1 KOR-Bench: Benchmarking Language Models on Knowledge-Orthogonal Reasoning Tasks In this paper, we introduce Knowledge-Orthogonal Reasoning (KOR), which minimizes the impact of domain-specific knowledge for a more accurate evaluation of models' reasoning abilities in out-of-distribution scenarios. Based on this concept, we propose the Knowledge-Orthogonal Reasoning Benchmark (KOR-Bench), encompassing five task categories: Operation, Logic, Cipher, Puzzle, and Counterfactual. KOR-Bench emphasizes the effectiveness of models in applying new rule descriptions to solve novel rule-driven questions, revealing that top-performing models like Claude-3.5-Sonnet and GPT-4o only achieve 58.96% and 58.00% accuracy, respectively. We conduct thorough analyses to identify bottlenecks in the Cipher task using Stepwise Prompting, discovering that two rounds of Self-Correction yield optimal results. Complex Task Processing evaluates model performance across three integrated tasks, while we also explore the impact of Tricks on the Puzzle task and visualize rule-focused attention to enhance our understanding of model behavior. We aim for KOR-Bench to be a valuable resource for enhancing models' reasoning capabilities and fostering further research in this field. 12 authors · Oct 8, 2024
- KORGym: A Dynamic Game Platform for LLM Reasoning Evaluation Recent advancements in large language models (LLMs) underscore the need for more comprehensive evaluation methods to accurately assess their reasoning capabilities. Existing benchmarks are often domain-specific and thus cannot fully capture an LLM's general reasoning potential. To address this limitation, we introduce the Knowledge Orthogonal Reasoning Gymnasium (KORGym), a dynamic evaluation platform inspired by KOR-Bench and Gymnasium. KORGym offers over fifty games in either textual or visual formats and supports interactive, multi-turn assessments with reinforcement learning scenarios. Using KORGym, we conduct extensive experiments on 19 LLMs and 8 VLMs, revealing consistent reasoning patterns within model families and demonstrating the superior performance of closed-source models. Further analysis examines the effects of modality, reasoning strategies, reinforcement learning techniques, and response length on model performance. We expect KORGym to become a valuable resource for advancing LLM reasoning research and developing evaluation methodologies suited to complex, interactive environments. 29 authors · May 20
68 Reinforcement Learning on Pre-Training Data The growing disparity between the exponential scaling of computational resources and the finite growth of high-quality text data now constrains conventional scaling approaches for large language models (LLMs). To address this challenge, we introduce Reinforcement Learning on Pre-Training data (RLPT), a new training-time scaling paradigm for optimizing LLMs. In contrast to prior approaches that scale training primarily through supervised learning, RLPT enables the policy to autonomously explore meaningful trajectories to learn from pre-training data and improve its capability through reinforcement learning (RL). While existing RL strategies such as reinforcement learning from human feedback (RLHF) and reinforcement learning with verifiable rewards (RLVR) rely on human annotation for reward construction, RLPT eliminates this dependency by deriving reward signals directly from pre-training data. Specifically, it adopts a next-segment reasoning objective, rewarding the policy for accurately predicting subsequent text segments conditioned on the preceding context. This formulation allows RL to be scaled on pre-training data, encouraging the exploration of richer trajectories across broader contexts and thereby fostering more generalizable reasoning skills. Extensive experiments on both general-domain and mathematical reasoning benchmarks across multiple models validate the effectiveness of RLPT. For example, when applied to Qwen3-4B-Base, RLPT yields absolute improvements of 3.0, 5.1, 8.1, 6.0, 6.6, and 5.3 on MMLU, MMLU-Pro, GPQA-Diamond, KOR-Bench, AIME24, and AIME25, respectively. The results further demonstrate favorable scaling behavior, suggesting strong potential for continued gains with more compute. In addition, RLPT provides a solid foundation, extending the reasoning boundaries of LLMs and enhancing RLVR performance. 36 authors · Sep 23 3