |
-
|
| 998 |
-
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 999 |
-
hidden_states = self.dense(hidden_states)
|
| 1000 |
-
hidden_states = self.transform_act_fn(hidden_states)
|
| 1001 |
-
hidden_states = self.layer_norm(hidden_states)
|
| 1002 |
-
|
| 1003 |
-
return hidden_states
|
| 1004 |
-
|
| 1005 |
-
|
| 1006 |
-
class NomicBertLMPredictionHead(nn.Module):
|
| 1007 |
-
def __init__(self, config):
|
| 1008 |
-
super().__init__()
|
| 1009 |
-
|
| 1010 |
-
self.transform = NomicBertPredictionHeadTransform(config)
|
| 1011 |
-
|
| 1012 |
-
self.decoder = nn.Linear(config.n_embd, config.vocab_size, bias=config.mlp_fc1_bias)
|
| 1013 |
-
|
| 1014 |
-
def forward(self, hidden_states):
|
| 1015 |
-
hidden_states = self.transform(hidden_states)
|
| 1016 |
-
hidden_states = self.decoder(hidden_states)
|
| 1017 |
-
return hidden_states
|
| 1018 |
-
|
| 1019 |
-
|
| 1020 |
-
class NomicBertPreTrainingHeads(nn.Module):
|
| 1021 |
-
def __init__(self, config):
|
| 1022 |
-
super().__init__()
|
| 1023 |
-
self.predictions = NomicBertLMPredictionHead(config)
|
| 1024 |
-
|
| 1025 |
-
def forward(self, sequence_output):
|
| 1026 |
-
prediction_scores = self.predictions(sequence_output)
|
| 1027 |
-
return prediction_scores
|
| 1028 |
-
|
| 1029 |
-
|
| 1030 |
-
class NomicBertModel(NomicBertPreTrainedModel):
|
| 1031 |
-
def __init__(self, config: GPT2Config, add_pooling_layer=True):
|
| 1032 |
-
super().__init__(config)
|
| 1033 |
-
self.pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
|
| 1034 |
-
if config.vocab_size % self.pad_vocab_size_multiple != 0:
|
| 1035 |
-
config.vocab_size += self.pad_vocab_size_multiple - (config.vocab_size % self.pad_vocab_size_multiple)
|
| 1036 |
-
|
| 1037 |
-
assert config.activation_function in [
|
| 1038 |
-
"gelu",
|
| 1039 |
-
"gelu_new",
|
| 1040 |
-
"gelu_fast",
|
| 1041 |
-
"gelu_pytorch_tanh",
|
| 1042 |
-
"swiglu",
|
| 1043 |
-
"geglu",
|
| 1044 |
-
"glu",
|
| 1045 |
-
]
|
| 1046 |
-
|
| 1047 |
-
self.embeddings = NomicBertEmbeddings(config)
|
| 1048 |
-
self.emb_drop = nn.Dropout(config.resid_pdrop)
|
| 1049 |
-
self.emb_ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
| 1050 |
-
self.encoder = NomicBertEncoder(config)
|
| 1051 |
-
self.pooler = NomicBertPooler(config) if add_pooling_layer else None
|
| 1052 |
-
|
| 1053 |
-
self.apply(partial(_init_weights, initializer_range=config.initializer_range))
|
| 1054 |
-
|
| 1055 |
-
def forward(
|
| 1056 |
-
self,
|
| 1057 |
-
input_ids,
|
| 1058 |
-
position_ids=None,
|
| 1059 |
-
token_type_ids=None,
|
| 1060 |
-
attention_mask=None,
|
| 1061 |
-
return_dict=None,
|
| 1062 |
-
):
|
| 1063 |
-
if token_type_ids is None:
|
| 1064 |
-
token_type_ids = torch.zeros_like(input_ids)
|
| 1065 |
-
hidden_states = self.embeddings(input_ids, position_ids=position_ids, token_type_ids=token_type_ids)
|
| 1066 |
-
hidden_states = self.emb_ln(hidden_states)
|
| 1067 |
-
hidden_states = self.emb_drop(hidden_states)
|
| 1068 |
-
|
| 1069 |
-
attention_mask = self.get_extended_attention_mask(attention_mask, input_ids.shape)
|
| 1070 |
-
sequence_output = self.encoder(hidden_states, attention_mask=attention_mask, return_dict=return_dict)
|
| 1071 |
-
|
| 1072 |
-
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
| 1073 |
-
|
| 1074 |
-
return BaseModelOutputWithPoolingAndCrossAttentions(
|
| 1075 |
-
last_hidden_state=sequence_output,
|
| 1076 |
-
pooler_output=pooled_output,
|
| 1077 |
-
)
|
| 1078 |
-
|
| 1079 |
-
|
| 1080 |
-
class NomicBertForPreTraining(NomicBertPreTrainedModel):
|
| 1081 |
-
_tied_weights_keys = ["predictions.decoder.bias", "cls.predictions.decoder.weight"]
|
| 1082 |
-
|
| 1083 |
-
def __init__(self, config: GPT2Config):
|
| 1084 |
-
super().__init__(config)
|
| 1085 |
-
|
| 1086 |
-
self.bert = NomicBertModel(config, add_pooling_layer=getattr(config, "add_pooling_layer", False))
|
| 1087 |
-
self.cls = NomicBertPreTrainingHeads(config)
|
| 1088 |
-
self.mlm_loss = nn.CrossEntropyLoss()
|
| 1089 |
-
|
| 1090 |
-
# Initialize weights and apply final processing
|
| 1091 |
-
self.apply(partial(_init_weights, initializer_range=config.initializer_range))
|
| 1092 |
-
self.tie_weights()
|
| 1093 |
-
|
| 1094 |
-
def tie_weights(self):
|
| 1095 |
-
self.cls.predictions.decoder.weight = self.bert.embeddings.word_embeddings.weight
|
| 1096 |
-
|
| 1097 |
-
def forward(
|
| 1098 |
-
self,
|
| 1099 |
-
input_ids,
|
| 1100 |
-
position_ids=None,
|
| 1101 |
-
token_type_ids=None,
|
| 1102 |
-
attention_mask=None,
|
| 1103 |
-
labels=None,
|
| 1104 |
-
):
|
| 1105 |
-
"""
|
| 1106 |
-
If labels are provided, they must be -100 for masked out tokens (as specified in the attention
|
| 1107 |
-
mask).
|
| 1108 |
-
Outputs:
|
| 1109 |
-
if `labels` and `next_sentence_label` are not `None`:
|
| 1110 |
-
Outputs the total_loss which is the sum of the masked language modeling loss and the next
|
| 1111 |
-
sentence classification loss.
|
| 1112 |
-
if `labels` or `next_sentence_label` is `None`:
|
| 1113 |
-
Outputs a tuple comprising
|
| 1114 |
-
- the masked language modeling logits of shape [batch_size, sequence_length, vocab_size], and
|
| 1115 |
-
- the next sentence classification logits of shape [batch_size, 2].
|
| 1116 |
-
|
| 1117 |
-
"""
|
| 1118 |
-
outputs = self.bert(
|
| 1119 |
-
input_ids,
|
| 1120 |
-
position_ids=position_ids,
|
| 1121 |
-
token_type_ids=token_type_ids,
|
| 1122 |
-
attention_mask=attention_mask.bool() if attention_mask is not None else None,
|
| 1123 |
-
)
|
| 1124 |
-
sequence_output, _ = outputs.last_hidden_state, outputs.pooler_output
|
| 1125 |
-
|
| 1126 |
-
prediction_scores = self.cls(sequence_output)
|
| 1127 |
-
|
| 1128 |
-
total_loss = None
|
| 1129 |
-
if labels is not None:
|
| 1130 |
-
masked_lm_loss = self.mlm_loss(
|
| 1131 |
-
rearrange(prediction_scores, "... v -> (...) v"),
|
| 1132 |
-
rearrange(labels, "... -> (...)"),
|
| 1133 |
-
)
|
| 1134 |
-
total_loss = masked_lm_loss.float()
|
| 1135 |
-
|
| 1136 |
-
return MaskedLMOutput(
|
| 1137 |
-
loss=total_loss,
|
| 1138 |
-
logits=prediction_scores,
|
| 1139 |
-
hidden_states=outputs.hidden_states,
|
| 1140 |
-
attentions=None,
|
| 1141 |
-
)
|
| 1142 |
-
|
| 1143 |
-
|
| 1144 |
-
class NomicBertForSequenceClassification(NomicBertPreTrainedModel):
|
| 1145 |
-
def __init__(self, config):
|
| 1146 |
-
super().__init__(config)
|
| 1147 |
-
self.num_labels = config.num_labels
|
| 1148 |
-
self.config = config
|
| 1149 |
-
|
| 1150 |
-
self.bert = NomicBertModel(config)
|
| 1151 |
-
classifier_dropout = getattr(config, "classifier_dropout", config.embd_pdrop)
|
| 1152 |
-
self.dropout = nn.Dropout(classifier_dropout)
|
| 1153 |
-
self.classifier = nn.Linear(config.n_embd, config.num_labels)
|
| 1154 |
-
|
| 1155 |
-
# Initialize weights and apply final processing
|
| 1156 |
-
self.post_init()
|
| 1157 |
-
|
| 1158 |
-
def forward(
|
| 1159 |
-
self,
|
| 1160 |
-
input_ids: Optional[torch.Tensor] = None,
|
| 1161 |
-
attention_mask: Optional[torch.Tensor] = None,
|
| 1162 |
-
token_type_ids: Optional[torch.Tensor] = None,
|
| 1163 |
-
position_ids: Optional[torch.Tensor] = None,
|
| 1164 |
-
head_mask: Optional[torch.Tensor] = None,
|
| 1165 |
-
inputs_embeds: Optional[torch.Tensor] = None,
|
| 1166 |
-
labels: Optional[torch.Tensor] = None,
|
| 1167 |
-
output_attentions: Optional[bool] = None,
|
| 1168 |
-
output_hidden_states: Optional[bool] = None,
|
| 1169 |
-
return_dict: Optional[bool] = None,
|
| 1170 |
-
):
|
| 1171 |
-
r"""
|
| 1172 |
-
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1173 |
-
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
| 1174 |
-
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 1175 |
-
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 1176 |
-
"""
|
| 1177 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1178 |
-
outputs = self.bert(
|
| 1179 |
-
input_ids,
|
| 1180 |
-
position_ids=position_ids,
|
| 1181 |
-
token_type_ids=token_type_ids,
|
| 1182 |
-
attention_mask=attention_mask.bool() if attention_mask is not None else None,
|
| 1183 |
-
)
|
| 1184 |
-
|
| 1185 |
-
pooled_output = outputs[1]
|
| 1186 |
-
|
| 1187 |
-
pooled_output = self.dropout(pooled_output)
|
| 1188 |
-
logits = self.classifier(pooled_output)
|
| 1189 |
-
|
| 1190 |
-
loss = None
|
| 1191 |
-
if labels is not None:
|
| 1192 |
-
if self.config.problem_type is None:
|
| 1193 |
-
if self.num_labels == 1:
|
| 1194 |
-
self.config.problem_type = "regression"
|
| 1195 |
-
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
| 1196 |
-
self.config.problem_type = "single_label_classification"
|
| 1197 |
-
else:
|
| 1198 |
-
self.config.problem_type = "multi_label_classification"
|
| 1199 |
-
|
| 1200 |
-
if self.config.problem_type == "regression":
|
| 1201 |
-
loss_fct = nn.MSELoss()
|
| 1202 |
-
if self.num_labels == 1:
|
| 1203 |
-
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
| 1204 |
-
else:
|
| 1205 |
-
loss = loss_fct(logits, labels)
|
| 1206 |
-
elif self.config.problem_type == "single_label_classification":
|
| 1207 |
-
loss_fct = nn.CrossEntropyLoss()
|
| 1208 |
-
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
| 1209 |
-
elif self.config.problem_type == "multi_label_classification":
|
| 1210 |
-
loss_fct = nn.BCEWithLogitsLoss()
|
| 1211 |
-
loss = loss_fct(logits, labels)
|
| 1212 |
-
if not return_dict:
|
| 1213 |
-
output = (logits,) + outputs[2:]
|
| 1214 |
-
return ((loss,) + output) if loss is not None else output
|
| 1215 |
-
|
| 1216 |
-
return SequenceClassifierOutput(
|
| 1217 |
-
loss=loss,
|
| 1218 |
-
logits=logits,
|
| 1219 |
-
hidden_states=outputs.hidden_states,
|
| 1220 |
-
attentions=outputs.attentions,
|
| 1221 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|