Controllable Layer Decomposition for Reversible Multi-Layer Image Generation
Abstract
Controllable Layer Decomposition (CLD) enables fine-grained and controllable separation of raster images into RGBA layers, surpassing existing methods in quality and practical use.
This work presents Controllable Layer Decomposition (CLD), a method for achieving fine-grained and controllable multi-layer separation of raster images. In practical workflows, designers typically generate and edit each RGBA layer independently before compositing them into a final raster image. However, this process is irreversible: once composited, layer-level editing is no longer possible. Existing methods commonly rely on image matting and inpainting, but remain limited in controllability and segmentation precision. To address these challenges, we propose two key modules: LayerDecompose-DiT (LD-DiT), which decouples image elements into distinct layers and enables fine-grained control; and Multi-Layer Conditional Adapter (MLCA), which injects target image information into multi-layer tokens to achieve precise conditional generation. To enable a comprehensive evaluation, we build a new benchmark and introduce tailored evaluation metrics. Experimental results show that CLD consistently outperforms existing methods in both decomposition quality and controllability. Furthermore, the separated layers produced by CLD can be directly manipulated in commonly used design tools such as PowerPoint, highlighting its practical value and applicability in real-world creative workflows.
Community
This work presents Controllable Layer Decomposition (CLD), a method for achieving fine-grained and controllable multi-layer separation of raster images. In practical workflows, designers typically generate and edit each RGBA layer independently before compositing them into a final raster image. However, this process is irreversible: once composited, layer-level editing is no longer possible. Existing methods commonly rely on image matting and inpainting, but remain limited in controllability and segmentation precision. To address these challenges, we propose two key modules: LayerDecompose-DiT (LD-DiT), which decouples image elements into distinct layers and enables fine-grained control; and Multi-Layer Conditional Adapter (MLCA), which injects target image information into multi-layer tokens to achieve precise conditional generation. To enable a comprehensive evaluation, we build a new benchmark and introduce tailored evaluation metrics. Experimental results show that CLD consistently outperforms existing methods in both decomposition quality and controllability. Furthermore, the separated layers produced by CLD can be directly manipulated in commonly used design tools such as PowerPoint, highlighting its practical value and applicability in real-world creative workflows.
This is an automated message from the Librarian Bot. I found the following papers similar to this paper.
The following papers were recommended by the Semantic Scholar API
- ConsistCompose: Unified Multimodal Layout Control for Image Composition (2025)
- TAUE: Training-free Noise Transplant and Cultivation Diffusion Model (2025)
- LayerComposer: Multi-Human Personalized Generation via Layered Canvas (2025)
- The Consistency Critic: Correcting Inconsistencies in Generated Images via Reference-Guided Attentive Alignment (2025)
- LayerD: Decomposing Raster Graphic Designs into Layers (2025)
- NaTex: Seamless Texture Generation as Latent Color Diffusion (2025)
- Instruction Guided Multi Object Image Editing with Quantity and Layout Consistency (2025)
Please give a thumbs up to this comment if you found it helpful!
If you want recommendations for any Paper on Hugging Face checkout this Space
You can directly ask Librarian Bot for paper recommendations by tagging it in a comment:
@librarian-bot
recommend
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper