Enhancing Reasoning for Diffusion LLMs via Distribution Matching Policy Optimization
Abstract
A reinforcement learning method called Distribution Matching Policy Optimization (DMPO) enhances the reasoning capabilities of diffusion large language models with superior performance on benchmarks compared to previous methods.
Diffusion large language models (dLLMs) are promising alternatives to autoregressive large language models (AR-LLMs), as they potentially allow higher inference throughput. Reinforcement learning (RL) is a crucial component for dLLMs to achieve comparable performance with AR-LLMs on important tasks, such as reasoning. However, RL algorithms that are well-suited for dLLMs' unique characteristics have yet to be developed. This paper proposes Distribution Matching Policy Optimization (DMPO), a principled and theoretically grounded RL fine-tuning method specifically designed to enhance the reasoning capabilities of dLLMs by matching the dLLM policy distribution to the optimal, reward-tilted one through cross-entropy optimization. We identify a key challenge in the implementation with a small training batch size and propose several effective solutions through a novel weight baseline subtraction technique. DMPO exhibits superior performance on multiple reasoning benchmarks without supervised fine-tuning, with an accuracy improvement of up to 42.9% over previously SOTA baselines and 55.8% over the base model, underscoring the effectiveness of the distribution matching framework. Our code is available at https://github.com/yuchen-zhu-zyc/DMPO.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper