Papers
arxiv:2510.24932

RiddleBench: A New Generative Reasoning Benchmark for LLMs

Published on Oct 28
· Submitted by Deepon on Nov 5
Authors:
,
,
,
,

Abstract

RiddleBench, a benchmark of 1,737 puzzles, reveals fundamental weaknesses in state-of-the-art language models, including hallucination cascades and poor self-correction, highlighting the need for more robust reasoning capabilities.

AI-generated summary

Large Language Models have demonstrated strong performance on many established reasoning benchmarks. However, these benchmarks primarily evaluate structured skills like quantitative problem-solving, leaving a gap in assessing flexible, multifaceted reasoning abilities that are central to human intelligence. These abilities require integrating logical deduction with spatial awareness and constraint satisfaction, which current evaluations do not measure well. To address this, we introduce RiddleBench, a benchmark of 1,737 challenging puzzles in English designed to probe these core reasoning capabilities. Evaluation of state-of-the-art models on RiddleBench shows fundamental weaknesses. Even top proprietary models like Gemini 2.5 Pro, o3, and Claude 4 Sonnet achieve accuracy just above 60% (60.30%, 63.37%, and 63.16%). Analysis further reveals deep failures, including hallucination cascades (accepting flawed reasoning from other models) and poor self-correction due to a strong self-confirmation bias. Their reasoning is also fragile, with performance degrading significantly when constraints are reordered or irrelevant information is introduced. RiddleBench functions as a diagnostic tool for these issues and as a resource for guiding the development of more robust and reliable language models.

Community

Paper author Paper submitter

Added paper

This is an automated message from the Librarian Bot. I found the following papers similar to this paper.

The following papers were recommended by the Semantic Scholar API

Please give a thumbs up to this comment if you found it helpful!

If you want recommendations for any Paper on Hugging Face checkout this Space

You can directly ask Librarian Bot for paper recommendations by tagging it in a comment: @librarian-bot recommend

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2510.24932 in a model README.md to link it from this page.

Datasets citing this paper 1

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2510.24932 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.