- From Latent Graph to Latent Topology Inference: Differentiable Cell Complex Module Latent Graph Inference (LGI) relaxed the reliance of Graph Neural Networks (GNNs) on a given graph topology by dynamically learning it. However, most of LGI methods assume to have a (noisy, incomplete, improvable, ...) input graph to rewire and can solely learn regular graph topologies. In the wake of the success of Topological Deep Learning (TDL), we study Latent Topology Inference (LTI) for learning higher-order cell complexes (with sparse and not regular topology) describing multi-way interactions between data points. To this aim, we introduce the Differentiable Cell Complex Module (DCM), a novel learnable function that computes cell probabilities in the complex to improve the downstream task. We show how to integrate DCM with cell complex message passing networks layers and train it in a end-to-end fashion, thanks to a two-step inference procedure that avoids an exhaustive search across all possible cells in the input, thus maintaining scalability. Our model is tested on several homophilic and heterophilic graph datasets and it is shown to outperform other state-of-the-art techniques, offering significant improvements especially in cases where an input graph is not provided. 6 authors · May 25, 2023
- Families of Optimal Transport Kernels for Cell Complexes Recent advances have discussed cell complexes as ideal learning representations. However, there is a lack of available machine learning methods suitable for learning on CW complexes. In this paper, we derive an explicit expression for the Wasserstein distance between cell complex signal distributions in terms of a Hodge-Laplacian matrix. This leads to a structurally meaningful measure to compare CW complexes and define the optimal transportation map. In order to simultaneously include both feature and structure information, we extend the Fused Gromov-Wasserstein distance to CW complexes. Finally, we introduce novel kernels over the space of probability measures on CW complexes based on the dual formulation of optimal transport. 1 authors · Jul 22
- Differentiable Electrochemistry: A paradigm for uncovering hidden physical phenomena in electrochemical systems Despite the long history of electrochemistry, there is a lack of quantitative algorithms that rigorously correlate experiment with theory. Electrochemical modeling has had advanced across empirical, analytical, numerical, and data-driven paradigms. Data-driven machine learning and physics based electrochemical modeling, however, have not been explicitly linked. Here we introduce Differentiable Electrochemistry, a mew paradigm in electrochemical modeling that integrates thermodynamics, kinetics and mass transport with differentiable programming enabled by automatic differentiation. By making the entire electrochemical simulation end-to-end differentiable, this framework enables gradient-based optimization for mechanistic discovery from experimental and simulation data, achieving approximately one to two orders of improvement over gradient-free methods. We develop a rich repository of differentiable simulators across diverse mechanisms, and apply Differentiable Electrochemistry to bottleneck problems in kinetic analysis. Specifically, Differentiable Electrochemistry advances beyond Tafel and Nicholson method by removing several limitations including Tafel region selection, and identifies the electron transfer mechanism in Li metal electrodeposition/stripping by parameterizing the full Marcus-Hush-Chidsey formalism. In addition, Differentiable Electrochemistry interprets Operando X-ray measurements in concentrated electrolyte by coupling concentration and velocity theories. This framework resolves ambiguity when multiple electrochemical theories intertwine, and establishes a physics-consistent and data-efficient foundation for predictive electrochemical modeling. 5 authors · Nov 7
- Ensemble of Pathology Foundation Models for MIDOG 2025 Track 2: Atypical Mitosis Classification Mitotic figures are classified into typical and atypical variants, with atypical counts correlating strongly with tumor aggressiveness. Accurate differentiation is therefore essential for patient prognostication and resource allocation, yet remains challenging even for expert pathologists. Here, we leveraged Pathology Foundation Models (PFMs) pre-trained on large histopathology datasets and applied parameter-efficient fine-tuning via low-rank adaptation. In addition, we incorporated ConvNeXt V2, a state-of-the-art convolutional neural network architecture, to complement PFMs. During training, we employed a fisheye transform to emphasize mitoses and Fourier Domain Adaptation using ImageNet target images. Finally, we ensembled multiple PFMs to integrate complementary morphological insights, achieving competitive balanced accuracy on the Preliminary Evaluation Phase dataset. 2 authors · Aug 28
- Neural Spline Flows A normalizing flow models a complex probability density as an invertible transformation of a simple base density. Flows based on either coupling or autoregressive transforms both offer exact density evaluation and sampling, but rely on the parameterization of an easily invertible elementwise transformation, whose choice determines the flexibility of these models. Building upon recent work, we propose a fully-differentiable module based on monotonic rational-quadratic splines, which enhances the flexibility of both coupling and autoregressive transforms while retaining analytic invertibility. We demonstrate that neural spline flows improve density estimation, variational inference, and generative modeling of images. 4 authors · Jun 10, 2019
39 CellForge: Agentic Design of Virtual Cell Models Virtual cell modeling represents an emerging frontier at the intersection of artificial intelligence and biology, aiming to predict quantities such as responses to diverse perturbations quantitatively. However, autonomously building computational models for virtual cells is challenging due to the complexity of biological systems, the heterogeneity of data modalities, and the need for domain-specific expertise across multiple disciplines. Here, we introduce CellForge, an agentic system that leverages a multi-agent framework that transforms presented biological datasets and research objectives directly into optimized computational models for virtual cells. More specifically, given only raw single-cell multi-omics data and task descriptions as input, CellForge outputs both an optimized model architecture and executable code for training virtual cell models and inference. The framework integrates three core modules: Task Analysis for presented dataset characterization and relevant literature retrieval, Method Design, where specialized agents collaboratively develop optimized modeling strategies, and Experiment Execution for automated generation of code. The agents in the Design module are separated into experts with differing perspectives and a central moderator, and have to collaboratively exchange solutions until they achieve a reasonable consensus. We demonstrate CellForge's capabilities in single-cell perturbation prediction, using six diverse datasets that encompass gene knockouts, drug treatments, and cytokine stimulations across multiple modalities. CellForge consistently outperforms task-specific state-of-the-art methods. Overall, CellForge demonstrates how iterative interaction between LLM agents with differing perspectives provides better solutions than directly addressing a modeling challenge. Our code is publicly available at https://github.com/gersteinlab/CellForge. 15 authors · Aug 4 2