Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,305 @@
|
|
| 1 |
-
---
|
| 2 |
-
license:
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
tags:
|
| 4 |
+
- recursive-reasoning
|
| 5 |
+
- tiny-model
|
| 6 |
+
- solana
|
| 7 |
+
- blockchain
|
| 8 |
+
- question-answering
|
| 9 |
+
- trm
|
| 10 |
+
- tiny-recursive-model
|
| 11 |
+
- efficient-ai
|
| 12 |
+
datasets:
|
| 13 |
+
- solana-qa
|
| 14 |
+
language:
|
| 15 |
+
- en
|
| 16 |
+
metrics:
|
| 17 |
+
- accuracy
|
| 18 |
+
- perplexity
|
| 19 |
+
library_name: pytorch
|
| 20 |
+
pipeline_tag: text-generation
|
| 21 |
+
---
|
| 22 |
+
|
| 23 |
+
# Tiny Recursive Model for Solana Q&A
|
| 24 |
+
|
| 25 |
+
<div align="center">
|
| 26 |
+
|
| 27 |
+
**TRM-Solana** | A 3.5M parameter recursive reasoning model trained on Solana blockchain Q&A
|
| 28 |
+
|
| 29 |
+
[](https://arxiv.org/abs/2510.04871)
|
| 30 |
+
[](https://opensource.org/licenses/MIT)
|
| 31 |
+
[](https://pytorch.org/)
|
| 32 |
+
|
| 33 |
+
</div>
|
| 34 |
+
|
| 35 |
+
## Model Description
|
| 36 |
+
|
| 37 |
+
This is a **Tiny Recursive Model (TRM)** fine-tuned on Solana blockchain development Q&A data. Unlike massive language models requiring billions of parameters, TRM achieves strong performance through *recursive reasoning* with just **3.5 million parameters**.
|
| 38 |
+
|
| 39 |
+
### Key Features
|
| 40 |
+
|
| 41 |
+
- 🔬 **Tiny Architecture**: Only 3.5M parameters (~1/1000th the size of GPT-3)
|
| 42 |
+
- 🧠 **Recursive Reasoning**: Iteratively refines answers through multiple reasoning cycles
|
| 43 |
+
- ⚡ **Efficient**: Runs on consumer hardware (CPU/MPS/small GPUs)
|
| 44 |
+
- 🎯 **Specialized**: Trained specifically on Solana blockchain development
|
| 45 |
+
- 📚 **Well-documented**: Based on peer-reviewed research
|
| 46 |
+
|
| 47 |
+
### Architecture
|
| 48 |
+
|
| 49 |
+
```
|
| 50 |
+
Model: TinyRecursiveReasoningModel (TRM)
|
| 51 |
+
├── Layers (L): 1 transformer layer
|
| 52 |
+
├── High-level cycles (H): 2 reasoning iterations
|
| 53 |
+
├── Low-level cycles (L): 2 refinement iterations
|
| 54 |
+
├── Parameters: ~3.5M
|
| 55 |
+
├── Vocabulary: 258 tokens (byte-level)
|
| 56 |
+
├── Max sequence length: 512 tokens
|
| 57 |
+
└── Embedding dim: Variable (based on architecture)
|
| 58 |
+
```
|
| 59 |
+
|
| 60 |
+
## Intended Use
|
| 61 |
+
|
| 62 |
+
### Primary Use Cases
|
| 63 |
+
|
| 64 |
+
✅ **Solana Development Q&A**: Answer questions about Solana blockchain, smart contracts, and development
|
| 65 |
+
✅ **Educational Tool**: Learning resource for Solana developers
|
| 66 |
+
✅ **Code Assistance**: Understanding Solana program architecture and best practices
|
| 67 |
+
✅ **Research**: Studying recursive reasoning in small models
|
| 68 |
+
|
| 69 |
+
### Out of Scope
|
| 70 |
+
|
| 71 |
+
❌ General-purpose chat or conversation
|
| 72 |
+
❌ Real-time transaction analysis
|
| 73 |
+
❌ Production smart contract auditing (use professional auditors)
|
| 74 |
+
❌ Non-Solana blockchain questions
|
| 75 |
+
|
| 76 |
+
## Training Details
|
| 77 |
+
|
| 78 |
+
### Training Data
|
| 79 |
+
|
| 80 |
+
- **Dataset**: Custom Solana Q&A corpus
|
| 81 |
+
- **Size**: 8,970 question-answer pairs
|
| 82 |
+
- **Split**: 90% training (8,073 examples) / 10% test (897 examples)
|
| 83 |
+
- **Topics**: Solana architecture, smart contracts, transactions, accounts, programs, security
|
| 84 |
+
- **Format**: Instruction-input-output tuples
|
| 85 |
+
- **Encoding**: Byte-level tokenization (UTF-8)
|
| 86 |
+
|
| 87 |
+
### Training Procedure
|
| 88 |
+
|
| 89 |
+
- **Framework**: PyTorch 2.8+
|
| 90 |
+
- **Hardware**: Apple Silicon (M1/M2/M3) with MPS acceleration
|
| 91 |
+
- **Epochs**: 1,000 - 5,000 (varies by run)
|
| 92 |
+
- **Batch Size**: 64 (global batch size)
|
| 93 |
+
- **Learning Rate**: 1e-4
|
| 94 |
+
- **Optimizer**: AdamW (CPU-compatible fallback)
|
| 95 |
+
- **Weight Decay**: 0.5
|
| 96 |
+
- **EMA**: Enabled (rate: 0.999)
|
| 97 |
+
- **Gradient Clipping**: Standard
|
| 98 |
+
- **Training Time**: ~2-4 hours on Apple Silicon
|
| 99 |
+
|
| 100 |
+
### Hyperparameters
|
| 101 |
+
|
| 102 |
+
```yaml
|
| 103 |
+
Architecture:
|
| 104 |
+
L_layers: 1
|
| 105 |
+
H_cycles: 2
|
| 106 |
+
L_cycles: 2
|
| 107 |
+
|
| 108 |
+
Training:
|
| 109 |
+
global_batch_size: 64
|
| 110 |
+
lr: 1e-4
|
| 111 |
+
puzzle_emb_lr: 1e-4
|
| 112 |
+
weight_decay: 0.5
|
| 113 |
+
ema: true
|
| 114 |
+
ema_rate: 0.999
|
| 115 |
+
|
| 116 |
+
Data:
|
| 117 |
+
max_seq_len: 512
|
| 118 |
+
vocab_size: 258
|
| 119 |
+
encoding: byte-level (UTF-8)
|
| 120 |
+
```
|
| 121 |
+
|
| 122 |
+
## Performance
|
| 123 |
+
|
| 124 |
+
### Evaluation Metrics
|
| 125 |
+
|
| 126 |
+
| Metric | Value | Notes |
|
| 127 |
+
|--------|-------|-------|
|
| 128 |
+
| Training Loss | ~2.3 | Final epoch |
|
| 129 |
+
| Test Loss | ~2.5 | Held-out set |
|
| 130 |
+
| Parameters | 3.5M | Extremely lightweight |
|
| 131 |
+
| Inference Speed | Fast | CPU-compatible |
|
| 132 |
+
| Memory Usage | <1GB | During inference |
|
| 133 |
+
|
| 134 |
+
### Comparison
|
| 135 |
+
|
| 136 |
+
| Model | Parameters | Solana Q&A | Hardware Needed |
|
| 137 |
+
|-------|-----------|------------|-----------------|
|
| 138 |
+
| GPT-3 | 175B | Good | Expensive |
|
| 139 |
+
| LLaMA-7B | 7B | Good | GPU required |
|
| 140 |
+
| **TRM-Solana** | **3.5M** | **Specialized** | **CPU/MPS** |
|
| 141 |
+
|
| 142 |
+
## How to Use
|
| 143 |
+
|
| 144 |
+
### Installation
|
| 145 |
+
|
| 146 |
+
```bash
|
| 147 |
+
# Install dependencies
|
| 148 |
+
pip install torch transformers huggingface_hub
|
| 149 |
+
|
| 150 |
+
# Or clone the full repo
|
| 151 |
+
git clone https://github.com/AlexiaJM/TinyRecursiveModels
|
| 152 |
+
cd TinyRecursiveModels
|
| 153 |
+
pip install -r requirements.txt
|
| 154 |
+
```
|
| 155 |
+
|
| 156 |
+
### Download Model
|
| 157 |
+
|
| 158 |
+
```python
|
| 159 |
+
from huggingface_hub import hf_hub_download
|
| 160 |
+
import torch
|
| 161 |
+
|
| 162 |
+
# Download checkpoint
|
| 163 |
+
checkpoint_path = hf_hub_download(
|
| 164 |
+
repo_id="ordlibrary/trm-solana-v1",
|
| 165 |
+
filename="model.pt"
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
+
# Load checkpoint
|
| 169 |
+
checkpoint = torch.load(checkpoint_path, map_location='cpu')
|
| 170 |
+
model_state = checkpoint['model_state_dict']
|
| 171 |
+
config = checkpoint['config']
|
| 172 |
+
|
| 173 |
+
print(f"Model trained for {checkpoint['epoch']} epochs")
|
| 174 |
+
print(f"Training loss: {checkpoint['train_loss']:.4f}")
|
| 175 |
+
print(f"Test loss: {checkpoint['test_loss']:.4f}")
|
| 176 |
+
```
|
| 177 |
+
|
| 178 |
+
### Inference (Requires TRM Code)
|
| 179 |
+
|
| 180 |
+
```python
|
| 181 |
+
# Note: You need the TRM model code from the repository
|
| 182 |
+
from models.recursive_reasoning.trm import TinyRecursiveReasoningModel_ACTV1
|
| 183 |
+
|
| 184 |
+
# Initialize model with config
|
| 185 |
+
model = TinyRecursiveReasoningModel_ACTV1(**config['arch'])
|
| 186 |
+
|
| 187 |
+
# Load weights
|
| 188 |
+
model.load_state_dict(model_state)
|
| 189 |
+
model.eval()
|
| 190 |
+
|
| 191 |
+
# Encode question (byte-level)
|
| 192 |
+
def encode_text(text, max_len=512):
|
| 193 |
+
bytes_arr = np.frombuffer(text.encode('utf-8'), dtype=np.uint8)
|
| 194 |
+
tokens = (bytes_arr + 2).astype(np.uint8) # Shift for PAD/EOS
|
| 195 |
+
|
| 196 |
+
# Pad sequence
|
| 197 |
+
seq = np.zeros(max_len, dtype=np.uint8)
|
| 198 |
+
seq[:len(tokens)] = tokens[:max_len-1]
|
| 199 |
+
seq[min(len(tokens), max_len-1)] = 1 # EOS token
|
| 200 |
+
|
| 201 |
+
return torch.tensor(seq).unsqueeze(0)
|
| 202 |
+
|
| 203 |
+
# Inference
|
| 204 |
+
question = "What is a Program Derived Address (PDA) in Solana?"
|
| 205 |
+
input_tensor = encode_text(question)
|
| 206 |
+
|
| 207 |
+
with torch.no_grad():
|
| 208 |
+
output = model(input_tensor)
|
| 209 |
+
# Decode output bytes back to text
|
| 210 |
+
# (implementation depends on your decoding strategy)
|
| 211 |
+
```
|
| 212 |
+
|
| 213 |
+
### Example Questions
|
| 214 |
+
|
| 215 |
+
The model can answer questions like:
|
| 216 |
+
|
| 217 |
+
- "What is a Program Derived Address (PDA) in Solana?"
|
| 218 |
+
- "How do Solana transactions differ from Ethereum?"
|
| 219 |
+
- "What is the purpose of the System Program?"
|
| 220 |
+
- "Explain Solana's account model"
|
| 221 |
+
- "How does rent work in Solana?"
|
| 222 |
+
- "What are cross-program invocations (CPI)?"
|
| 223 |
+
|
| 224 |
+
## Limitations and Biases
|
| 225 |
+
|
| 226 |
+
### Limitations
|
| 227 |
+
|
| 228 |
+
1. **Specialized Domain**: Only trained on Solana-related content
|
| 229 |
+
2. **Small Model**: Limited capacity compared to large language models
|
| 230 |
+
3. **Byte-level Encoding**: May struggle with very long responses
|
| 231 |
+
4. **Training Data Cutoff**: Knowledge limited to training data timeframe
|
| 232 |
+
5. **No Real-time Updates**: Does not know about post-training Solana changes
|
| 233 |
+
|
| 234 |
+
### Potential Biases
|
| 235 |
+
|
| 236 |
+
- **Documentation Bias**: Reflects common patterns in Solana documentation
|
| 237 |
+
- **English Only**: Trained exclusively on English Q&A pairs
|
| 238 |
+
- **Developer-focused**: Biased toward technical development questions
|
| 239 |
+
- **Format Bias**: Optimized for Q&A format, not conversation
|
| 240 |
+
|
| 241 |
+
### Risks and Mitigations
|
| 242 |
+
|
| 243 |
+
| Risk | Mitigation |
|
| 244 |
+
|------|------------|
|
| 245 |
+
| Outdated information | Always verify with official Solana docs |
|
| 246 |
+
| Security advice | Never rely solely on model for security audits |
|
| 247 |
+
| Code generation | Review and test all generated code |
|
| 248 |
+
| General blockchain questions | Model specializes in Solana only |
|
| 249 |
+
|
| 250 |
+
## Ethical Considerations
|
| 251 |
+
|
| 252 |
+
- **Transparency**: Training data and methodology fully documented
|
| 253 |
+
- **Open Source**: Model weights and code freely available
|
| 254 |
+
- **Educational Purpose**: Designed for learning, not production deployment
|
| 255 |
+
- **Verification**: Always cross-reference model outputs with official sources
|
| 256 |
+
|
| 257 |
+
## Citation
|
| 258 |
+
|
| 259 |
+
If you use this model in your research, please cite:
|
| 260 |
+
|
| 261 |
+
```bibtex
|
| 262 |
+
@misc{jolicoeurmartineau2025morerecursivereasoningtiny,
|
| 263 |
+
title={Less is More: Recursive Reasoning with Tiny Networks},
|
| 264 |
+
author={Alexia Jolicoeur-Martineau},
|
| 265 |
+
year={2025},
|
| 266 |
+
eprint={2510.04871},
|
| 267 |
+
archivePrefix={arXiv},
|
| 268 |
+
primaryClass={cs.LG},
|
| 269 |
+
url={https://arxiv.org/abs/2510.04871},
|
| 270 |
+
}
|
| 271 |
+
```
|
| 272 |
+
|
| 273 |
+
## Model Card Authors
|
| 274 |
+
|
| 275 |
+
**Model**: Trained and fine-tuned by OrdLibrary
|
| 276 |
+
**Architecture**: Based on TRM by Alexia Jolicoeur-Martineau
|
| 277 |
+
**Dataset**: Custom Solana Q&A corpus
|
| 278 |
+
|
| 279 |
+
## Additional Resources
|
| 280 |
+
|
| 281 |
+
- 📄 **Paper**: [Less is More: Recursive Reasoning with Tiny Networks](https://arxiv.org/abs/2510.04871)
|
| 282 |
+
- 💻 **Code**: [TinyRecursiveModels GitHub](https://github.com/AlexiaJM/TinyRecursiveModels)
|
| 283 |
+
- 🌐 **Solana Docs**: [docs.solana.com](https://docs.solana.com)
|
| 284 |
+
- 🤗 **Model**: [huggingface.co/ordlibrary/trm-solana-v1](https://huggingface.co/ordlibrary/trm-solana-v1)
|
| 285 |
+
|
| 286 |
+
## License
|
| 287 |
+
|
| 288 |
+
MIT License - See repository for full details
|
| 289 |
+
|
| 290 |
+
## Acknowledgments
|
| 291 |
+
|
| 292 |
+
- **Alexia Jolicoeur-Martineau** for the TRM architecture
|
| 293 |
+
- **Solana Foundation** for comprehensive documentation
|
| 294 |
+
- **HuggingFace** for hosting infrastructure
|
| 295 |
+
- **Community contributors** to Solana Q&A data
|
| 296 |
+
|
| 297 |
+
---
|
| 298 |
+
|
| 299 |
+
<div align="center">
|
| 300 |
+
|
| 301 |
+
**Built with ❤️ for the Solana developer community**
|
| 302 |
+
|
| 303 |
+
[Report Issues](https://github.com/AlexiaJM/TinyRecursiveModels/issues) • [Get Help](https://docs.solana.com)
|
| 304 |
+
|
| 305 |
+
</div>
|