DarkX402 / README.md
ordlibrary's picture
Update README.md
60e554c verified
---
license: mit
tags:
- recursive-reasoning
- tiny-model
- solana
- blockchain
- question-answering
- trm
- tiny-recursive-model
- efficient-ai
datasets:
- solana-qa
language:
- en
metrics:
- accuracy
- perplexity
library_name: pytorch
pipeline_tag: text-generation
---
# Tiny Recursive Model for Solana Q&A
<div align="center">
**TRM-Solana** | A 3.5M parameter recursive reasoning model trained on Solana blockchain Q&A
[![Paper](https://img.shields.io/badge/Paper-arXiv-red)](https://arxiv.org/abs/2510.04871)
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
[![PyTorch](https://img.shields.io/badge/PyTorch-2.0+-ee4c2c?logo=pytorch&logoColor=white)](https://pytorch.org/)
</div>
## Model Description
This is a **Tiny Recursive Model (TRM)** fine-tuned on Solana blockchain development Q&A data. Unlike massive language models requiring billions of parameters, TRM achieves strong performance through *recursive reasoning* with just **3.5 million parameters**.
### Key Features
- πŸ”¬ **Tiny Architecture**: Only 3.5M parameters (~1/1000th the size of GPT-3)
- 🧠 **Recursive Reasoning**: Iteratively refines answers through multiple reasoning cycles
- ⚑ **Efficient**: Runs on consumer hardware (CPU/MPS/small GPUs)
- 🎯 **Specialized**: Trained specifically on Solana blockchain development
- πŸ“š **Well-documented**: Based on peer-reviewed research
### Architecture
```
Model: TinyRecursiveReasoningModel (TRM)
β”œβ”€β”€ Layers (L): 1 transformer layer
β”œβ”€β”€ High-level cycles (H): 2 reasoning iterations
β”œβ”€β”€ Low-level cycles (L): 2 refinement iterations
β”œβ”€β”€ Parameters: ~3.5M
β”œβ”€β”€ Vocabulary: 258 tokens (byte-level)
β”œβ”€β”€ Max sequence length: 512 tokens
└── Embedding dim: Variable (based on architecture)
```
## Intended Use
### Primary Use Cases
βœ… **Solana Development Q&A**: Answer questions about Solana blockchain, smart contracts, and development
βœ… **Educational Tool**: Learning resource for Solana developers
βœ… **Code Assistance**: Understanding Solana program architecture and best practices
βœ… **Research**: Studying recursive reasoning in small models
### Out of Scope
❌ General-purpose chat or conversation
❌ Real-time transaction analysis
❌ Production smart contract auditing (use professional auditors)
❌ Non-Solana blockchain questions
## Training Details
### Training Data
- **Dataset**: Custom Solana Q&A corpus
- **Size**: 8,970 question-answer pairs
- **Split**: 90% training (8,073 examples) / 10% test (897 examples)
- **Topics**: Solana architecture, smart contracts, transactions, accounts, programs, security
- **Format**: Instruction-input-output tuples
- **Encoding**: Byte-level tokenization (UTF-8)
### Training Procedure
- **Framework**: PyTorch 2.8+
- **Hardware**: Apple Silicon (M1/M2/M3) with MPS acceleration
- **Epochs**: 1,000 - 5,000 (varies by run)
- **Batch Size**: 64 (global batch size)
- **Learning Rate**: 1e-4
- **Optimizer**: AdamW (CPU-compatible fallback)
- **Weight Decay**: 0.5
- **EMA**: Enabled (rate: 0.999)
- **Gradient Clipping**: Standard
- **Training Time**: ~2-4 hours on Apple Silicon
### Hyperparameters
```yaml
Architecture:
L_layers: 1
H_cycles: 2
L_cycles: 2
Training:
global_batch_size: 64
lr: 1e-4
puzzle_emb_lr: 1e-4
weight_decay: 0.5
ema: true
ema_rate: 0.999
Data:
max_seq_len: 512
vocab_size: 258
encoding: byte-level (UTF-8)
```
## Performance
### Evaluation Metrics
| Metric | Value | Notes |
|--------|-------|-------|
| Training Loss | ~2.3 | Final epoch |
| Test Loss | ~2.5 | Held-out set |
| Parameters | 3.5M | Extremely lightweight |
| Inference Speed | Fast | CPU-compatible |
| Memory Usage | <1GB | During inference |
### Comparison
| Model | Parameters | Solana Q&A | Hardware Needed |
|-------|-----------|------------|-----------------|
| GPT-3 | 175B | Good | Expensive |
| LLaMA-7B | 7B | Good | GPU required |
| **TRM-Solana** | **3.5M** | **Specialized** | **CPU/MPS** |
## How to Use
### Installation
```bash
# Install dependencies
pip install torch transformers huggingface_hub
# Or clone the full repo
git clone https://github.com/AlexiaJM/TinyRecursiveModels
cd TinyRecursiveModels
pip install -r requirements.txt
```
### Download Model
```python
from huggingface_hub import hf_hub_download
import torch
# Download checkpoint
checkpoint_path = hf_hub_download(
repo_id="ordlibrary/trm-solana-v1",
filename="model.pt"
)
# Load checkpoint
checkpoint = torch.load(checkpoint_path, map_location='cpu')
model_state = checkpoint['model_state_dict']
config = checkpoint['config']
print(f"Model trained for {checkpoint['epoch']} epochs")
print(f"Training loss: {checkpoint['train_loss']:.4f}")
print(f"Test loss: {checkpoint['test_loss']:.4f}")
```
### Inference (Requires TRM Code)
```python
# Note: You need the TRM model code from the repository
from models.recursive_reasoning.trm import TinyRecursiveReasoningModel_ACTV1
# Initialize model with config
model = TinyRecursiveReasoningModel_ACTV1(**config['arch'])
# Load weights
model.load_state_dict(model_state)
model.eval()
# Encode question (byte-level)
def encode_text(text, max_len=512):
bytes_arr = np.frombuffer(text.encode('utf-8'), dtype=np.uint8)
tokens = (bytes_arr + 2).astype(np.uint8) # Shift for PAD/EOS
# Pad sequence
seq = np.zeros(max_len, dtype=np.uint8)
seq[:len(tokens)] = tokens[:max_len-1]
seq[min(len(tokens), max_len-1)] = 1 # EOS token
return torch.tensor(seq).unsqueeze(0)
# Inference
question = "What is a Program Derived Address (PDA) in Solana?"
input_tensor = encode_text(question)
with torch.no_grad():
output = model(input_tensor)
# Decode output bytes back to text
# (implementation depends on your decoding strategy)
```
### Example Questions
The model can answer questions like:
- "What is a Program Derived Address (PDA) in Solana?"
- "How do Solana transactions differ from Ethereum?"
- "What is the purpose of the System Program?"
- "Explain Solana's account model"
- "How does rent work in Solana?"
- "What are cross-program invocations (CPI)?"
## Limitations and Biases
### Limitations
1. **Specialized Domain**: Only trained on Solana-related content
2. **Small Model**: Limited capacity compared to large language models
3. **Byte-level Encoding**: May struggle with very long responses
4. **Training Data Cutoff**: Knowledge limited to training data timeframe
5. **No Real-time Updates**: Does not know about post-training Solana changes
### Potential Biases
- **Documentation Bias**: Reflects common patterns in Solana documentation
- **English Only**: Trained exclusively on English Q&A pairs
- **Developer-focused**: Biased toward technical development questions
- **Format Bias**: Optimized for Q&A format, not conversation
### Risks and Mitigations
| Risk | Mitigation |
|------|------------|
| Outdated information | Always verify with official Solana docs |
| Security advice | Never rely solely on model for security audits |
| Code generation | Review and test all generated code |
| General blockchain questions | Model specializes in Solana only |
## Ethical Considerations
- **Transparency**: Training data and methodology fully documented
- **Open Source**: Model weights and code freely available
- **Educational Purpose**: Designed for learning, not production deployment
- **Verification**: Always cross-reference model outputs with official sources
## Citation
If you use this model in your research, please cite:
```bibtex
@misc{jolicoeurmartineau2025morerecursivereasoningtiny,
title={Less is More: Recursive Reasoning with Tiny Networks},
author={Alexia Jolicoeur-Martineau},
year={2025},
eprint={2510.04871},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2510.04871},
}
```
## Model Card Authors
**Model**: Trained and fine-tuned by OrdLibrary
**Architecture**: Based on TRM by Alexia Jolicoeur-Martineau
**Dataset**: Custom Solana Q&A corpus
## Additional Resources
- πŸ“„ **Paper**: [Less is More: Recursive Reasoning with Tiny Networks](https://arxiv.org/abs/2510.04871)
- πŸ’» **Code**: [TinyRecursiveModels GitHub](https://github.com/AlexiaJM/TinyRecursiveModels)
- 🌐 **Solana Docs**: [docs.solana.com](https://docs.solana.com)
- πŸ€— **Model**: [huggingface.co/ordlibrary/trm-solana-v1](https://huggingface.co/ordlibrary/trm-solana-v1)
## License
MIT License - See repository for full details
## Acknowledgments
- **Alexia Jolicoeur-Martineau** for the TRM architecture
- **Solana Foundation** for comprehensive documentation
- **HuggingFace** for hosting infrastructure
- **Community contributors** to Solana Q&A data
---
<div align="center">
**Built with ❀️ for the Solana developer community**
[Report Issues](https://github.com/AlexiaJM/TinyRecursiveModels/issues) β€’ [Get Help](https://docs.solana.com)
</div>