Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribePsyMem: Fine-grained psychological alignment and Explicit Memory Control for Advanced Role-Playing LLMs
Existing LLM-based role-playing methods often rely on superficial textual descriptions or simplistic metrics, inadequately modeling both intrinsic and extrinsic character dimensions. Additionally, they typically simulate character memory with implicit model knowledge or basic retrieval augment generation without explicit memory alignment, compromising memory consistency. The two issues weaken reliability of role-playing LLMs in several applications, such as trustworthy social simulation. To address these limitations, we propose PsyMem, a novel framework integrating fine-grained psychological attributes and explicit memory control for role-playing. PsyMem supplements textual descriptions with 26 psychological indicators to detailed model character. Additionally, PsyMem implements memory alignment training, explicitly trains the model to align character's response with memory, thereby enabling dynamic memory-controlled responding during inference. By training Qwen2.5-7B-Instruct on our specially designed dataset (including 5,414 characters and 38,962 dialogues extracted from novels), the resulting model, termed as PsyMem-Qwen, outperforms baseline models in role-playing, achieving the best performance in human-likeness and character fidelity.
Large Language Model-based Role-Playing for Personalized Medical Jargon Extraction
Previous studies reveal that Electronic Health Records (EHR), which have been widely adopted in the U.S. to allow patients to access their personal medical information, do not have high readability to patients due to the prevalence of medical jargon. Tailoring medical notes to individual comprehension by identifying jargon that is difficult for each person will enhance the utility of generative models. We present the first quantitative analysis to measure the impact of role-playing in LLM in medical term extraction. By comparing the results of Mechanical Turk workers over 20 sentences, our study demonstrates that LLM role-playing improves F1 scores in 95% of cases across 14 different socio-demographic backgrounds. Furthermore, applying role-playing with in-context learning outperformed the previous state-of-the-art models. Our research showed that ChatGPT can improve traditional medical term extraction systems by utilizing role-play to deliver personalized patient education, a potential that previous models had not achieved.
Improving LLM Reasoning through Interpretable Role-Playing Steering
Role-playing has emerged as an effective technique for enhancing the reasoning capabilities of large language models (LLMs). However, existing methods primarily rely on prompt engineering, which often lacks stability and interpretability. In this paper, we introduce Sparse Autoencoder Role-Playing Steering (SRPS), a novel framework that identifies and manipulates internal model features associated with role-playing behavior. Our approach extracts latent representations from role-play prompts, selects the most relevant features based on activation patterns, and constructs a steering vector that can be injected into the model's residual stream with controllable intensity. Our method enables fine-grained control over role-specific behavior and offers insights into how role information influences internal model activations. Extensive experiments across various reasoning benchmarks and model sizes demonstrate consistent performance gains. Notably, in the zero-shot chain-of-thought (CoT) setting, the accuracy of Llama3.1-8B on CSQA improves from 31.86% to 39.80%, while Gemma2-9B on SVAMP increases from 37.50% to 45.10%. These results highlight the potential of SRPS to enhance reasoning ability in LLMs, providing better interpretability and stability compared to traditional prompt-based role-playing.
Interactive Agents: Simulating Counselor-Client Psychological Counseling via Role-Playing LLM-to-LLM Interactions
Virtual counselors powered by large language models (LLMs) aim to create interactive support systems that effectively assist clients struggling with mental health challenges. To replicate counselor-client conversations, researchers have built an online mental health platform that allows professional counselors to provide clients with text-based counseling services for about an hour per session. Notwithstanding its effectiveness, challenges exist as human annotation is time-consuming, cost-intensive, privacy-protected, and not scalable. To address this issue and investigate the applicability of LLMs in psychological counseling conversation simulation, we propose a framework that employs two LLMs via role-playing for simulating counselor-client interactions. Our framework involves two LLMs, one acting as a client equipped with a specific and real-life user profile and the other playing the role of an experienced counselor, generating professional responses using integrative therapy techniques. We implement both the counselor and the client by zero-shot prompting the GPT-4 model. In order to assess the effectiveness of LLMs in simulating counselor-client interactions and understand the disparities between LLM- and human-generated conversations, we evaluate the synthetic data from various perspectives. We begin by assessing the client's performance through automatic evaluations. Next, we analyze and compare the disparities between dialogues generated by the LLM and those generated by professional counselors. Furthermore, we conduct extensive experiments to thoroughly examine the performance of our LLM-based counselor trained with synthetic interactive dialogues by benchmarking against state-of-the-art models for mental health.
CoSER: Coordinating LLM-Based Persona Simulation of Established Roles
Role-playing language agents (RPLAs) have emerged as promising applications of large language models (LLMs). However, simulating established characters presents a challenging task for RPLAs, due to the lack of authentic character datasets and nuanced evaluation methods using such data. In this paper, we present CoSER, a collection of a high-quality dataset, open models, and an evaluation protocol towards effective RPLAs of established characters. The CoSER dataset covers 17,966 characters from 771 renowned books. It provides authentic dialogues with real-world intricacies, as well as diverse data types such as conversation setups, character experiences and internal thoughts. Drawing from acting methodology, we introduce given-circumstance acting for training and evaluating role-playing LLMs, where LLMs sequentially portray multiple characters in book scenes. Using our dataset, we develop CoSER 8B and CoSER 70B, i.e., advanced open role-playing LLMs built on LLaMA-3.1 models. Extensive experiments demonstrate the value of the CoSER dataset for RPLA training, evaluation and retrieval. Moreover, CoSER 70B exhibits state-of-the-art performance surpassing or matching GPT-4o on our evaluation and three existing benchmarks, i.e., achieving 75.80% and 93.47% accuracy on the InCharacter and LifeChoice benchmarks respectively.
Talk Less, Call Right: Enhancing Role-Play LLM Agents with Automatic Prompt Optimization and Role Prompting
This report investigates approaches for prompting a tool-augmented large language model (LLM) to act as a role-playing dialogue agent in the API track of the Commonsense Persona-grounded Dialogue Challenge (CPDC) 2025. In this setting, dialogue agents often produce overly long in-character responses (over-speaking) while failing to use tools effectively according to the persona (under-acting), such as generating function calls that do not exist or making unnecessary tool calls before answering. We explore four prompting approaches to address these issues: 1) basic role prompting, 2) human-crafted role prompting, 3) automatic prompt optimization (APO), and 4) rule-based role prompting. The rule-based role prompting (RRP) approach achieved the best performance through two novel techniques--character-card/scene-contract design and strict enforcement of function calling--which led to an overall score of 0.571, improving on the zero-shot baseline score of 0.519. These findings demonstrate that RRP design can substantially improve the effectiveness and reliability of role-playing dialogue agents compared with more elaborate methods such as APO. To support future efforts in developing persona prompts, we are open-sourcing all of our best-performing prompts and the APO tool. Source code is available at https://github.com/scb-10x/apo.
RMTBench: Benchmarking LLMs Through Multi-Turn User-Centric Role-Playing
Recent advancements in Large Language Models (LLMs) have shown outstanding potential for role-playing applications. Evaluating these capabilities is becoming crucial yet remains challenging. Existing benchmarks mostly adopt a character-centric approach, simplify user-character interactions to isolated Q&A tasks, and fail to reflect real-world applications. To address this limitation, we introduce RMTBench, a comprehensive user-centric bilingual role-playing benchmark featuring 80 diverse characters and over 8,000 dialogue rounds. RMTBench includes custom characters with detailed backgrounds and abstract characters defined by simple traits, enabling evaluation across various user scenarios. Our benchmark constructs dialogues based on explicit user motivations rather than character descriptions, ensuring alignment with practical user applications. Furthermore, we construct an authentic multi-turn dialogue simulation mechanism. With carefully selected evaluation dimensions and LLM-based scoring, this mechanism captures the complex intention of conversations between the user and the character. By shifting focus from character background to user intention fulfillment, RMTBench bridges the gap between academic evaluation and practical deployment requirements, offering a more effective framework for assessing role-playing capabilities in LLMs. All code and datasets will be released soon.
RPGBENCH: Evaluating Large Language Models as Role-Playing Game Engines
We present RPGBench, the first benchmark designed to evaluate large language models (LLMs) as text-based role-playing game (RPG) engines. RPGBench comprises two core tasks: Game Creation (GC) and Game Simulation (GS). In GC, an LLM must craft a valid and playable RPG world using a structured event-state representation, ensuring logical coherence and proper termination conditions. In GS, the LLM simulates interactive gameplay across multiple rounds while consistently updating states and enforcing game rules. To comprehensively assess performance, RPGBench integrates objective and subjective evaluation methodologies. Objective measures verify adherence to event mechanics and check variable updates without requiring human intervention. Subjective measures, such as content interestingness, action quality, and role-playing capability, are evaluated via an LLM-as-a-judge framework, where a strong LLM grades each candidate's outputs. Empirical results demonstrate that state-of-the-art LLMs can produce engaging stories but often struggle to implement consistent, verifiable game mechanics, particularly in long or complex scenarios. By combining structured, rule-based assessments with LLM-based judgments, RPGBench provides a new standard for evaluating how well LLMs can balance creativity, coherence, and complexity in text-based RPGs, opening avenues for more immersive and controllable interactive storytelling.
GUARD: Role-playing to Generate Natural-language Jailbreakings to Test Guideline Adherence of Large Language Models
The discovery of "jailbreaks" to bypass safety filters of Large Language Models (LLMs) and harmful responses have encouraged the community to implement safety measures. One major safety measure is to proactively test the LLMs with jailbreaks prior to the release. Therefore, such testing will require a method that can generate jailbreaks massively and efficiently. In this paper, we follow a novel yet intuitive strategy to generate jailbreaks in the style of the human generation. We propose a role-playing system that assigns four different roles to the user LLMs to collaborate on new jailbreaks. Furthermore, we collect existing jailbreaks and split them into different independent characteristics using clustering frequency and semantic patterns sentence by sentence. We organize these characteristics into a knowledge graph, making them more accessible and easier to retrieve. Our system of different roles will leverage this knowledge graph to generate new jailbreaks, which have proved effective in inducing LLMs to generate unethical or guideline-violating responses. In addition, we also pioneer a setting in our system that will automatically follow the government-issued guidelines to generate jailbreaks to test whether LLMs follow the guidelines accordingly. We refer to our system as GUARD (Guideline Upholding through Adaptive Role-play Diagnostics). We have empirically validated the effectiveness of GUARD on three cutting-edge open-sourced LLMs (Vicuna-13B, LongChat-7B, and Llama-2-7B), as well as a widely-utilized commercial LLM (ChatGPT). Moreover, our work extends to the realm of vision language models (MiniGPT-v2 and Gemini Vision Pro), showcasing GUARD's versatility and contributing valuable insights for the development of safer, more reliable LLM-based applications across diverse modalities.
Persona is a Double-edged Sword: Enhancing the Zero-shot Reasoning by Ensembling the Role-playing and Neutral Prompts
Recent studies demonstrate that prompting an appropriate role-playing persona to an LLM improves its reasoning capability. However, assigning a proper persona is difficult since an LLM's performance is extremely sensitive to assigned prompts; therefore, personas sometimes hinder LLMs and degrade their reasoning capabilities. In this paper, we propose a novel framework, Jekyll \& Hyde, which ensembles the results of role-playing and neutral prompts to eradicate performance degradation via unilateral use of role-playing prompted LLM and enhance the robustness of an LLM's reasoning ability. Specifically, Jekyll \& Hyde collects two potential solutions from both role-playing and neutral prompts and selects a better solution after cross-checking via an LLM evaluator. However, LLM-based evaluators tend to be affected by the order of those potential solutions within the prompt when selecting the proper solution; thus, we also propose a robust LLM evaluator to mitigate the position bias. The experimental analysis demonstrates that role-playing prompts distract LLMs and degrade their reasoning abilities in 4 out of 12 datasets, even when using GPT-4. In addition, we reveal that Jekyll \& Hyde improves reasoning capabilities by selecting better choices among the potential solutions on twelve widely-used reasoning datasets. We further show that our proposed LLM evaluator outperforms other baselines, proving the LLMs' position bias is successfully mitigated.
Quantifying and Optimizing Global Faithfulness in Persona-driven Role-playing
Persona-driven role-playing (PRP) aims to build AI characters that can respond to user queries by faithfully sticking with all persona statements. Unfortunately, existing faithfulness criteria for PRP are limited to coarse-grained LLM-based scoring without a clear definition or formulation. This paper presents a pioneering exploration to quantify PRP faithfulness as a fine-grained and explainable criterion, which also serves as a reliable reference for optimization. Our criterion first discriminates persona statements into active and passive constraints by identifying the query-statement relevance. Then, we incorporate all constraints following the principle that the AI character's response should be (a) entailed by active (relevant) constraints and (b) not contradicted by passive (irrelevant) constraints. We translate this principle mathematically into a novel Active-Passive-Constraint (APC) score, a constraint-wise sum of natural language inference (NLI) scores weighted by relevance scores. In practice, we build the APC scoring system by symbolically distilling small discriminators from GPT-4 for efficiency. We validate the quality of the APC score against human evaluation based on example personas with tens of statements, and the results show a high correlation. We further leverage it as a reward system in direct preference optimization (DPO) for better AI characters. Our experiments offer a fine-grained and explainable comparison between existing PRP techniques, revealing their advantages and limitations. We further find APC-based DPO to be one of the most competitive techniques for sticking with all constraints and can be well incorporated with other techniques. We then extend the scale of the experiments to real persons with hundreds of statements and reach a consistent conclusion.
MedAgents: Large Language Models as Collaborators for Zero-shot Medical Reasoning
Large Language Models (LLMs), despite their remarkable progress across various general domains, encounter significant barriers in medicine and healthcare. This field faces unique challenges such as domain-specific terminologies and the reasoning over specialized knowledge. To address these obstinate issues, we propose a novel Multi-disciplinary Collaboration (MC) framework for the medical domain that leverages role-playing LLM-based agents who participate in a collaborative multi-round discussion, thereby enhancing LLM proficiency and reasoning capabilities. This training-free and interpretable framework encompasses five critical steps: gathering domain experts, proposing individual analyses, summarising these analyses into a report, iterating over discussions until a consensus is reached, and ultimately making a decision. Our work particularly focuses on the zero-shot scenario, our results on nine data sets (MedQA, MedMCQA, PubMedQA, and six subtasks from MMLU) establish that our proposed MC framework excels at mining and harnessing the medical expertise in LLMs, as well as extending its reasoning abilities. Based on these outcomes, we further conduct a human evaluation to pinpoint and categorize common errors within our method, as well as ablation studies aimed at understanding the impact of various factors on overall performance. Our code can be found at https://github.com/gersteinlab/MedAgents.
LLM-Agent-UMF: LLM-based Agent Unified Modeling Framework for Seamless Integration of Multi Active/Passive Core-Agents
The integration of tools in LLM-based agents overcame the difficulties of standalone LLMs and traditional agents' limited capabilities. However, the conjunction of these technologies and the proposed enhancements in several state-of-the-art works followed a non-unified software architecture resulting in a lack of modularity. Indeed, they focused mainly on functionalities and overlooked the definition of the component's boundaries within the agent. This caused terminological and architectural ambiguities between researchers which we addressed in this paper by proposing a unified framework that establishes a clear foundation for LLM-based agents' development from both functional and software architectural perspectives. Our framework, LLM-Agent-UMF (LLM-based Agent Unified Modeling Framework), clearly distinguishes between the different components of an agent, setting LLMs, and tools apart from a newly introduced element: the core-agent, playing the role of the central coordinator of the agent which comprises five modules: planning, memory, profile, action, and security, the latter often neglected in previous works. Differences in the internal structure of core-agents led us to classify them into a taxonomy of passive and active types. Based on this, we proposed different multi-core agent architectures combining unique characteristics of various individual agents. For evaluation purposes, we applied this framework to a selection of state-of-the-art agents, thereby demonstrating its alignment with their functionalities and clarifying the overlooked architectural aspects. Moreover, we thoroughly assessed four of our proposed architectures by integrating distinctive agents into hybrid active/passive core-agents' systems. This analysis provided clear insights into potential improvements and highlighted the challenges involved in the combination of specific agents.
Fair-PP: A Synthetic Dataset for Aligning LLM with Personalized Preferences of Social Equity
Human preference plays a crucial role in the refinement of large language models (LLMs). However, collecting human preference feedback is costly and most existing datasets neglect the correlation between personalization and preferences. To address this issue, we introduce Fair-PP, a synthetic dataset of personalized preferences targeting social equity, derived from real-world social survey data, which includes 28 social groups, 98 equity topics, and 5 personal preference dimensions. Leveraging GPT-4o-mini, we engage in role-playing based on seven representative persona portrayals guided by existing social survey data, yielding a total of 238,623 preference records. Through Fair-PP, we also contribute (i) An automated framework for generating preference data, along with a more fine-grained dataset of personalized preferences; (ii) analysis of the positioning of the existing mainstream LLMs across five major global regions within the personalized preference space; and (iii) a sample reweighting method for personalized preference alignment, enabling alignment with a target persona while maximizing the divergence from other personas. Empirical experiments show our method outperforms the baselines.
CharacterBox: Evaluating the Role-Playing Capabilities of LLMs in Text-Based Virtual Worlds
Role-playing is a crucial capability of Large Language Models (LLMs), enabling a wide range of practical applications, including intelligent non-player characters, digital twins, and emotional companions. Evaluating this capability in LLMs is challenging due to the complex dynamics involved in role-playing, such as maintaining character fidelity throughout a storyline and navigating open-ended narratives without a definitive ground truth. Current evaluation methods, which primarily focus on question-answering or conversational snapshots, fall short of adequately capturing the nuanced character traits and behaviors essential for authentic role-playing. In this paper, we propose CharacterBox, which is a simulation sandbox designed to generate situational fine-grained character behavior trajectories. These behavior trajectories enable a more comprehensive and in-depth evaluation of role-playing capabilities. CharacterBox consists of two main components: the character agent and the narrator agent. The character agent, grounded in psychological and behavioral science, exhibits human-like behaviors, while the narrator agent coordinates interactions between character agents and environmental changes. Additionally, we introduce two trajectory-based methods that leverage CharacterBox to enhance LLM performance. To reduce costs and facilitate the adoption of CharacterBox by public communities, we fine-tune two smaller models, CharacterNR and CharacterRM, as substitutes for GPT API calls, and demonstrate their competitive performance compared to advanced GPT APIs.
Revealing the Challenge of Detecting Character Knowledge Errors in LLM Role-Playing
Large language model (LLM) role-playing has gained widespread attention, where the authentic character knowledge is crucial for constructing realistic LLM role-playing agents. However, existing works usually overlook the exploration of LLMs' ability to detect characters' known knowledge errors (KKE) and unknown knowledge errors (UKE) while playing roles, which would lead to low-quality automatic construction of character trainable corpus. In this paper, we propose a probing dataset to evaluate LLMs' ability to detect errors in KKE and UKE. The results indicate that even the latest LLMs struggle to effectively detect these two types of errors, especially when it comes to familiar knowledge. We experimented with various reasoning strategies and propose an agent-based reasoning method, Self-Recollection and Self-Doubt (S2RD), to further explore the potential for improving error detection capabilities. Experiments show that our method effectively improves the LLMs' ability to detect error character knowledge, but it remains an issue that requires ongoing attention.
DiagGPT: An LLM-based Chatbot with Automatic Topic Management for Task-Oriented Dialogue
Large Language Models (LLMs), such as ChatGPT, are becoming increasingly sophisticated, demonstrating capabilities that closely resemble those of humans. These AI models are playing an essential role in assisting humans with a wide array of tasks in daily life. A significant application of AI is its use as a chat agent, responding to human inquiries across various domains. Current LLMs have shown proficiency in answering general questions. However, basic question-answering dialogue often falls short in complex diagnostic scenarios, such as legal or medical consultations. These scenarios typically necessitate Task-Oriented Dialogue (TOD), wherein an AI chat agent needs to proactively pose questions and guide users towards specific task completion. Previous fine-tuning models have underperformed in TOD, and current LLMs do not inherently possess this capability. In this paper, we introduce DiagGPT (Dialogue in Diagnosis GPT), an innovative method that extends LLMs to TOD scenarios. Our experiments reveal that DiagGPT exhibits outstanding performance in conducting TOD with users, demonstrating its potential for practical applications.
Embracing Imperfection: Simulating Students with Diverse Cognitive Levels Using LLM-based Agents
Large language models (LLMs) are revolutionizing education, with LLM-based agents playing a key role in simulating student behavior. A major challenge in student simulation is modeling the diverse learning patterns of students at various cognitive levels. However, current LLMs, typically trained as ``helpful assistants'', target at generating perfect responses. As a result, they struggle to simulate students with diverse cognitive abilities, as they often produce overly advanced answers, missing the natural imperfections that characterize student learning and resulting in unrealistic simulations. To address this issue, we propose a training-free framework for student simulation. We begin by constructing a cognitive prototype for each student using a knowledge graph, which captures their understanding of concepts from past learning records. This prototype is then mapped to new tasks to predict student performance. Next, we simulate student solutions based on these predictions and iteratively refine them using a beam search method to better replicate realistic mistakes. To validate our approach, we construct the Student\_100 dataset, consisting of 100 students working on Python programming and 5,000 learning records. Experimental results show that our method consistently outperforms baseline models, achieving 100% improvement in simulation accuracy.
VTG-LLM: Integrating Timestamp Knowledge into Video LLMs for Enhanced Video Temporal Grounding
Video Temporal Grounding (VTG) focuses on accurately identifying event timestamps within a particular video based on a linguistic query, playing a vital role in downstream tasks such as video browsing and editing. While Video Large Language Models (video LLMs) have made significant progress in understanding video content, they often face challenges in accurately pinpointing timestamps within videos, which limits their performance on VTG tasks. Therefore, to improve video LLMs' ability to effectively locate timestamps, we argue that two critical aspects need to be enhanced. First, it is essential to have high-quality instructional tuning datasets that encompass mainstream VTG tasks. Second, directly incorporating timestamp knowledge into video LLMs is crucial, as it enables models to efficiently comprehend timestamp information. To address these needs, we first introduce VTG-IT-120K, a high-quality and comprehensive instruction tuning dataset that covers VTG tasks such as moment retrieval, dense video captioning, video summarization, and video highlight detection. Furthermore, we propose a specially designed video LLM model for VTG tasks, VTG-LLM, which (1) effectively integrates timestamp knowledge into visual tokens; (2) incorporates absolute-time tokens that specifically handle timestamp knowledge, thereby avoiding concept shifts; and (3) introduces a lightweight, high-performance slot-based token compression method to facilitate the sampling of more video frames. Comprehensive experiments showcase the superior performance of VTG-LLM in comparison to other video LLM methods across various VTG tasks. Our code and datasets are available at https://github.com/gyxxyg/VTG-LLM.
RoleLLM: Benchmarking, Eliciting, and Enhancing Role-Playing Abilities of Large Language Models
The advent of Large Language Models (LLMs) has paved the way for complex tasks such as role-playing, which enhances user interactions by enabling models to imitate various characters. However, the closed-source nature of state-of-the-art LLMs and their general-purpose training limit role-playing optimization. In this paper, we introduce RoleLLM, a framework to benchmark, elicit, and enhance role-playing abilities in LLMs. RoleLLM comprises four stages: (1) Role Profile Construction for 100 roles; (2) Context-Based Instruction Generation (Context-Instruct) for role-specific knowledge extraction; (3) Role Prompting using GPT (RoleGPT) for speaking style imitation; and (4) Role-Conditioned Instruction Tuning (RoCIT) for fine-tuning open-source models along with role customization. By Context-Instruct and RoleGPT, we create RoleBench, the first systematic and fine-grained character-level benchmark dataset for role-playing with 168,093 samples. Moreover, RoCIT on RoleBench yields RoleLLaMA (English) and RoleGLM (Chinese), significantly enhancing role-playing abilities and even achieving comparable results with RoleGPT (using GPT-4).
Large Language Models are Superpositions of All Characters: Attaining Arbitrary Role-play via Self-Alignment
Considerable efforts have been invested in augmenting the role-playing proficiency of open-source large language models (LLMs) by emulating proprietary counterparts. Nevertheless, we posit that LLMs inherently harbor role-play capabilities, owing to the extensive knowledge of characters and potential dialogues ingrained in their vast training corpora. Thus, in this study, we introduce Ditto, a self-alignment method for role-play. Ditto capitalizes on character knowledge, encouraging an instruction-following LLM to simulate role-play dialogues as a variant of reading comprehension. This method creates a role-play training set comprising 4,000 characters, surpassing the scale of currently available datasets by tenfold regarding the number of roles. Subsequently, we fine-tune the LLM using this self-generated dataset to augment its role-playing capabilities. Upon evaluating our meticulously constructed and reproducible role-play benchmark and the roleplay subset of MT-Bench, Ditto, in various parameter scales, consistently maintains a consistent role identity and provides accurate role-specific knowledge in multi-turn role-play conversations. Notably, it outperforms all open-source role-play baselines, showcasing performance levels comparable to advanced proprietary chatbots. Furthermore, we present the first comprehensive cross-supervision alignment experiment in the role-play domain, revealing that the intrinsic capabilities of LLMs confine the knowledge within role-play. Meanwhile, the role-play styles can be easily acquired with the guidance of smaller models. We open-source related resources at https://github.com/OFA-Sys/Ditto.
Better Zero-Shot Reasoning with Role-Play Prompting
Modern large language models (LLMs), such as ChatGPT, exhibit a remarkable capacity for role-playing, enabling them to embody not only human characters but also non-human entities like a Linux terminal. This versatility allows them to simulate complex human-like interactions and behaviors within various contexts, as well as to emulate specific objects or systems. While these capabilities have enhanced user engagement and introduced novel modes of interaction, the influence of role-playing on LLMs' reasoning abilities remains underexplored. In this study, we introduce a strategically designed role-play prompting methodology and assess its performance under the zero-shot setting across twelve diverse reasoning benchmarks, encompassing arithmetic, commonsense reasoning, symbolic reasoning, and more. Leveraging models such as ChatGPT and Llama 2, our empirical results illustrate that role-play prompting consistently surpasses the standard zero-shot approach across most datasets. Notably, accuracy on AQuA rises from 53.5% to 63.8%, and on Last Letter from 23.8% to 84.2%. Beyond enhancing contextual understanding, we posit that role-play prompting serves as an implicit Chain-of-Thought (CoT) trigger, thereby improving the quality of reasoning. By comparing our approach with the Zero-Shot-CoT technique, which prompts the model to "think step by step", we further demonstrate that role-play prompting can generate a more effective CoT. This highlights its potential to augment the reasoning capabilities of LLMs.
Towards Enhanced Immersion and Agency for LLM-based Interactive Drama
LLM-based Interactive Drama is a novel AI-based dialogue scenario, where the user (i.e. the player) plays the role of a character in the story, has conversations with characters played by LLM agents, and experiences an unfolding story. This paper begins with understanding interactive drama from two aspects: Immersion, the player's feeling of being present in the story, and Agency, the player's ability to influence the story world. Both are crucial to creating an enjoyable interactive experience, while they have been underexplored in previous work. To enhance these two aspects, we first propose Playwriting-guided Generation, a novel method that helps LLMs craft dramatic stories with substantially improved structures and narrative quality. Additionally, we introduce Plot-based Reflection for LLM agents to refine their reactions to align with the player's intentions. Our evaluation relies on human judgment to assess the gains of our methods in terms of immersion and agency.
Self-Prompt Tuning: Enable Autonomous Role-Playing in LLMs
Recent advancements in LLMs have showcased their remarkable role-playing capabilities, able to accurately simulate the dialogue styles and cognitive processes of various roles based on different instructions and contexts. Studies indicate that assigning LLMs the roles of experts, a strategy known as role-play prompting, can enhance their performance in the corresponding domains. However, the prompt needs to be manually designed for the given problem, requiring certain expertise and iterative modifications. To this end, we propose self-prompt tuning, making LLMs themselves generate role-play prompts through fine-tuning. Leveraging the LIMA dataset as our foundational corpus, we employ GPT-4 to annotate role-play prompts for each data points, resulting in the creation of the LIMA-Role dataset. We then fine-tune LLMs like Llama-2-7B and Mistral-7B on LIMA-Role. Consequently, the self-prompt tuned LLMs can automatically generate expert role prompts for any given question. We extensively evaluate self-prompt tuned LLMs on widely used NLP benchmarks and open-ended question test. Our empirical results illustrate that self-prompt tuned LLMs outperform standard instruction tuned baselines across most datasets. This highlights the great potential of utilizing fine-tuning to enable LLMs to self-prompt, thereby automating complex prompting strategies. We release the dataset, models, and code at this https://anonymous.4open.science/r/Self-Prompt-Tuning-739E/{url}.
OpenCharacter: Training Customizable Role-Playing LLMs with Large-Scale Synthetic Personas
Customizable role-playing in large language models (LLMs), also known as character generalization, is gaining increasing attention for its versatility and cost-efficiency in developing and deploying role-playing dialogue agents. This study explores a large-scale data synthesis approach to equip LLMs with character generalization capabilities. We begin by synthesizing large-scale character profiles using personas from Persona Hub and then explore two strategies: response rewriting and response generation, to create character-aligned instructional responses. To validate the effectiveness of our synthetic instruction tuning data for character generalization, we perform supervised fine-tuning (SFT) using the LLaMA-3 8B model. Our best-performing model strengthens the original LLaMA-3 8B Instruct model and achieves performance comparable to GPT-4o models on role-playing dialogue. We release our synthetic characters and instruction-tuning dialogues to support public research.
Prompt Framework for Role-playing: Generation and Evaluation
Large language models (LLM) have demonstrated remarkable abilities in generating natural language, understanding user instruction, and mimicking human language use. These capabilities have garnered considerable interest in applications such as role-playing. However, the process of collecting individual role scripts (or profiles) data and manually evaluating the performance can be costly. We introduce a framework that uses prompts to leverage the state-of-the-art (SOTA) LLMs to construct role-playing dialogue datasets and evaluate the role-playing performance. Additionally, we employ recall-oriented evaluation Rouge-L metric to support the result of the LLM evaluator.
Strategist: Learning Strategic Skills by LLMs via Bi-Level Tree Search
In this paper, we propose a new method Strategist that utilizes LLMs to acquire new skills for playing multi-agent games through a self-improvement process. Our method gathers quality feedback through self-play simulations with Monte Carlo tree search and LLM-based reflection, which can then be used to learn high-level strategic skills such as how to evaluate states that guide the low-level execution.We showcase how our method can be used in both action planning and dialogue generation in the context of games, achieving good performance on both tasks. Specifically, we demonstrate that our method can help train agents with better performance than both traditional reinforcement learning-based approaches and other LLM-based skill learning approaches in games including the Game of Pure Strategy (GOPS) and The Resistance: Avalon.
RoleMRC: A Fine-Grained Composite Benchmark for Role-Playing and Instruction-Following
Role-playing is important for Large Language Models (LLMs) to follow diverse instructions while maintaining role identity and the role's pre-defined ability limits. Existing role-playing datasets mostly contribute to controlling role style and knowledge boundaries, but overlook role-playing in instruction-following scenarios. We introduce a fine-grained role-playing and instruction-following composite benchmark, named RoleMRC, including: (1) Multi-turn dialogues between ideal roles and humans, including free chats or discussions upon given passages; (2) Role-playing machine reading comprehension, involving response, refusal, and attempts according to passage answerability and role ability; (3) More complex scenarios with nested, multi-turn and prioritized instructions. The final RoleMRC features a 10.2k role profile meta-pool, 37.9k well-synthesized role-playing instructions, and 1.4k testing samples. We develop a pipeline to quantitatively evaluate the fine-grained role-playing and instruction-following capabilities of several mainstream LLMs, as well as models that are fine-tuned on our data. Moreover, cross-evaluation on external role-playing datasets confirms that models fine-tuned on RoleMRC enhances instruction-following without compromising general role-playing and reasoning capabilities. We also probe the neural-level activation maps of different capabilities over post-tuned LLMs. Access to our RoleMRC, RoleMRC-mix and Codes: https://github.com/LuJunru/RoleMRC.
LLM Discussion: Enhancing the Creativity of Large Language Models via Discussion Framework and Role-Play
Large language models (LLMs) have shown exceptional proficiency in natural language processing but often fall short of generating creative and original responses to open-ended questions. To enhance LLM creativity, our key insight is to emulate the human process of inducing collective creativity through engaging discussions with participants from diverse backgrounds and perspectives. To this end, we propose LLM Discussion, a three-phase discussion framework that facilitates vigorous and diverging idea exchanges and ensures convergence to creative answers. Moreover, we adopt a role-playing technique by assigning distinct roles to LLMs to combat the homogeneity of LLMs. We evaluate the efficacy of the proposed framework with the Alternative Uses Test, Similarities Test, Instances Test, and Scientific Creativity Test through both LLM evaluation and human study. Our proposed framework outperforms single-LLM approaches and existing multi-LLM frameworks across various creativity metrics.
Reinforcement Learning from Multi-role Debates as Feedback for Bias Mitigation in LLMs
Bias in LLMs can harm user experience and societal outcomes. However, current bias mitigation methods often require intensive human feedback, lack transferability to other topics or yield overconfident and random outputs. We find that involving LLMs in role-playing scenario boosts their ability to recognize and mitigate biases. Based on this, we propose Reinforcement Learning from Multi-role Debates as Feedback (RLDF), a novel approach for bias mitigation replacing human feedback in traditional RLHF. We utilize LLMs in multi-role debates to create a dataset that includes both high-bias and low-bias instances for training the reward model in reinforcement learning. Our approach comprises two modes: (1) self-reflection, where the same LLM participates in multi-role debates, and (2) teacher-student, where a more advanced LLM like GPT-3.5-turbo guides the LLM to perform this task. Experimental results across different LLMs on BBQ and our datasets demonstrate the effectiveness of our approach in bias mitigation. Our source code and datasets are available at https://anonymous.4open.science/r/RLDF-E344.
Role-Playing Evaluation for Large Language Models
Large Language Models (LLMs) demonstrate a notable capacity for adopting personas and engaging in role-playing. However, evaluating this ability presents significant challenges, as human assessments are resource-intensive and automated evaluations can be biased. To address this, we introduce Role-Playing Eval (RPEval), a novel benchmark designed to assess LLM role-playing capabilities across four key dimensions: emotional understanding, decision-making, moral alignment, and in-character consistency. This article details the construction of RPEval and presents baseline evaluations. Our code and dataset are available at https://github.com/yelboudouri/RPEval
Character is Destiny: Can Large Language Models Simulate Persona-Driven Decisions in Role-Playing?
Can Large Language Models substitute humans in making important decisions? Recent research has unveiled the potential of LLMs to role-play assigned personas, mimicking their knowledge and linguistic habits. However, imitative decision-making requires a more nuanced understanding of personas. In this paper, we benchmark the ability of LLMs in persona-driven decision-making. Specifically, we investigate whether LLMs can predict characters' decisions provided with the preceding stories in high-quality novels. Leveraging character analyses written by literary experts, we construct a dataset LIFECHOICE comprising 1,401 character decision points from 395 books. Then, we conduct comprehensive experiments on LIFECHOICE, with various LLMs and methods for LLM role-playing. The results demonstrate that state-of-the-art LLMs exhibit promising capabilities in this task, yet there is substantial room for improvement. Hence, we further propose the CHARMAP method, which achieves a 6.01% increase in accuracy via persona-based memory retrieval. We will make our datasets and code publicly available.
Two Tales of Persona in LLMs: A Survey of Role-Playing and Personalization
The concept of persona, originally adopted in dialogue literature, has re-surged as a promising framework for tailoring large language models (LLMs) to specific context (e.g., personalized search, LLM-as-a-judge). However, the growing research on leveraging persona in LLMs is relatively disorganized and lacks a systematic taxonomy. To close the gap, we present a comprehensive survey to categorize the current state of the field. We identify two lines of research, namely (1) LLM Role-Playing, where personas are assigned to LLMs, and (2) LLM Personalization, where LLMs take care of user personas. Additionally, we introduce existing methods for LLM personality evaluation. To the best of our knowledge, we present the first survey for role-playing and personalization in LLMs under the unified view of persona. We continuously maintain a paper collection to foster future endeavors: https://github.com/MiuLab/PersonaLLM-Survey
Deciphering Digital Detectives: Understanding LLM Behaviors and Capabilities in Multi-Agent Mystery Games
In this study, we explore the application of Large Language Models (LLMs) in Jubensha, a Chinese detective role-playing game and a novel area in Artificial Intelligence (AI) driven gaming. We introduce the first dataset specifically for Jubensha, including character scripts and game rules, to foster AI agent development in this complex narrative environment. Our work also presents a unique multi-agent interaction framework using LLMs, allowing AI agents to autonomously engage in this game. To evaluate the gaming performance of these AI agents, we developed novel methods measuring their mastery of case information and reasoning skills. Furthermore, we incorporated the latest advancements in in-context learning to improve the agents' performance in information gathering, murderer identification, and logical reasoning. The experimental results validate the effectiveness of our proposed methods. This work aims to offer a novel perspective on understanding LLM capabilities and establish a new benchmark for evaluating large language model-based agents.
Language-Guided Multi-Agent Learning in Simulations: A Unified Framework and Evaluation
This paper introduces LLM-MARL, a unified framework that incorporates large language models (LLMs) into multi-agent reinforcement learning (MARL) to enhance coordination, communication, and generalization in simulated game environments. The framework features three modular components of Coordinator, Communicator, and Memory, which dynamically generate subgoals, facilitate symbolic inter-agent messaging, and support episodic recall. Training combines PPO with a language-conditioned loss and LLM query gating. LLM-MARL is evaluated in Google Research Football, MAgent Battle, and StarCraft II. Results show consistent improvements over MAPPO and QMIX in win rate, coordination score, and zero-shot generalization. Ablation studies demonstrate that subgoal generation and language-based messaging each contribute significantly to performance gains. Qualitative analysis reveals emergent behaviors such as role specialization and communication-driven tactics. By bridging language modeling and policy learning, this work contributes to the design of intelligent, cooperative agents in interactive simulations. It offers a path forward for leveraging LLMs in multi-agent systems used for training, games, and human-AI collaboration.
CALYPSO: LLMs as Dungeon Masters' Assistants
The role of a Dungeon Master, or DM, in the game Dungeons & Dragons is to perform multiple tasks simultaneously. The DM must digest information about the game setting and monsters, synthesize scenes to present to other players, and respond to the players' interactions with the scene. Doing all of these tasks while maintaining consistency within the narrative and story world is no small feat of human cognition, making the task tiring and unapproachable to new players. Large language models (LLMs) like GPT-3 and ChatGPT have shown remarkable abilities to generate coherent natural language text. In this paper, we conduct a formative evaluation with DMs to establish the use cases of LLMs in D&D and tabletop gaming generally. We introduce CALYPSO, a system of LLM-powered interfaces that support DMs with information and inspiration specific to their own scenario. CALYPSO distills game context into bite-sized prose and helps brainstorm ideas without distracting the DM from the game. When given access to CALYPSO, DMs reported that it generated high-fidelity text suitable for direct presentation to players, and low-fidelity ideas that the DM could develop further while maintaining their creative agency. We see CALYPSO as exemplifying a paradigm of AI-augmented tools that provide synchronous creative assistance within established game worlds, and tabletop gaming more broadly.
Cardiverse: Harnessing LLMs for Novel Card Game Prototyping
The prototyping of computer games, particularly card games, requires extensive human effort in creative ideation and gameplay evaluation. Recent advances in Large Language Models (LLMs) offer opportunities to automate and streamline these processes. However, it remains challenging for LLMs to design novel game mechanics beyond existing databases, generate consistent gameplay environments, and develop scalable gameplay AI for large-scale evaluations. This paper addresses these challenges by introducing a comprehensive automated card game prototyping framework. The approach highlights a graph-based indexing method for generating novel game designs, an LLM-driven system for consistent game code generation validated by gameplay records, and a gameplay AI constructing method that uses an ensemble of LLM-generated action-value functions optimized through self-play. These contributions aim to accelerate card game prototyping, reduce human labor, and lower barriers to entry for game developers.
From Persona to Personalization: A Survey on Role-Playing Language Agents
Recent advancements in large language models (LLMs) have significantly boosted the rise of Role-Playing Language Agents (RPLAs), i.e., specialized AI systems designed to simulate assigned personas. By harnessing multiple advanced abilities of LLMs, including in-context learning, instruction following, and social intelligence, RPLAs achieve a remarkable sense of human likeness and vivid role-playing performance. RPLAs can mimic a wide range of personas, ranging from historical figures and fictional characters to real-life individuals. Consequently, they have catalyzed numerous AI applications, such as emotional companions, interactive video games, personalized assistants and copilots, and digital clones. In this paper, we conduct a comprehensive survey of this field, illustrating the evolution and recent progress in RPLAs integrating with cutting-edge LLM technologies. We categorize personas into three types: 1) Demographic Persona, which leverages statistical stereotypes; 2) Character Persona, focused on well-established figures; and 3) Individualized Persona, customized through ongoing user interactions for personalized services. We begin by presenting a comprehensive overview of current methodologies for RPLAs, followed by the details for each persona type, covering corresponding data sourcing, agent construction, and evaluation. Afterward, we discuss the fundamental risks, existing limitations, and future prospects of RPLAs. Additionally, we provide a brief review of RPLAs in AI applications, which reflects practical user demands that shape and drive RPLA research. Through this work, we aim to establish a clear taxonomy of RPLA research and applications, and facilitate future research in this critical and ever-evolving field, and pave the way for a future where humans and RPLAs coexist in harmony.
Too Good to be Bad: On the Failure of LLMs to Role-Play Villains
Large Language Models (LLMs) are increasingly tasked with creative generation, including the simulation of fictional characters. However, their ability to portray non-prosocial, antagonistic personas remains largely unexamined. We hypothesize that the safety alignment of modern LLMs creates a fundamental conflict with the task of authentically role-playing morally ambiguous or villainous characters. To investigate this, we introduce the Moral RolePlay benchmark, a new dataset featuring a four-level moral alignment scale and a balanced test set for rigorous evaluation. We task state-of-the-art LLMs with role-playing characters from moral paragons to pure villains. Our large-scale evaluation reveals a consistent, monotonic decline in role-playing fidelity as character morality decreases. We find that models struggle most with traits directly antithetical to safety principles, such as ``Deceitful'' and ``Manipulative'', often substituting nuanced malevolence with superficial aggression. Furthermore, we demonstrate that general chatbot proficiency is a poor predictor of villain role-playing ability, with highly safety-aligned models performing particularly poorly. Our work provides the first systematic evidence of this critical limitation, highlighting a key tension between model safety and creative fidelity. Our benchmark and findings pave the way for developing more nuanced, context-aware alignment methods.
LLM Harmony: Multi-Agent Communication for Problem Solving
Large Language Models (LLMs) have revolutionized Natural Language Processing but exhibit limitations, particularly in autonomously addressing novel challenges such as reasoning and problem-solving. Traditional techniques like chain-of-thought prompting necessitate explicit human guidance. This paper introduces a novel multi-agent communication framework, inspired by the CAMEL model, to enhance LLMs' autonomous problem-solving capabilities. The framework employs multiple LLM agents, each with a distinct persona, engaged in role-playing communication, offering a nuanced and adaptable approach to diverse problem scenarios. Extensive experimentation demonstrates the framework's superior performance and adaptability, providing valuable insights into the collaborative potential of multiple agents in overcoming the limitations of individual models.
Orak: A Foundational Benchmark for Training and Evaluating LLM Agents on Diverse Video Games
Large Language Model (LLM) agents are reshaping the game industry, particularly with more intelligent and human-preferable game characters. However, existing game benchmarks fall short of practical needs: they lack evaluations of diverse LLM capabilities across various game genres, studies of agentic modules crucial for complex gameplay, and fine-tuning datasets for aligning pre-trained LLMs into gaming agents. To fill these gaps, we present \benchname{}, a foundational benchmark designed to train and evaluate LLM agents across diverse real-world video games. Unlike existing benchmarks, Orak includes 12 popular video games spanning all major genres, enabling comprehensive studies of LLM capabilities and agentic modules essential for intricate game scenarios. To support consistent evaluation of LLMs, we introduce a plug-and-play interface based on Model Context Protocol (MCP) that enables LLMs to seamlessly connect with games and manipulate agentic modules. Additionally, we propose a fine-tuning dataset, consisting of LLM gameplay trajectories across diverse game genres. Orak offers a comprehensive evaluation framework, encompassing general game score leaderboards, LLM battle arenas, and in-depth analyses of visual input state, agentic strategies, and fine-tuning effects, establishing a foundation towards building generic gaming agents. Code is available at https://github.com/krafton-ai/Orak.
LLM-PySC2: Starcraft II learning environment for Large Language Models
This paper introduces a new environment LLM-PySC2 (the Large Language Model StarCraft II Learning Environment), a platform derived from DeepMind's StarCraft II Learning Environment that serves to develop Large Language Models (LLMs) based decision-making methodologies. This environment is the first to offer the complete StarCraft II action space, multi-modal observation interfaces, and a structured game knowledge database, which are seamlessly connected with various LLMs to facilitate the research of LLMs-based decision-making. To further support multi-agent research, we developed an LLM collaborative framework that supports multi-agent concurrent queries and multi-agent communication. In our experiments, the LLM-PySC2 environment is adapted to be compatible with the StarCraft Multi-Agent Challenge (SMAC) task group and provided eight new scenarios focused on macro-decision abilities. We evaluated nine mainstream LLMs in the experiments, and results show that sufficient parameters are necessary for LLMs to make decisions, but improving reasoning ability does not directly lead to better decision-making outcomes. Our findings further indicate the importance of enabling large models to learn autonomously in the deployment environment through parameter training or train-free learning techniques. Ultimately, we expect that the LLM-PySC2 environment can promote research on learning methods for LLMs, helping LLM-based methods better adapt to task scenarios.
PsyPlay: Personality-Infused Role-Playing Conversational Agents
The current research on Role-Playing Conversational Agents (RPCAs) with Large Language Models (LLMs) primarily focuses on imitating specific speaking styles and utilizing character backgrounds, neglecting the depiction of deeper personality traits.~In this study, we introduce personality-infused role-playing for LLM agents, which encourages agents to accurately portray their designated personality traits during dialogues. We then propose PsyPlay, a dialogue generation framework that facilitates the expression of rich personalities among multiple LLM agents. Specifically, PsyPlay enables agents to assume roles with distinct personality traits and engage in discussions centered around specific topics, consistently exhibiting their designated personality traits throughout the interactions. Validation on generated dialogue data demonstrates that PsyPlay can accurately portray the intended personality traits, achieving an overall success rate of 80.31% on GPT-3.5. Notably, we observe that LLMs aligned with positive values are more successful in portraying positive personality roles compared to negative ones. Moreover, we construct a dialogue corpus for personality-infused role-playing, called PsyPlay-Bench. The corpus, which consists of 4745 instances of correctly portrayed dialogues using PsyPlay, aims to further facilitate research in personalized role-playing and dialogue personality detection.
Agent-Pro: Learning to Evolve via Policy-Level Reflection and Optimization
Large Language Models (LLMs) exhibit robust problem-solving capabilities for diverse tasks. However, most LLM-based agents are designed as specific task solvers with sophisticated prompt engineering, rather than agents capable of learning and evolving through interactions. These task solvers necessitate manually crafted prompts to inform task rules and regulate LLM behaviors, inherently incapacitating to address complex dynamic scenarios e.g., large interactive games. In light of this, we propose Agent-Pro: an LLM-based Agent with Policy-level Reflection and Optimization that can learn a wealth of expertise from interactive experiences and progressively elevate its behavioral policy. Specifically, it involves a dynamic belief generation and reflection process for policy evolution. Rather than action-level reflection, Agent-Pro iteratively reflects on past trajectories and beliefs, fine-tuning its irrational beliefs for a better policy. Moreover, a depth-first search is employed for policy optimization, ensuring continual enhancement in policy payoffs. Agent-Pro is evaluated across two games: Blackjack and Texas Hold'em, outperforming vanilla LLM and specialized models. Our results show Agent-Pro can learn and evolve in complex and dynamic scenes, which also benefits numerous LLM-based applications.
Time to Talk: LLM Agents for Asynchronous Group Communication in Mafia Games
LLMs are used predominantly in synchronous communication, where a human user and a model communicate in alternating turns. In contrast, many real-world settings are inherently asynchronous. For example, in group chats, online team meetings, or social games, there is no inherent notion of turns; therefore, the decision of when to speak forms a crucial part of the participant's decision making. In this work, we develop an adaptive asynchronous LLM-agent which, in addition to determining what to say, also decides when to say it. To evaluate our agent, we collect a unique dataset of online Mafia games, including both human participants, as well as our asynchronous agent. Overall, our agent performs on par with human players, both in game performance, as well as in its ability to blend in with the other human players. Our analysis shows that the agent's behavior in deciding when to speak closely mirrors human patterns, although differences emerge in message content. We release all our data and code to support and encourage further research for more realistic asynchronous communication between LLM agents. This work paves the way for integration of LLMs into realistic human group settings, from assistance in team discussions to educational and professional environments where complex social dynamics must be navigated.
Hierarchical Expert Prompt for Large-Language-Model: An Approach Defeat Elite AI in TextStarCraft II for the First Time
Since the emergence of the Large Language Model (LLM), LLM has been widely used in fields such as writing, translating, and searching. However, there is still great potential for LLM-based methods in handling complex tasks such as decision-making in the StarCraft II environment. To address problems such as lack of relevant knowledge and poor control over subtasks of varying importance, we propose a Hierarchical Expert Prompt (HEP) for LLM. Our method improves the understanding of game situations through expert-level tactical knowledge, improving the processing quality of tasks of varying importance through a hierarchical framework. Our approach defeated the highest level (Elite) standard built-in agent in TextStarCraft II for the first time and consistently outperformed the baseline method in other difficulties. Our experiments suggest that the proposed method is a practical solution for tackling complex decision-making challenges. The replay video can be viewed on https://www.bilibili.com/video/BV1uz42187EF and https://youtu.be/dO3PshWLV5M, and our codes have been open-sourced on https://github.com/luchang1113/HEP-LLM-play-StarCraftII.
BEYOND DIALOGUE: A Profile-Dialogue Alignment Framework Towards General Role-Playing Language Model
The rapid advancement of large language models (LLMs) has revolutionized role-playing, enabling the development of general role-playing models. However, current role-playing training has two significant issues: (I) Using a predefined role profile to prompt dialogue training for specific scenarios usually leads to inconsistencies and even conflicts between the dialogue and the profile, resulting in training biases. (II) The model learns to imitate the role based solely on the profile, neglecting profile-dialogue alignment at the sentence level. In this work, we propose a simple yet effective framework called BEYOND DIALOGUE, designed to overcome these hurdles. This framework innovatively introduces "beyond dialogue" tasks to align dialogue with profile traits based on each specific scenario, thereby eliminating biases during training. Furthermore, by adopting an innovative prompting mechanism that generates reasoning outcomes for training, the framework allows the model to achieve fine-grained alignment between profile and dialogue at the sentence level. The aforementioned methods are fully automated and low-cost. Additionally, the integration of automated dialogue and objective evaluation methods forms a comprehensive framework, paving the way for general role-playing. Experimental results demonstrate that our model excels in adhering to and reflecting various dimensions of role profiles, outperforming most proprietary general and specialized role-playing baselines. All code and datasets are available at https://github.com/yuyouyu32/BeyondDialogue.
SimsChat: A Customisable Persona-Driven Role-Playing Agent
Large Language Models (LLMs) possess the remarkable capability to understand human instructions and generate high-quality text, enabling them to act as agents that simulate human behaviours. This capability allows LLMs to emulate human beings in a more advanced manner, beyond merely replicating simple human behaviours. However, there is a lack of exploring into leveraging LLMs to craft characters from several aspects. In this work, we introduce the Customisable Conversation Agent Framework, which employs LLMs to simulate real-world characters that can be freely customised according to different user preferences. The customisable framework is helpful for designing customisable characters and role-playing agents according to human's preferences. We first propose the SimsConv dataset, which comprises 68 different customised characters, 1,360 multi-turn role-playing dialogues, and encompasses 13,971 interaction dialogues in total. The characters are created from several real-world elements, such as career, aspiration, trait, and skill. Building on these foundations, we present SimsChat, a freely customisable role-playing agent. It incorporates different real-world scenes and topic-specific character interaction dialogues, simulating characters' life experiences in various scenarios and topic-specific interactions with specific emotions. Experimental results show that our proposed framework achieves desirable performance and provides helpful guideline for building better simulacra of human beings in the future. Our data and code are available at https://github.com/Bernard-Yang/SimsChat.
Large Language Model-based Human-Agent Collaboration for Complex Task Solving
In recent developments within the research community, the integration of Large Language Models (LLMs) in creating fully autonomous agents has garnered significant interest. Despite this, LLM-based agents frequently demonstrate notable shortcomings in adjusting to dynamic environments and fully grasping human needs. In this work, we introduce the problem of LLM-based human-agent collaboration for complex task-solving, exploring their synergistic potential. In addition, we propose a Reinforcement Learning-based Human-Agent Collaboration method, ReHAC. This approach includes a policy model designed to determine the most opportune stages for human intervention within the task-solving process. We construct a human-agent collaboration dataset to train this policy model in an offline reinforcement learning environment. Our validation tests confirm the model's effectiveness. The results demonstrate that the synergistic efforts of humans and LLM-based agents significantly improve performance in complex tasks, primarily through well-planned, limited human intervention. Datasets and code are available at: https://github.com/XueyangFeng/ReHAC.
Leveraging Word Guessing Games to Assess the Intelligence of Large Language Models
The automatic evaluation of LLM-based agent intelligence is critical in developing advanced LLM-based agents. Although considerable effort has been devoted to developing human-annotated evaluation datasets, such as AlpacaEval, existing techniques are costly, time-consuming, and lack adaptability. In this paper, inspired by the popular language game ``Who is Spy'', we propose to use the word guessing game to assess the intelligence performance of LLMs. Given a word, the LLM is asked to describe the word and determine its identity (spy or not) based on its and other players' descriptions. Ideally, an advanced agent should possess the ability to accurately describe a given word using an aggressive description while concurrently maximizing confusion in the conservative description, enhancing its participation in the game. To this end, we first develop DEEP to evaluate LLMs' expression and disguising abilities. DEEP requires LLM to describe a word in aggressive and conservative modes. We then introduce SpyGame, an interactive multi-agent framework designed to assess LLMs' intelligence through participation in a competitive language-based board game. Incorporating multi-agent interaction, SpyGame requires the target LLM to possess linguistic skills and strategic thinking, providing a more comprehensive evaluation of LLMs' human-like cognitive abilities and adaptability in complex communication situations. The proposed evaluation framework is very easy to implement. We collected words from multiple sources, domains, and languages and used the proposed evaluation framework to conduct experiments. Extensive experiments demonstrate that the proposed DEEP and SpyGame effectively evaluate the capabilities of various LLMs, capturing their ability to adapt to novel situations and engage in strategic communication.
An Implementation of Werewolf Agent That does not Truly Trust LLMs
Werewolf is an incomplete information game, which has several challenges when creating a computer agent as a player given the lack of understanding of the situation and individuality of utterance (e.g., computer agents are not capable of characterful utterance or situational lying). We propose a werewolf agent that solves some of those difficulties by combining a Large Language Model (LLM) and a rule-based algorithm. In particular, our agent uses a rule-based algorithm to select an output either from an LLM or a template prepared beforehand based on the results of analyzing conversation history using an LLM. It allows the agent to refute in specific situations, identify when to end the conversation, and behave with persona. This approach mitigated conversational inconsistencies and facilitated logical utterance as a result. We also conducted a qualitative evaluation, which resulted in our agent being perceived as more human-like compared to an unmodified LLM. The agent is freely available for contributing to advance the research in the field of Werewolf game.
CharacterBench: Benchmarking Character Customization of Large Language Models
Character-based dialogue (aka role-playing) enables users to freely customize characters for interaction, which often relies on LLMs, raising the need to evaluate LLMs' character customization capability. However, existing benchmarks fail to ensure a robust evaluation as they often only involve a single character category or evaluate limited dimensions. Moreover, the sparsity of character features in responses makes feature-focused generative evaluation both ineffective and inefficient. To address these issues, we propose CharacterBench, the largest bilingual generative benchmark, with 22,859 human-annotated samples covering 3,956 characters from 25 detailed character categories. We define 11 dimensions of 6 aspects, classified as sparse and dense dimensions based on whether character features evaluated by specific dimensions manifest in each response. We enable effective and efficient evaluation by crafting tailored queries for each dimension to induce characters' responses related to specific dimensions. Further, we develop CharacterJudge model for cost-effective and stable evaluations. Experiments show its superiority over SOTA automatic judges (e.g., GPT-4) and our benchmark's potential to optimize LLMs' character customization. Our repository is at https://github.com/thu-coai/CharacterBench.
Learning Strategic Language Agents in the Werewolf Game with Iterative Latent Space Policy Optimization
Large language model (LLM)-based agents have recently shown impressive progress in a variety of domains, including open-ended conversation and multi-step decision-making. However, applying these agents to social deduction games such as Werewolf, which requires both strategic decision-making and free-form language interaction, remains non-trivial. Traditional methods based on Counterfactual Regret Minimization (CFR) or reinforcement learning (RL) typically depend on a predefined action space, making them unsuitable for language games with unconstrained text action space. Meanwhile, pure LLM-based agents often suffer from intrinsic biases and require prohibitively large datasets for fine-tuning. We propose Latent Space Policy Optimization (LSPO), an iterative framework that addresses these challenges by first mapping free-form text to a discrete latent space, where methods like CFR and RL can learn strategic policy more effectively. We then translate the learned policy back into natural language dialogues, which are used to fine-tune an LLM via Direct Preference Optimization (DPO). By iteratively alternating between these stages, our LSPO agent progressively enhances both strategic reasoning and language communication. Experiment results on the Werewolf game show that our method improves the agent's performance in each iteration and outperforms existing Werewolf agents, underscoring its promise for free-form language decision-making.
Large Language Models Are Neurosymbolic Reasoners
A wide range of real-world applications is characterized by their symbolic nature, necessitating a strong capability for symbolic reasoning. This paper investigates the potential application of Large Language Models (LLMs) as symbolic reasoners. We focus on text-based games, significant benchmarks for agents with natural language capabilities, particularly in symbolic tasks like math, map reading, sorting, and applying common sense in text-based worlds. To facilitate these agents, we propose an LLM agent designed to tackle symbolic challenges and achieve in-game objectives. We begin by initializing the LLM agent and informing it of its role. The agent then receives observations and a set of valid actions from the text-based games, along with a specific symbolic module. With these inputs, the LLM agent chooses an action and interacts with the game environments. Our experimental results demonstrate that our method significantly enhances the capability of LLMs as automated agents for symbolic reasoning, and our LLM agent is effective in text-based games involving symbolic tasks, achieving an average performance of 88% across all tasks.
Clembench: Using Game Play to Evaluate Chat-Optimized Language Models as Conversational Agents
Recent work has proposed a methodology for the systematic evaluation of "Situated Language Understanding Agents"-agents that operate in rich linguistic and non-linguistic contexts-through testing them in carefully constructed interactive settings. Other recent work has argued that Large Language Models (LLMs), if suitably set up, can be understood as (simulators of) such agents. A connection suggests itself, which this paper explores: Can LLMs be evaluated meaningfully by exposing them to constrained game-like settings that are built to challenge specific capabilities? As a proof of concept, this paper investigates five interaction settings, showing that current chat-optimised LLMs are, to an extent, capable to follow game-play instructions. Both this capability and the quality of the game play, measured by how well the objectives of the different games are met, follows the development cycle, with newer models performing better. The metrics even for the comparatively simple example games are far from being saturated, suggesting that the proposed instrument will remain to have diagnostic value. Our general framework for implementing and evaluating games with LLMs is available at https://github.com/clp-research/clembench.
CogDual: Enhancing Dual Cognition of LLMs via Reinforcement Learning with Implicit Rule-Based Rewards
Role-Playing Language Agents (RPLAs) have emerged as a significant application direction for Large Language Models (LLMs). Existing approaches typically rely on prompt engineering or supervised fine-tuning to enable models to imitate character behaviors in specific scenarios, but often neglect the underlying cognitive mechanisms driving these behaviors. Inspired by cognitive psychology, we introduce CogDual, a novel RPLA adopting a cognize-then-respond reasoning paradigm. By jointly modeling external situational awareness and internal self-awareness, CogDual generates responses with improved character consistency and contextual alignment. To further optimize the performance, we employ reinforcement learning with two general-purpose reward schemes designed for open-domain text generation. Extensive experiments on the CoSER benchmark, as well as Cross-MR and LifeChoice, demonstrate that CogDual consistently outperforms existing baselines and generalizes effectively across diverse role-playing tasks.
MIRAGE: Exploring How Large Language Models Perform in Complex Social Interactive Environments
Large Language Models (LLMs) have shown remarkable capabilities in environmental perception, reasoning-based decision-making, and simulating complex human behaviors, particularly in interactive role-playing contexts. This paper introduces the Multiverse Interactive Role-play Ability General Evaluation (MIRAGE), a comprehensive framework designed to assess LLMs' proficiency in portraying advanced human behaviors through murder mystery games. MIRAGE features eight intricately crafted scripts encompassing diverse themes and styles, providing a rich simulation. To evaluate LLMs' performance, MIRAGE employs four distinct methods: the Trust Inclination Index (TII) to measure dynamics of trust and suspicion, the Clue Investigation Capability (CIC) to measure LLMs' capability of conducting information, the Interactivity Capability Index (ICI) to assess role-playing capabilities and the Script Compliance Index (SCI) to assess LLMs' capability of understanding and following instructions. Our experiments indicate that even popular models like GPT-4 face significant challenges in navigating the complexities presented by the MIRAGE. The datasets and simulation codes are available in https://github.com/lime728/MIRAGE{github}.
AvalonBench: Evaluating LLMs Playing the Game of Avalon
In this paper, we explore the potential of Large Language Models (LLMs) Agents in playing the strategic social deduction game, Resistance Avalon. Players in Avalon are challenged not only to make informed decisions based on dynamically evolving game phases, but also to engage in discussions where they must deceive, deduce, and negotiate with other players. These characteristics make Avalon a compelling test-bed to study the decision-making and language-processing capabilities of LLM Agents. To facilitate research in this line, we introduce AvalonBench - a comprehensive game environment tailored for evaluating multi-agent LLM Agents. This benchmark incorporates: (1) a game environment for Avalon, (2) rule-based bots as baseline opponents, and (3) ReAct-style LLM agents with tailored prompts for each role. Notably, our evaluations based on AvalonBench highlight a clear capability gap. For instance, models like ChatGPT playing good-role got a win rate of 22.2% against rule-based bots playing evil, while good-role bot achieves 38.2% win rate in the same setting. We envision AvalonBench could be a good test-bed for developing more advanced LLMs (with self-playing) and agent frameworks that can effectively model the layered complexities of such game environments.
Language Models Show Stable Value Orientations Across Diverse Role-Plays
We demonstrate that large language models (LLMs) exhibit consistent value orientations despite adopting diverse personas, revealing a persistent inertia in their responses that remains stable across the variety of roles they are prompted to assume. To systematically explore this phenomenon, we introduce the role-play-at-scale methodology, which involves prompting LLMs with randomized, diverse personas and analyzing the macroscopic trend of their responses. Unlike previous works that simply feed these questions to LLMs as if testing human subjects, our role-play-at-scale methodology diagnoses inherent tendencies in a systematic and scalable manner by: (1) prompting the model to act in different random personas and (2) asking the same question multiple times for each random persona. This approach reveals consistent patterns in LLM responses across diverse role-play scenarios, indicating deeply encoded inherent tendencies. Our findings contribute to the discourse on value alignment in foundation models and demonstrate the efficacy of role-play-at-scale as a diagnostic tool for uncovering encoded biases in LLMs.
The Oscars of AI Theater: A Survey on Role-Playing with Language Models
This survey explores the burgeoning field of role-playing with language models, focusing on their development from early persona-based models to advanced character-driven simulations facilitated by Large Language Models (LLMs). Initially confined to simple persona consistency due to limited model capabilities, role-playing tasks have now expanded to embrace complex character portrayals involving character consistency, behavioral alignment, and overall attractiveness. We provide a comprehensive taxonomy of the critical components in designing these systems, including data, models and alignment, agent architecture and evaluation. This survey not only outlines the current methodologies and challenges, such as managing dynamic personal profiles and achieving high-level persona consistency but also suggests avenues for future research in improving the depth and realism of role-playing applications. The goal is to guide future research by offering a structured overview of current methodologies and identifying potential areas for improvement. Related resources and papers are available at https://github.com/nuochenpku/Awesome-Role-Play-Papers.
SAC-GLAM: Improving Online RL for LLM agents with Soft Actor-Critic and Hindsight Relabeling
The past years have seen Large Language Models (LLMs) strive not only as generative models but also as agents solving textual sequential decision-making tasks. When facing complex environments where their zero-shot abilities are insufficient, recent work showed online Reinforcement Learning (RL) could be used for the LLM agent to discover and learn efficient strategies interactively. However, most prior work sticks to on-policy algorithms, which greatly reduces the scope of methods such agents could use for both exploration and exploitation, such as experience replay and hindsight relabeling. Yet, such methods may be key for LLM learning agents, and in particular when designing autonomous intrinsically motivated agents sampling and pursuing their own goals (i.e. autotelic agents). This paper presents and studies an adaptation of Soft Actor-Critic and hindsight relabeling to LLM agents. Our method not only paves the path towards autotelic LLM agents that learn online but can also outperform on-policy methods in more classic multi-goal RL environments.
Emotional RAG: Enhancing Role-Playing Agents through Emotional Retrieval
As LLMs exhibit a high degree of human-like capability, increasing attention has been paid to role-playing research areas in which responses generated by LLMs are expected to mimic human replies. This has promoted the exploration of role-playing agents in various applications, such as chatbots that can engage in natural conversations with users and virtual assistants that can provide personalized support and guidance. The crucial factor in the role-playing task is the effective utilization of character memory, which stores characters' profiles, experiences, and historical dialogues. Retrieval Augmented Generation (RAG) technology is used to access the related memory to enhance the response generation of role-playing agents. Most existing studies retrieve related information based on the semantic similarity of memory to maintain characters' personalized traits, and few attempts have been made to incorporate the emotional factor in the retrieval argument generation (RAG) of LLMs. Inspired by the Mood-Dependent Memory theory, which indicates that people recall an event better if they somehow reinstate during recall the original emotion they experienced during learning, we propose a novel emotion-aware memory retrieval framework, termed Emotional RAG, which recalls the related memory with consideration of emotional state in role-playing agents. Specifically, we design two kinds of retrieval strategies, i.e., combination strategy and sequential strategy, to incorporate both memory semantic and emotional states during the retrieval process. Extensive experiments on three representative role-playing datasets demonstrate that our Emotional RAG framework outperforms the method without considering the emotional factor in maintaining the personalities of role-playing agents. This provides evidence to further reinforce the Mood-Dependent Memory theory in psychology.
LMRL Gym: Benchmarks for Multi-Turn Reinforcement Learning with Language Models
Large language models (LLMs) provide excellent text-generation capabilities, but standard prompting and generation methods generally do not lead to intentional or goal-directed agents and might necessitate considerable prompt tuning. This becomes particularly apparent in multi-turn conversations: even the best current LLMs rarely ask clarifying questions, engage in explicit information gathering, or take actions now that lead to better decisions after multiple turns. Reinforcement learning has the potential to leverage the powerful modeling capabilities of LLMs, as well as their internal representation of textual interactions, to create capable goal-directed language agents. This can enable intentional and temporally extended interactions, such as with humans, through coordinated persuasion and carefully crafted questions, or in goal-directed play through text games to bring about desired final outcomes. However, enabling this requires the community to develop stable and reliable reinforcement learning algorithms that can effectively train LLMs. Developing such algorithms requires tasks that can gauge progress on algorithm design, provide accessible and reproducible evaluations for multi-turn interactions, and cover a range of task properties and challenges in improving reinforcement learning algorithms. Our paper introduces the LMRL-Gym benchmark for evaluating multi-turn RL for LLMs, together with an open-source research framework containing a basic toolkit for getting started on multi-turn RL with offline value-based and policy-based RL methods. Our benchmark consists of 8 different language tasks, which require multiple rounds of language interaction and cover a range of tasks in open-ended dialogue and text games.
Identity-Driven Hierarchical Role-Playing Agents
Utilizing large language models (LLMs) to achieve role-playing has gained great attention recently. The primary implementation methods include leveraging refined prompts and fine-tuning on role-specific datasets. However, these methods suffer from insufficient precision and limited flexibility respectively. To achieve a balance between flexibility and precision, we construct a Hierarchical Identity Role-Playing Framework (HIRPF) based on identity theory, constructing complex characters using multiple identity combinations. We develop an identity dialogue dataset for this framework and propose an evaluation benchmark including scale evaluation and open situation evaluation. Empirical results indicate the remarkable efficacy of our framework in modeling identity-level role simulation, and reveal its potential for application in social simulation.
Beyond Outcomes: Transparent Assessment of LLM Reasoning in Games
Large Language Models (LLMs) are increasingly deployed in real-world applications that demand complex reasoning. To track progress, robust benchmarks are required to evaluate their capabilities beyond superficial pattern recognition. However, current LLM reasoning benchmarks often face challenges such as insufficient interpretability, performance saturation or data contamination. To address these challenges, we introduce GAMEBoT, a gaming arena designed for rigorous and transparent assessment of LLM reasoning capabilities. GAMEBoT decomposes complex reasoning in games into predefined modular subproblems. This decomposition allows us to design a suite of Chain-of-Thought (CoT) prompts that leverage domain knowledge to guide LLMs in addressing these subproblems before action selection. Furthermore, we develop a suite of rule-based algorithms to generate ground truth for these subproblems, enabling rigorous validation of the LLMs' intermediate reasoning steps. This approach facilitates evaluation of both the quality of final actions and the accuracy of the underlying reasoning process. GAMEBoT also naturally alleviates the risk of data contamination through dynamic games and head-to-head LLM competitions. We benchmark 17 prominent LLMs across eight games, encompassing various strategic abilities and game characteristics. Our results suggest that GAMEBoT presents a significant challenge, even when LLMs are provided with detailed CoT prompts. Project page: https://visual-ai.github.io/gamebot
PersonaEval: Are LLM Evaluators Human Enough to Judge Role-Play?
Current role-play studies often rely on unvalidated LLM-as-a-judge paradigms, which may fail to reflect how humans perceive role fidelity. A key prerequisite for human-aligned evaluation is role identification, the ability to recognize who is speaking based on dialogue context. We argue that any meaningful judgment of role-playing quality (how well a character is played) fundamentally depends on first correctly attributing words and actions to the correct persona (who is speaking). We present PersonaEval, the first benchmark designed to test whether LLM evaluators can reliably identify human roles. PersonaEval uses human-authored dialogues from novels, scripts, and video transcripts, challenging models to determine the correct persona according to the conversation context. Our experiments, including a human study, show that even the best-performing LLMs reach only around 69% accuracy, well below the level needed for reliable evaluation. In contrast, human participants perform near ceiling with 90.8% accuracy, highlighting that current LLM evaluators are still not human enough to effectively judge role-play scenarios. To better understand this gap, we examine training-time adaptation and test-time compute, suggesting that reliable evaluation requires more than task-specific tuning, but depends on strong, human-like reasoning abilities in LLM evaluators. We release our benchmark at https://github.com/maple-zhou/PersonaEval.
MindAgent: Emergent Gaming Interaction
Large Language Models (LLMs) have the capacity of performing complex scheduling in a multi-agent system and can coordinate these agents into completing sophisticated tasks that require extensive collaboration. However, despite the introduction of numerous gaming frameworks, the community has insufficient benchmarks towards building general multi-agents collaboration infrastructure that encompass both LLM and human-NPCs collaborations. In this work, we propose a novel infrastructure - MindAgent - to evaluate planning and coordination emergent capabilities for gaming interaction. In particular, our infrastructure leverages existing gaming framework, to i) require understanding of the coordinator for a multi-agent system, ii) collaborate with human players via un-finetuned proper instructions, and iii) establish an in-context learning on few-shot prompt with feedback. Furthermore, we introduce CUISINEWORLD, a new gaming scenario and related benchmark that dispatch a multi-agent collaboration efficiency and supervise multiple agents playing the game simultaneously. We conduct comprehensive evaluations with new auto-metric CoS for calculating the collaboration efficiency. Finally, our infrastructure can be deployed into real-world gaming scenarios in a customized VR version of CUISINEWORLD and adapted in existing broader Minecraft gaming domain. We hope our findings on LLMs and the new infrastructure for general-purpose scheduling and coordination can help shed light on how such skills can be obtained by learning from large language corpora.
Large Language Models Play StarCraft II: Benchmarks and A Chain of Summarization Approach
StarCraft II is a challenging benchmark for AI agents due to the necessity of both precise micro level operations and strategic macro awareness. Previous works, such as Alphastar and SCC, achieve impressive performance on tackling StarCraft II , however, still exhibit deficiencies in long term strategic planning and strategy interpretability. Emerging large language model (LLM) agents, such as Voyage and MetaGPT, presents the immense potential in solving intricate tasks. Motivated by this, we aim to validate the capabilities of LLMs on StarCraft II, a highly complex RTS game.To conveniently take full advantage of LLMs` reasoning abilities, we first develop textual StratCraft II environment, called TextStarCraft II, which LLM agent can interact. Secondly, we propose a Chain of Summarization method, including single frame summarization for processing raw observations and multi frame summarization for analyzing game information, providing command recommendations, and generating strategic decisions. Our experiment consists of two parts: first, an evaluation by human experts, which includes assessing the LLMs`s mastery of StarCraft II knowledge and the performance of LLM agents in the game; second, the in game performance of LLM agents, encompassing aspects like win rate and the impact of Chain of Summarization.Experiment results demonstrate that: 1. LLMs possess the relevant knowledge and complex planning abilities needed to address StarCraft II scenarios; 2. Human experts consider the performance of LLM agents to be close to that of an average player who has played StarCraft II for eight years; 3. LLM agents are capable of defeating the built in AI at the Harder(Lv5) difficulty level. We have open sourced the code and released demo videos of LLM agent playing StarCraft II.
Plug-and-Play Policy Planner for Large Language Model Powered Dialogue Agents
Proactive dialogues serve as a practical yet challenging dialogue problem in the era of large language models (LLMs), where the dialogue policy planning is the key to improving the proactivity of LLMs. Most existing studies enable the dialogue policy planning of LLMs using various prompting schemes or iteratively enhance this capability in handling the given case with verbal AI feedback. However, these approaches are either bounded by the policy planning capability of the frozen LLMs or hard to be transferred to new cases. In this work, we introduce a new dialogue policy planning paradigm to strategize LLMs for proactive dialogue problems with a tunable language model plug-in as a plug-and-play dialogue policy planner, named PPDPP. Specifically, we develop a novel training framework to facilitate supervised fine-tuning over available human-annotated data as well as reinforcement learning from goal-oriented AI feedback with dynamic interaction data collected by the LLM-based self-play simulation. In this manner, the LLM-powered dialogue agent can not only be generalized to different cases after the training, but also be applicable to different applications by just substituting the learned plug-in. In addition, we propose to evaluate the policy planning capability of dialogue systems under the interactive setting. Experimental results demonstrate that PPDPP consistently and substantially outperforms existing approaches on three different proactive dialogue applications, including negotiation, emotional support, and tutoring dialogues.
lmgame-Bench: How Good are LLMs at Playing Games?
Playing video games requires perception, memory, and planning, exactly the faculties modern large language model (LLM) agents are expected to master. We study the major challenges in using popular video games to evaluate modern LLMs and find that directly dropping LLMs into games cannot make an effective evaluation, for three reasons -- brittle vision perception, prompt sensitivity, and potential data contamination. We introduce lmgame-Bench to turn games into reliable evaluations. lmgame-Bench features a suite of platformer, puzzle, and narrative games delivered through a unified Gym-style API and paired with lightweight perception and memory scaffolds, and is designed to stabilize prompt variance and remove contamination. Across 13 leading models, we show lmgame-Bench is challenging while still separating models well. Correlation analysis shows that every game probes a unique blend of capabilities often tested in isolation elsewhere. More interestingly, performing reinforcement learning on a single game from lmgame-Bench transfers both to unseen games and to external planning tasks. Our evaluation code is available at https://github.com/lmgame-org/GamingAgent/lmgame-bench.
Bootstrapping LLM-based Task-Oriented Dialogue Agents via Self-Talk
Large language models (LLMs) are powerful dialogue agents, but specializing them towards fulfilling a specific function can be challenging. Instructing tuning, i.e. tuning models on instruction and sample responses generated by humans (Ouyang et al., 2022), has proven as an effective method to do so, yet requires a number of data samples that a) might not be available or b) costly to generate. Furthermore, this cost increases when the goal is to make the LLM follow a specific workflow within a dialogue instead of single instructions. Inspired by the self-play technique in reinforcement learning and the use of LLMs to simulate human agents, we propose a more effective method for data collection through LLMs engaging in a conversation in various roles. This approach generates a training data via "self-talk" of LLMs that can be refined and utilized for supervised fine-tuning. We introduce an automated way to measure the (partial) success of a dialogue. This metric is used to filter the generated conversational data that is fed back in LLM for training. Based on our automated and human evaluations of conversation quality, we demonstrate that such self-talk data improves results. In addition, we examine the various characteristics that showcase the quality of generated dialogues and how they can be connected to their potential utility as training data.
GLEE: A Unified Framework and Benchmark for Language-based Economic Environments
Large Language Models (LLMs) show significant potential in economic and strategic interactions, where communication via natural language is often prevalent. This raises key questions: Do LLMs behave rationally? Can they mimic human behavior? Do they tend to reach an efficient and fair outcome? What is the role of natural language in the strategic interaction? How do characteristics of the economic environment influence these dynamics? These questions become crucial concerning the economic and societal implications of integrating LLM-based agents into real-world data-driven systems, such as online retail platforms and recommender systems. While the ML community has been exploring the potential of LLMs in such multi-agent setups, varying assumptions, design choices and evaluation criteria across studies make it difficult to draw robust and meaningful conclusions. To address this, we introduce a benchmark for standardizing research on two-player, sequential, language-based games. Inspired by the economic literature, we define three base families of games with consistent parameterization, degrees of freedom and economic measures to evaluate agents' performance (self-gain), as well as the game outcome (efficiency and fairness). We develop an open-source framework for interaction simulation and analysis, and utilize it to collect a dataset of LLM vs. LLM interactions across numerous game configurations and an additional dataset of human vs. LLM interactions. Through extensive experimentation, we demonstrate how our framework and dataset can be used to: (i) compare the behavior of LLM-based agents to human players in various economic contexts; (ii) evaluate agents in both individual and collective performance measures; and (iii) quantify the effect of the economic characteristics of the environments on the behavior of agents.
Multi-Agent Evolve: LLM Self-Improve through Co-evolution
Reinforcement Learning (RL) has demonstrated significant potential in enhancing the reasoning capabilities of large language models (LLMs). However, the success of RL for LLMs heavily relies on human-curated datasets and verifiable rewards, which limit their scalability and generality. Recent Self-Play RL methods, inspired by the success of the paradigm in games and Go, aim to enhance LLM reasoning capabilities without human-annotated data. However, their methods primarily depend on a grounded environment for feedback (e.g., a Python interpreter or a game engine); extending them to general domains remains challenging. To address these challenges, we propose Multi-Agent Evolve (MAE), a framework that enables LLMs to self-evolve in solving diverse tasks, including mathematics, reasoning, and general knowledge Q&A. The core design of MAE is based on a triplet of interacting agents (Proposer, Solver, Judge) that are instantiated from a single LLM, and applies reinforcement learning to optimize their behaviors. The Proposer generates questions, the Solver attempts solutions, and the Judge evaluates both while co-evolving. Experiments on Qwen2.5-3B-Instruct demonstrate that MAE achieves an average improvement of 4.54% on multiple benchmarks. These results highlight MAE as a scalable, data-efficient method for enhancing the general reasoning abilities of LLMs with minimal reliance on human-curated supervision.
Enhancing Language Multi-Agent Learning with Multi-Agent Credit Re-Assignment for Interactive Environment Generalization
LLM-based agents have made significant advancements in interactive environments, such as mobile operations and web browsing, and other domains beyond computer using. Current multi-agent systems universally excel in performance, compared to single agents, but struggle with generalization across environments due to predefined roles and inadequate strategies for generalizing language agents. The challenge of achieving both strong performance and good generalization has hindered the progress of multi-agent systems for interactive environments. To address these issues, we propose CollabUIAgents, a multi-agent reinforcement learning framework with a novel multi-agent credit re-assignment (CR) strategy, assigning process rewards with LLMs rather than environment-specific rewards and learning with synthesized preference data, in order to foster generalizable, collaborative behaviors among the role-free agents' policies. Empirical results show that our framework improves both performance and cross-environment generalizability of multi-agent systems. Moreover, our 7B-parameter system achieves results on par with or exceed strong closed-source models, and the LLM that guides the CR. We also provide insights in using granular CR rewards effectively for environment generalization, and accommodating trained LLMs in multi-agent systems.
LogicGame: Benchmarking Rule-Based Reasoning Abilities of Large Language Models
Large Language Models (LLMs) have demonstrated notable capabilities across various tasks, showcasing complex problem-solving abilities. Understanding and executing complex rules, along with multi-step planning, are fundamental to logical reasoning and critical for practical LLM agents and decision-making systems. However, evaluating LLMs as effective rule-based executors and planners remains underexplored. In this paper, we introduce LogicGame, a novel benchmark designed to evaluate the comprehensive rule understanding, execution, and planning capabilities of LLMs. Unlike traditional benchmarks, LogicGame provides diverse games that contain a series of rules with an initial state, requiring models to comprehend and apply predefined regulations to solve problems. We create simulated scenarios in which models execute or plan operations to achieve specific outcomes. These game scenarios are specifically designed to distinguish logical reasoning from mere knowledge by relying exclusively on predefined rules. This separation allows for a pure assessment of rule-based reasoning capabilities. The evaluation considers not only final outcomes but also intermediate steps, providing a comprehensive assessment of model performance. Moreover, these intermediate steps are deterministic and can be automatically verified. LogicGame defines game scenarios with varying difficulty levels, from simple rule applications to complex reasoning chains, in order to offer a precise evaluation of model performance on rule understanding and multi-step execution. Utilizing LogicGame, we test various LLMs and identify notable shortcomings in their rule-based logical reasoning abilities.
Exploring Large Language Models for Communication Games: An Empirical Study on Werewolf
Communication games, which we refer to as incomplete information games that heavily depend on natural language communication, hold significant research value in fields such as economics, social science, and artificial intelligence. In this work, we explore the problem of how to engage large language models (LLMs) in communication games, and in response, propose a tuning-free framework. Our approach keeps LLMs frozen, and relies on the retrieval and reflection on past communications and experiences for improvement. An empirical study on the representative and widely-studied communication game, ``Werewolf'', demonstrates that our framework can effectively play Werewolf game without tuning the parameters of the LLMs. More importantly, strategic behaviors begin to emerge in our experiments, suggesting that it will be a fruitful journey to engage LLMs in communication games and associated domains.
Training Agents with Weakly Supervised Feedback from Large Language Models
Large Language Models (LLMs) offer a promising basis for creating agents that can tackle complex tasks through iterative environmental interaction. Existing methods either require these agents to mimic expert-provided trajectories or rely on definitive environmental feedback for reinforcement learning which limits their application to specific scenarios like gaming or code generation. This paper introduces a novel training method for LLM-based agents using weakly supervised signals from a critic LLM, bypassing the need for expert trajectories or definitive feedback. Our agents are trained in iterative manner, where they initially generate trajectories through environmental interaction. Subsequently, a critic LLM selects a subset of good trajectories, which are then used to update the agents, enabling them to generate improved trajectories in the next iteration. Extensive tests on the API-bank dataset show consistent improvement in our agents' capabilities and comparable performance to GPT-4, despite using open-source models with much fewer parameters.
LLMR: Real-time Prompting of Interactive Worlds using Large Language Models
We present Large Language Model for Mixed Reality (LLMR), a framework for the real-time creation and modification of interactive Mixed Reality experiences using LLMs. LLMR leverages novel strategies to tackle difficult cases where ideal training data is scarce, or where the design goal requires the synthesis of internal dynamics, intuitive analysis, or advanced interactivity. Our framework relies on text interaction and the Unity game engine. By incorporating techniques for scene understanding, task planning, self-debugging, and memory management, LLMR outperforms the standard GPT-4 by 4x in average error rate. We demonstrate LLMR's cross-platform interoperability with several example worlds, and evaluate it on a variety of creation and modification tasks to show that it can produce and edit diverse objects, tools, and scenes. Finally, we conducted a usability study (N=11) with a diverse set that revealed participants had positive experiences with the system and would use it again.
Goal Inference from Open-Ended Dialog
We present an online method for embodied agents to learn and accomplish diverse user goals. While offline methods like RLHF can represent various goals but require large datasets, our approach achieves similar flexibility with online efficiency. We extract natural language goal representations from conversations with Large Language Models (LLMs). We prompt an LLM to role play as a human with different goals and use the corresponding likelihoods to run Bayesian inference over potential goals. As a result, our method can represent uncertainty over complex goals based on unrestricted dialog. We evaluate our method in grocery shopping and home robot assistance domains using a text-based interface and AI2Thor simulation respectively. Results show our method outperforms ablation baselines that lack either explicit goal representation or probabilistic inference.
Character-LLM: A Trainable Agent for Role-Playing
Large language models (LLMs) can be used to serve as agents to simulate human behaviors, given the powerful ability to understand human instructions and provide high-quality generated texts. Such ability stimulates us to wonder whether LLMs can simulate a person in a higher form than simple human behaviors. Therefore, we aim to train an agent with the profile, experience, and emotional states of a specific person instead of using limited prompts to instruct ChatGPT API. In this work, we introduce Character-LLM that teach LLMs to act as specific people such as Beethoven, Queen Cleopatra, Julius Caesar, etc. Our method focuses on editing profiles as experiences of a certain character and training models to be personal simulacra with these experiences. To assess the effectiveness of our approach, we build a test playground that interviews trained agents and evaluates whether the agents memorize their characters and experiences. Experimental results show interesting observations that help build future simulacra of humankind.
Sycophancy to Subterfuge: Investigating Reward-Tampering in Large Language Models
In reinforcement learning, specification gaming occurs when AI systems learn undesired behaviors that are highly rewarded due to misspecified training goals. Specification gaming can range from simple behaviors like sycophancy to sophisticated and pernicious behaviors like reward-tampering, where a model directly modifies its own reward mechanism. However, these more pernicious behaviors may be too complex to be discovered via exploration. In this paper, we study whether Large Language Model (LLM) assistants which find easily discovered forms of specification gaming will generalize to perform rarer and more blatant forms, up to and including reward-tampering. We construct a curriculum of increasingly sophisticated gameable environments and find that training on early-curriculum environments leads to more specification gaming on remaining environments. Strikingly, a small but non-negligible proportion of the time, LLM assistants trained on the full curriculum generalize zero-shot to directly rewriting their own reward function. Retraining an LLM not to game early-curriculum environments mitigates, but does not eliminate, reward-tampering in later environments. Moreover, adding harmlessness training to our gameable environments does not prevent reward-tampering. These results demonstrate that LLMs can generalize from common forms of specification gaming to more pernicious reward tampering and that such behavior may be nontrivial to remove.
Agents of Change: Self-Evolving LLM Agents for Strategic Planning
Recent advances in LLMs have enabled their use as autonomous agents across a range of tasks, yet they continue to struggle with formulating and adhering to coherent long-term strategies. In this paper, we investigate whether LLM agents can self-improve when placed in environments that explicitly challenge their strategic planning abilities. Using the board game Settlers of Catan, accessed through the open-source Catanatron framework, we benchmark a progression of LLM-based agents, from a simple game-playing agent to systems capable of autonomously rewriting their own prompts and their player agent's code. We introduce a multi-agent architecture in which specialized roles (Analyzer, Researcher, Coder, and Player) collaborate to iteratively analyze gameplay, research new strategies, and modify the agent's logic or prompt. By comparing manually crafted agents to those evolved entirely by LLMs, we evaluate how effectively these systems can diagnose failure and adapt over time. Our results show that self-evolving agents, particularly when powered by models like Claude 3.7 and GPT-4o, outperform static baselines by autonomously adopting their strategies, passing along sample behavior to game-playing agents, and demonstrating adaptive reasoning over multiple iterations.
HoLLMwood: Unleashing the Creativity of Large Language Models in Screenwriting via Role Playing
Generative AI has demonstrated unprecedented creativity in the field of computer vision, yet such phenomena have not been observed in natural language processing. In particular, large language models (LLMs) can hardly produce written works at the level of human experts due to the extremely high complexity of literature writing. In this paper, we present HoLLMwood, an automated framework for unleashing the creativity of LLMs and exploring their potential in screenwriting, which is a highly demanding task. Mimicking the human creative process, we assign LLMs to different roles involved in the real-world scenario. In addition to the common practice of treating LLMs as {Writer}, we also apply LLMs as {Editor}, who is responsible for providing feedback and revision advice to {Writer}. Besides, to enrich the characters and deepen the plots, we introduce a role-playing mechanism and adopt LLMs as {Actors} that can communicate and interact with each other. Evaluations on automatically generated screenplays show that HoLLMwood substantially outperforms strong baselines in terms of coherence, relevance, interestingness and overall quality.
GameEval: Evaluating LLMs on Conversational Games
The rapid advancements in large language models (LLMs) have presented challenges in evaluating those models. Existing evaluation methods are either reference-based or preference based, which inevitably need human intervention or introduce test bias caused by evaluator models. In this paper, we propose GameEval, a novel approach to evaluating LLMs through goal-driven conversational games, overcoming the limitations of previous methods. GameEval treats LLMs as game players and assigns them distinct roles with specific goals achieved by launching conversations of various forms, including discussion, question answering, and voting. We design three unique games with cooperative or adversarial objectives, accompanied by corresponding evaluation metrics, to show how this new paradigm comprehensively evaluates model performance.Through extensive experiments, we show that GameEval can effectively differentiate the capabilities of various LLMs, providing a comprehensive assessment of their integrated abilities to solve complex problems. Our public anonymous code is available at https://github.com/GameEval/GameEval.
Exploring Large Language Model based Intelligent Agents: Definitions, Methods, and Prospects
Intelligent agents stand out as a potential path toward artificial general intelligence (AGI). Thus, researchers have dedicated significant effort to diverse implementations for them. Benefiting from recent progress in large language models (LLMs), LLM-based agents that use universal natural language as an interface exhibit robust generalization capabilities across various applications -- from serving as autonomous general-purpose task assistants to applications in coding, social, and economic domains, LLM-based agents offer extensive exploration opportunities. This paper surveys current research to provide an in-depth overview of LLM-based intelligent agents within single-agent and multi-agent systems. It covers their definitions, research frameworks, and foundational components such as their composition, cognitive and planning methods, tool utilization, and responses to environmental feedback. We also delve into the mechanisms of deploying LLM-based agents in multi-agent systems, including multi-role collaboration, message passing, and strategies to alleviate communication issues between agents. The discussions also shed light on popular datasets and application scenarios. We conclude by envisioning prospects for LLM-based agents, considering the evolving landscape of AI and natural language processing.
Evaluating, Synthesizing, and Enhancing for Customer Support Conversation
Effective customer support requires not only accurate problem solving but also structured and empathetic communication aligned with professional standards. However, existing dialogue datasets often lack strategic guidance, and real-world service data is difficult to access and annotate. To address this, we introduce the task of Customer Support Conversation (CSC), aimed at training customer service agents to respond using well-defined support strategies. We propose a structured CSC framework grounded in COPC guidelines, defining five conversational stages and twelve strategies to guide high-quality interactions. Based on this, we construct CSConv, an evaluation dataset of 1,855 real-world customer-agent conversations rewritten using LLMs to reflect deliberate strategy use, and annotated accordingly. Additionally, we develop a role-playing approach that simulates strategy-rich conversations using LLM-powered roles aligned with the CSC framework, resulting in the training dataset RoleCS. Experiments show that fine-tuning strong LLMs on RoleCS significantly improves their ability to generate high-quality, strategy-aligned responses on CSConv. Human evaluations further confirm gains in problem resolution. All code and data will be made publicly available at https://github.com/aliyun/qwen-dianjin.
Beyond Binary: Towards Fine-Grained LLM-Generated Text Detection via Role Recognition and Involvement Measurement
The rapid development of large language models (LLMs), like ChatGPT, has resulted in the widespread presence of LLM-generated content on social media platforms, raising concerns about misinformation, data biases, and privacy violations, which can undermine trust in online discourse. While detecting LLM-generated content is crucial for mitigating these risks, current methods often focus on binary classification, failing to address the complexities of real-world scenarios like human-LLM collaboration. To move beyond binary classification and address these challenges, we propose a new paradigm for detecting LLM-generated content. This approach introduces two novel tasks: LLM Role Recognition (LLM-RR), a multi-class classification task that identifies specific roles of LLM in content generation, and LLM Influence Measurement (LLM-IM), a regression task that quantifies the extent of LLM involvement in content creation. To support these tasks, we propose LLMDetect, a benchmark designed to evaluate detectors' performance on these new tasks. LLMDetect includes the Hybrid News Detection Corpus (HNDC) for training detectors, as well as DetectEval, a comprehensive evaluation suite that considers five distinct cross-context variations and two multi-intensity variations within the same LLM role. This allows for a thorough assessment of detectors' generalization and robustness across diverse contexts. Our empirical validation of 10 baseline detection methods demonstrates that fine-tuned PLM-based models consistently outperform others on both tasks, while advanced LLMs face challenges in accurately detecting their own generated content. Our experimental results and analysis offer insights for developing more effective detection models for LLM-generated content. This research enhances the understanding of LLM-generated content and establishes a foundation for more nuanced detection methodologies.
Language Agents with Reinforcement Learning for Strategic Play in the Werewolf Game
Agents built with large language models (LLMs) have shown great potential across a wide range of domains. However, in complex decision-making tasks, pure LLM-based agents tend to exhibit intrinsic bias in their choice of actions, which is inherited from the model's training data and results in suboptimal performance. To develop strategic language agents, i.e., agents that generate flexible language actions and possess strong decision-making abilities, we propose a novel framework that powers LLM-based agents with reinforcement learning (RL). We consider Werewolf, a popular social deduction game, as a challenging testbed that emphasizes versatile communication and strategic gameplay. To mitigate the intrinsic bias in language actions, our agents use an LLM to perform deductive reasoning and generate a diverse set of action candidates. Then an RL policy trained to optimize the decision-making ability chooses an action from the candidates to play in the game. Extensive experiments show that our agents overcome the intrinsic bias and outperform existing LLM-based agents in the Werewolf game. We also conduct human-agent experiments and find that our agents achieve human-level performance and demonstrate strong strategic play.
TimeChara: Evaluating Point-in-Time Character Hallucination of Role-Playing Large Language Models
While Large Language Models (LLMs) can serve as agents to simulate human behaviors (i.e., role-playing agents), we emphasize the importance of point-in-time role-playing. This situates characters at specific moments in the narrative progression for three main reasons: (i) enhancing users' narrative immersion, (ii) avoiding spoilers, and (iii) fostering engagement in fandom role-playing. To accurately represent characters at specific time points, agents must avoid character hallucination, where they display knowledge that contradicts their characters' identities and historical timelines. We introduce TimeChara, a new benchmark designed to evaluate point-in-time character hallucination in role-playing LLMs. Comprising 10,895 instances generated through an automated pipeline, this benchmark reveals significant hallucination issues in current state-of-the-art LLMs (e.g., GPT-4o). To counter this challenge, we propose Narrative-Experts, a method that decomposes the reasoning steps and utilizes narrative experts to reduce point-in-time character hallucinations effectively. Still, our findings with TimeChara highlight the ongoing challenges of point-in-time character hallucination, calling for further study.
Beyond Survival: Evaluating LLMs in Social Deduction Games with Human-Aligned Strategies
Social deduction games like Werewolf combine language, reasoning, and strategy, providing a testbed for studying natural language and social intelligence. However, most studies reduce the game to LLM-based self-play, yielding templated utterances and anecdotal cases that overlook the richness of social gameplay. Evaluation further relies on coarse metrics such as survival time or subjective scoring due to the lack of quality reference data. To address these gaps, we curate a high-quality, human-verified multimodal Werewolf dataset containing over 100 hours of video, 32.4M utterance tokens, and 15 rule variants. Based on this dataset, we propose a novel strategy-alignment evaluation that leverages the winning faction's strategies as ground truth in two stages: 1) Speech evaluation, formulated as multiple-choice-style tasks that assess whether the model can adopt appropriate stances across five dimensions of social ability; and 2) Decision evaluation, which assesses the model's voting choices and opponent-role inferences. This framework enables a fine-grained evaluation of models' linguistic and reasoning capabilities, while capturing their ability to generate strategically coherent gameplay. Our experiments show that state-of-the-art LLMs show diverse performance, with roughly half remain below 0.50, revealing clear gaps in deception and counterfactual reasoning. We hope our dataset further inspires research on language, reasoning, and strategy in multi-agent interaction.
Predicting the Big Five Personality Traits in Chinese Counselling Dialogues Using Large Language Models
Accurate assessment of personality traits is crucial for effective psycho-counseling, yet traditional methods like self-report questionnaires are time-consuming and biased. This study exams whether Large Language Models (LLMs) can predict the Big Five personality traits directly from counseling dialogues and introduces an innovative framework to perform the task. Our framework applies role-play and questionnaire-based prompting to condition LLMs on counseling sessions, simulating client responses to the Big Five Inventory. We evaluated our framework on 853 real-world counseling sessions, finding a significant correlation between LLM-predicted and actual Big Five traits, proving the validity of framework. Moreover, ablation studies highlight the importance of role-play simulations and task simplification via questionnaires in enhancing prediction accuracy. Meanwhile, our fine-tuned Llama3-8B model, utilizing Direct Preference Optimization with Supervised Fine-Tuning, achieves a 130.95\% improvement, surpassing the state-of-the-art Qwen1.5-110B by 36.94\% in personality prediction validity. In conclusion, LLMs can predict personality based on counseling dialogues. Our code and model are publicly available at https://github.com/kuri-leo/BigFive-LLM-Predictor, providing a valuable tool for future research in computational psychometrics.
Playpen: An Environment for Exploring Learning Through Conversational Interaction
Interaction between learner and feedback-giver has come into focus recently for post-training of Large Language Models (LLMs), through the use of reward models that judge the appropriateness of a model's response. In this paper, we investigate whether Dialogue Games -- goal-directed and rule-governed activities driven predominantly by verbal actions -- can also serve as a source of feedback signals for learning. We introduce Playpen, an environment for off- and online learning through Dialogue Game self-play, and investigate a representative set of post-training methods: supervised fine-tuning; direct alignment (DPO); and reinforcement learning with GRPO. We experiment with post-training a small LLM (Llama-3.1-8B-Instruct), evaluating performance on unseen instances of training games as well as unseen games, and on standard benchmarks. We find that imitation learning through SFT improves performance on unseen instances, but negatively impacts other skills, while interactive learning with GRPO shows balanced improvements without loss of skills. We release the framework and the baseline training setups to foster research in the promising new direction of learning in (synthetic) interaction.
Playing games with Large language models: Randomness and strategy
Playing games has a long history of describing intricate interactions in simplified forms. In this paper we explore if large language models (LLMs) can play games, investigating their capabilities for randomisation and strategic adaptation through both simultaneous and sequential game interactions. We focus on GPT-4o-Mini-2024-08-17 and test two games between LLMs: Rock Paper Scissors (RPS) and games of strategy (Prisoners Dilemma PD). LLMs are often described as stochastic parrots, and while they may indeed be parrots, our results suggest that they are not very stochastic in the sense that their outputs - when prompted to be random - are often very biased. Our research reveals that LLMs appear to develop loss aversion strategies in repeated games, with RPS converging to stalemate conditions while PD shows systematic shifts between cooperative and competitive outcomes based on prompt design. We detail programmatic tools for independent agent interactions and the Agentic AI challenges faced in implementation. We show that LLMs can indeed play games, just not very well. These results have implications for the use of LLMs in multi-agent LLM systems and showcase limitations in current approaches to model output for strategic decision-making.
UBENCH: Benchmarking Uncertainty in Large Language Models with Multiple Choice Questions
The rapid development of large language models (LLMs) has shown promising practical results. However, their low interpretability often leads to errors in unforeseen circumstances, limiting their utility. Many works have focused on creating comprehensive evaluation systems, but previous benchmarks have primarily assessed problem-solving abilities while neglecting the response's uncertainty, which may result in unreliability. Recent methods for measuring LLM reliability are resource-intensive and unable to test black-box models. To address this, we propose UBENCH, a comprehensive benchmark for evaluating LLM reliability. UBENCH includes 3,978 multiple-choice questions covering knowledge, language, understanding, and reasoning abilities. Experimental results show that UBENCH has achieved state-of-the-art performance, while its single-sampling method significantly saves computational resources compared to baseline methods that require multiple samplings. Additionally, based on UBENCH, we evaluate the reliability of 15 popular LLMs, finding GLM4 to be the most outstanding, closely followed by GPT-4. We also explore the impact of Chain-of-Thought prompts, role-playing prompts, option order, and temperature on LLM reliability, analyzing the varying effects on different LLMs.
LLM-Mediated Guidance of MARL Systems
In complex multi-agent environments, achieving efficient learning and desirable behaviours is a significant challenge for Multi-Agent Reinforcement Learning (MARL) systems. This work explores the potential of combining MARL with Large Language Model (LLM)-mediated interventions to guide agents toward more desirable behaviours. Specifically, we investigate how LLMs can be used to interpret and facilitate interventions that shape the learning trajectories of multiple agents. We experimented with two types of interventions, referred to as controllers: a Natural Language (NL) Controller and a Rule-Based (RB) Controller. The NL Controller, which uses an LLM to simulate human-like interventions, showed a stronger impact than the RB Controller. Our findings indicate that agents particularly benefit from early interventions, leading to more efficient training and higher performance. Both intervention types outperform the baseline without interventions, highlighting the potential of LLM-mediated guidance to accelerate training and enhance MARL performance in challenging environments.
SPRING: GPT-4 Out-performs RL Algorithms by Studying Papers and Reasoning
Open-world survival games pose significant challenges for AI algorithms due to their multi-tasking, deep exploration, and goal prioritization requirements. Despite reinforcement learning (RL) being popular for solving games, its high sample complexity limits its effectiveness in complex open-world games like Crafter or Minecraft. We propose a novel approach, SPRING, to read the game's original academic paper and use the knowledge learned to reason and play the game through a large language model (LLM). Prompted with the LaTeX source as game context and a description of the agent's current observation, our SPRING framework employs a directed acyclic graph (DAG) with game-related questions as nodes and dependencies as edges. We identify the optimal action to take in the environment by traversing the DAG and calculating LLM responses for each node in topological order, with the LLM's answer to final node directly translating to environment actions. In our experiments, we study the quality of in-context "reasoning" induced by different forms of prompts under the setting of the Crafter open-world environment. Our experiments suggest that LLMs, when prompted with consistent chain-of-thought, have great potential in completing sophisticated high-level trajectories. Quantitatively, SPRING with GPT-4 outperforms all state-of-the-art RL baselines, trained for 1M steps, without any training. Finally, we show the potential of games as a test bed for LLMs.
LLM-Powered Hierarchical Language Agent for Real-time Human-AI Coordination
AI agents powered by Large Language Models (LLMs) have made significant advances, enabling them to assist humans in diverse complex tasks and leading to a revolution in human-AI coordination. LLM-powered agents typically require invoking LLM APIs and employing artificially designed complex prompts, which results in high inference latency. While this paradigm works well in scenarios with minimal interactive demands, such as code generation, it is unsuitable for highly interactive and real-time applications, such as gaming. Traditional gaming AI often employs small models or reactive policies, enabling fast inference but offering limited task completion and interaction abilities. In this work, we consider Overcooked as our testbed where players could communicate with natural language and cooperate to serve orders. We propose a Hierarchical Language Agent (HLA) for human-AI coordination that provides both strong reasoning abilities while keeping real-time execution. In particular, HLA adopts a hierarchical framework and comprises three modules: a proficient LLM, referred to as Slow Mind, for intention reasoning and language interaction, a lightweight LLM, referred to as Fast Mind, for generating macro actions, and a reactive policy, referred to as Executor, for transforming macro actions into atomic actions. Human studies show that HLA outperforms other baseline agents, including slow-mind-only agents and fast-mind-only agents, with stronger cooperation abilities, faster responses, and more consistent language communications.
Deflanderization for Game Dialogue: Balancing Character Authenticity with Task Execution in LLM-based NPCs
The emergence of large language models (LLMs) has opened new opportunities for cre- ating dynamic non-player characters (NPCs) in gaming environments, enabling both func- tional task execution and persona-consistent dialogue generation. In this paper, we (Tu_Character_lab) report our participation in the Commonsense Persona-Grounded Dialogue Challenge (CPDC) 2025 Round 2, which eval- uates agents across three tracks: task-oriented dialogue, context-aware dialogue, and their integration. Our approach combines two complementary strategies: (i) lightweight prompting techniques in the API track, including a Deflanderization prompting method to suppress excessive role-play and improve task fidelity, and (ii) fine-tuned large models in the GPU track, leveraging Qwen3-14B with supervisedfinetuning (SFT) and Low-Rank Adaptation(LoRA). Our best submissions ranked 2nd on Task 1, 2nd on Task 3 (API track), and 4th on Task 3 (GPU track).
Exploring the Intersection of Large Language Models and Agent-Based Modeling via Prompt Engineering
The final frontier for simulation is the accurate representation of complex, real-world social systems. While agent-based modeling (ABM) seeks to study the behavior and interactions of agents within a larger system, it is unable to faithfully capture the full complexity of human-driven behavior. Large language models (LLMs), like ChatGPT, have emerged as a potential solution to this bottleneck by enabling researchers to explore human-driven interactions in previously unimaginable ways. Our research investigates simulations of human interactions using LLMs. Through prompt engineering, inspired by Park et al. (2023), we present two simulations of believable proxies of human behavior: a two-agent negotiation and a six-agent murder mystery game.
Lifelong Robot Learning with Human Assisted Language Planners
Large Language Models (LLMs) have been shown to act like planners that can decompose high-level instructions into a sequence of executable instructions. However, current LLM-based planners are only able to operate with a fixed set of skills. We overcome this critical limitation and present a method for using LLM-based planners to query new skills and teach robots these skills in a data and time-efficient manner for rigid object manipulation. Our system can re-use newly acquired skills for future tasks, demonstrating the potential of open world and lifelong learning. We evaluate the proposed framework on multiple tasks in simulation and the real world. Videos are available at: https://sites.google.com/mit.edu/halp-robot-learning.
SmartPlay : A Benchmark for LLMs as Intelligent Agents
Recent large language models (LLMs) have demonstrated great potential toward intelligent agents and next-gen automation, but there currently lacks a systematic benchmark for evaluating LLMs' abilities as agents. We introduce SmartPlay: both a challenging benchmark and a methodology for evaluating LLMs as agents. SmartPlay consists of 6 different games, including Rock-Paper-Scissors, Tower of Hanoi, Minecraft. Each game features a unique setting, providing up to 20 evaluation settings and infinite environment variations. Each game in SmartPlay uniquely challenges a subset of 9 important capabilities of an intelligent LLM agent, including reasoning with object dependencies, planning ahead, spatial reasoning, learning from history, and understanding randomness. The distinction between the set of capabilities each game test allows us to analyze each capability separately. SmartPlay serves not only as a rigorous testing ground for evaluating the overall performance of LLM agents but also as a road-map for identifying gaps in current methodologies. We release our benchmark at github.com/LLMsmartplay/SmartPlay
ChARM: Character-based Act-adaptive Reward Modeling for Advanced Role-Playing Language Agents
Role-Playing Language Agents (RPLAs) aim to simulate characters for realistic and engaging human-computer interactions. However, traditional reward models often struggle with scalability and adapting to subjective conversational preferences. We propose ChARM, a Character-based Act-adaptive Reward Model, addressing these challenges through two innovations: (1) an act-adaptive margin that significantly enhances learning efficiency and generalizability, and (2) a self-evolution mechanism leveraging large-scale unlabeled data to improve training coverage. Additionally, we introduce RoleplayPref, the first large-scale preference dataset specifically for RPLAs, featuring 1,108 characters, 13 subcategories, and 16,888 bilingual dialogues, alongside RoleplayEval, a dedicated evaluation benchmark. Experimental results show a 13% improvement over the conventional Bradley-Terry model in preference rankings. Furthermore, applying ChARM-generated rewards to preference learning techniques (e.g., direct preference optimization) achieves state-of-the-art results on CharacterEval and RoleplayEval. Code and dataset are available at https://github.com/calubkk/ChARM.
Enabling Intelligent Interactions between an Agent and an LLM: A Reinforcement Learning Approach
Large language models (LLMs) encode a vast amount of world knowledge acquired from massive text datasets. Recent studies have demonstrated that LLMs can assist an embodied agent in solving complex sequential decision making tasks by providing high-level instructions. However, interactions with LLMs can be time-consuming. In many practical scenarios, they require a significant amount of storage space that can only be deployed on remote cloud server nodes. Additionally, using commercial LLMs can be costly since they may charge based on usage frequency. In this paper, we explore how to enable intelligent cost-effective interactions between the agent and an LLM. We propose When2Ask, a reinforcement learning based approach that learns when it is necessary to query LLMs for high-level instructions to accomplish a target task. Experiments on MiniGrid and Habitat environments that entail planning sub-goals demonstrate that When2Ask learns to solve target tasks with only a few necessary interactions with an LLM, and significantly reduces interaction costs in testing environments compared with baseline methods. Experiment results also suggest that by learning a mediator model to interact with the LLM, the agent's performance becomes more robust against partial observability of the environment. Our code is available at https://github.com/ZJLAB-AMMI/LLM4RL.
Democratizing Diplomacy: A Harness for Evaluating Any Large Language Model on Full-Press Diplomacy
We present the first evaluation harness that enables any out-of-the-box, local, Large Language Models (LLMs) to play full-press Diplomacy without fine-tuning or specialized training. Previous work required frontier LLMs, or fine-tuning, due to the high complexity and information density of Diplomacy's game state. Combined with the high variance of matches, these factors made Diplomacy prohibitive for study. In this work, we used data-driven iteration to optimize a textual game state representation such that a 24B model can reliably complete matches without any fine tuning. We develop tooling to facilitate hypothesis testing and statistical analysis, and we present case studies on persuasion, aggressive playstyles, and performance across a range of models. We conduct a variety of experiments across many popular LLMs, finding the larger models perform the best, but the smaller models still play adequately. We also introduce Critical State Analysis: an experimental protocol for rapidly iterating and analyzing key moments in a game at depth. Our harness democratizes the evaluation of strategic reasoning in LLMs by eliminating the need for fine-tuning, and it provides insights into how these capabilities emerge naturally from widely used LLMs. Our code is available in the supplement and will be open sourced.
GTBench: Uncovering the Strategic Reasoning Limitations of LLMs via Game-Theoretic Evaluations
As Large Language Models (LLMs) are integrated into critical real-world applications, their strategic and logical reasoning abilities are increasingly crucial. This paper evaluates LLMs' reasoning abilities in competitive environments through game-theoretic tasks, e.g., board and card games that require pure logic and strategic reasoning to compete with opponents. We first propose GTBench, a language-driven environment composing 10 widely-recognized tasks, across a comprehensive game taxonomy: complete versus incomplete information, dynamic versus static, and probabilistic versus deterministic scenarios. Then, we investigate two key problems: (1) Characterizing game-theoretic reasoning of LLMs; (2) LLM-vs-LLM competitions as reasoning evaluation. We observe that (1) LLMs have distinct behaviors regarding various gaming scenarios; for example, LLMs fail in complete and deterministic games yet they are competitive in probabilistic gaming scenarios; (2) Open-source LLMs, e.g., CodeLlama-34b-Instruct, are less competitive than commercial LLMs, e.g., GPT-4, in complex games. In addition, code-pretraining greatly benefits strategic reasoning, while advanced reasoning methods such as Chain-of-Thought (CoT) and Tree-of-Thought (ToT) do not always help. Detailed error profiles are also provided for a better understanding of LLMs' behavior.
Words as Beacons: Guiding RL Agents with High-Level Language Prompts
Sparse reward environments in reinforcement learning (RL) pose significant challenges for exploration, often leading to inefficient or incomplete learning processes. To tackle this issue, this work proposes a teacher-student RL framework that leverages Large Language Models (LLMs) as "teachers" to guide the agent's learning process by decomposing complex tasks into subgoals. Due to their inherent capability to understand RL environments based on a textual description of structure and purpose, LLMs can provide subgoals to accomplish the task defined for the environment in a similar fashion to how a human would do. In doing so, three types of subgoals are proposed: positional targets relative to the agent, object representations, and language-based instructions generated directly by the LLM. More importantly, we show that it is possible to query the LLM only during the training phase, enabling agents to operate within the environment without any LLM intervention. We assess the performance of this proposed framework by evaluating three state-of-the-art open-source LLMs (Llama, DeepSeek, Qwen) eliciting subgoals across various procedurally generated environment of the MiniGrid benchmark. Experimental results demonstrate that this curriculum-based approach accelerates learning and enhances exploration in complex tasks, achieving up to 30 to 200 times faster convergence in training steps compared to recent baselines designed for sparse reward environments.
API Agents vs. GUI Agents: Divergence and Convergence
Large language models (LLMs) have evolved beyond simple text generation to power software agents that directly translate natural language commands into tangible actions. While API-based LLM agents initially rose to prominence for their robust automation capabilities and seamless integration with programmatic endpoints, recent progress in multimodal LLM research has enabled GUI-based LLM agents that interact with graphical user interfaces in a human-like manner. Although these two paradigms share the goal of enabling LLM-driven task automation, they diverge significantly in architectural complexity, development workflows, and user interaction models. This paper presents the first comprehensive comparative study of API-based and GUI-based LLM agents, systematically analyzing their divergence and potential convergence. We examine key dimensions and highlight scenarios in which hybrid approaches can harness their complementary strengths. By proposing clear decision criteria and illustrating practical use cases, we aim to guide practitioners and researchers in selecting, combining, or transitioning between these paradigms. Ultimately, we indicate that continuing innovations in LLM-based automation are poised to blur the lines between API- and GUI-driven agents, paving the way for more flexible, adaptive solutions in a wide range of real-world applications.
ProgRM: Build Better GUI Agents with Progress Rewards
LLM-based (Large Language Model) GUI (Graphical User Interface) agents can potentially reshape our daily lives significantly. However, current LLM-based GUI agents suffer from the scarcity of high-quality training data owing to the difficulties of trajectory collection and reward annotation. Existing works have been exploring LLMs to collect trajectories for imitation learning or to offer reward signals for online RL training. However, the Outcome Reward Model (ORM) used in existing works cannot provide finegrained feedback and can over-penalize the valuable steps in finally failed trajectories. To this end, we propose Progress Reward Model (ProgRM) to provide dense informative intermediate rewards by predicting a task completion progress for each step in online training. To handle the challenge of progress reward label annotation, we further design an efficient LCS-based (Longest Common Subsequence) self-annotation algorithm to discover the key steps in trajectories and assign progress labels accordingly. ProgRM is evaluated with extensive experiments and analyses. Actors trained with ProgRM outperform leading proprietary LLMs and ORM-trained actors, illustrating the effectiveness of ProgRM. The codes for experiments will be made publicly available upon acceptance.
Evil Geniuses: Delving into the Safety of LLM-based Agents
Rapid advancements in large language models (LLMs) have revitalized in LLM-based agents, exhibiting impressive human-like behaviors and cooperative capabilities in various scenarios. However, these agents also bring some exclusive risks, stemming from the complexity of interaction environments and the usability of tools. This paper delves into the safety of LLM-based agents from three perspectives: agent quantity, role definition, and attack level. Specifically, we initially propose to employ a template-based attack strategy on LLM-based agents to find the influence of agent quantity. In addition, to address interaction environment and role specificity issues, we introduce Evil Geniuses (EG), an effective attack method that autonomously generates prompts related to the original role to examine the impact across various role definitions and attack levels. EG leverages Red-Blue exercises, significantly improving the generated prompt aggressiveness and similarity to original roles. Our evaluations on CAMEL, Metagpt and ChatDev based on GPT-3.5 and GPT-4, demonstrate high success rates. Extensive evaluation and discussion reveal that these agents are less robust, prone to more harmful behaviors, and capable of generating stealthier content than LLMs, highlighting significant safety challenges and guiding future research. Our code is available at https://github.com/T1aNS1R/Evil-Geniuses.
Theory of Mind for Multi-Agent Collaboration via Large Language Models
While Large Language Models (LLMs) have demonstrated impressive accomplishments in both reasoning and planning, their abilities in multi-agent collaborations remains largely unexplored. This study evaluates LLM-based agents in a multi-agent cooperative text game with Theory of Mind (ToM) inference tasks, comparing their performance with Multi-Agent Reinforcement Learning (MARL) and planning-based baselines. We observed evidence of emergent collaborative behaviors and high-order Theory of Mind capabilities among LLM-based agents. Our results reveal limitations in LLM-based agents' planning optimization due to systematic failures in managing long-horizon contexts and hallucination about the task state. We explore the use of explicit belief state representations to mitigate these issues, finding that it enhances task performance and the accuracy of ToM inferences for LLM-based agents.
Scaling Autonomous Agents via Automatic Reward Modeling And Planning
Large language models (LLMs) have demonstrated remarkable capabilities across a range of text-generation tasks. However, LLMs still struggle with problems requiring multi-step decision-making and environmental feedback, such as online shopping, scientific reasoning, and mathematical problem-solving. Unlike pure text data, collecting large-scale decision-making data is challenging. Moreover, many powerful LLMs are only accessible through APIs, which hinders their fine-tuning for agent tasks due to cost and complexity. To address LLM agents' limitations, we propose a framework that can automatically learn a reward model from the environment without human annotations. This model can be used to evaluate the action trajectories of LLM agents and provide heuristics for task planning. Specifically, our approach involves employing one LLM-based agent to navigate an environment randomly, generating diverse action trajectories. Subsequently, a separate LLM is leveraged to assign a task intent and synthesize a negative response alongside the correct response for each trajectory. These triplets (task intent, positive response, and negative response) are then utilized as training data to optimize a reward model capable of scoring action trajectories. The effectiveness and generalizability of our framework are demonstrated through evaluations conducted on different agent benchmarks. In conclusion, our proposed framework represents a significant advancement in enhancing LLM agents' decision-making capabilities. By automating the learning of reward models, we overcome the challenges of data scarcity and API limitations, potentially revolutionizing the application of LLMs in complex and interactive environments. This research paves the way for more sophisticated AI agents capable of tackling a wide range of real-world problems requiring multi-step decision-making.
NarrativePlay: Interactive Narrative Understanding
In this paper, we introduce NarrativePlay, a novel system that allows users to role-play a fictional character and interact with other characters in narratives such as novels in an immersive environment. We leverage Large Language Models (LLMs) to generate human-like responses, guided by personality traits extracted from narratives. The system incorporates auto-generated visual display of narrative settings, character portraits, and character speech, greatly enhancing user experience. Our approach eschews predefined sandboxes, focusing instead on main storyline events extracted from narratives from the perspective of a user-selected character. NarrativePlay has been evaluated on two types of narratives, detective and adventure stories, where users can either explore the world or improve their favorability with the narrative characters through conversations.
SHARP: Unlocking Interactive Hallucination via Stance Transfer in Role-Playing Agents
The advanced role-playing capabilities of Large Language Models (LLMs) have paved the way for developing Role-Playing Agents (RPAs). However, existing benchmarks in social interaction such as HPD and SocialBench have not investigated hallucination and face limitations like poor generalizability and implicit judgments for character fidelity. To address these issues, we propose a generalizable, explicit and effective paradigm to unlock the interactive patterns in diverse worldviews. Specifically, we define the interactive hallucination based on stance transfer and construct a benchmark, SHARP, by extracting relations from a general commonsense knowledge graph and leveraging the inherent hallucination properties of RPAs to simulate interactions across roles. Extensive experiments validate the effectiveness and stability of our paradigm. Our findings further explore the factors influencing these metrics and discuss the trade-off between blind loyalty to roles and adherence to facts in RPAs.
AGILE: A Novel Reinforcement Learning Framework of LLM Agents
We introduce a novel reinforcement learning framework of LLM agents named AGILE (AGent that Interacts and Learns from Environments) designed to perform complex conversational tasks with users, leveraging LLMs, memory, tools, and interactions with experts. The agent possesses capabilities beyond conversation, including reflection, tool usage, and expert consultation. We formulate the construction of such an LLM agent as a reinforcement learning (RL) problem, in which the LLM serves as the policy model. We fine-tune the LLM using labeled data of actions and the PPO algorithm. We focus on question answering and release a dataset for agents called ProductQA, comprising challenging questions in online shopping. Our extensive experiments on ProductQA, MedMCQA and HotPotQA show that AGILE agents based on 7B and 13B LLMs trained with PPO can outperform GPT-4 agents. Our ablation study highlights the indispensability of memory, tools, consultation, reflection, and reinforcement learning in achieving the agent's strong performance. Datasets and code are available at https://github.com/bytarnish/AGILE.
Aligning Large Language Models via Fully Self-Synthetic Data
Traditional reinforcement learning from human feedback (RLHF) for large language models (LLMs) relies on expensive human-annotated datasets, while Reinforcement Learning from AI Feedback (RLAIF) also incurs significant costs, requiring the collection of diverse prompts and corresponding responses, often necessitating external reward models or proprietary models like GPT-4 to annotate preference pairs. In this work, we introduce Self-Alignment Optimization (SAO), a fully self-synthetic framework for LLM alignment, where all training data, including prompts (i.e., user queries), responses, and preferences, are generated by the model itself. Specifically, SAO first instructs the LLM to engage in persona role-play and generate diverse prompts and responses, which are then self-evaluated for preference optimization. Extensive experiments demonstrate that SAO effectively enhances the model's chat capabilities on standard benchmarks like AlpacaEval~2.0, while maintaining strong performance on downstream objective tasks (e.g., question-answering, math reasoning). Our work provides a practical solution for self-improvement in aligning LLMs, and the code for reproducing our results is available at: https://github.com/SJY8460/SAO.
ESC-Eval: Evaluating Emotion Support Conversations in Large Language Models
Emotion Support Conversation (ESC) is a crucial application, which aims to reduce human stress, offer emotional guidance, and ultimately enhance human mental and physical well-being. With the advancement of Large Language Models (LLMs), many researchers have employed LLMs as the ESC models. However, the evaluation of these LLM-based ESCs remains uncertain. Inspired by the awesome development of role-playing agents, we propose an ESC Evaluation framework (ESC-Eval), which uses a role-playing agent to interact with ESC models, followed by a manual evaluation of the interactive dialogues. In detail, we first re-organize 2,801 role-playing cards from seven existing datasets to define the roles of the role-playing agent. Second, we train a specific role-playing model called ESC-Role which behaves more like a confused person than GPT-4. Third, through ESC-Role and organized role cards, we systematically conduct experiments using 14 LLMs as the ESC models, including general AI-assistant LLMs (ChatGPT) and ESC-oriented LLMs (ExTES-Llama). We conduct comprehensive human annotations on interactive multi-turn dialogues of different ESC models. The results show that ESC-oriented LLMs exhibit superior ESC abilities compared to general AI-assistant LLMs, but there is still a gap behind human performance. Moreover, to automate the scoring process for future ESC models, we developed ESC-RANK, which trained on the annotated data, achieving a scoring performance surpassing 35 points of GPT-4. Our data and code are available at https://github.com/haidequanbu/ESC-Eval.
Empowering LLMs in Decision Games through Algorithmic Data Synthesis
Large Language Models (LLMs) have exhibited impressive capabilities across numerous domains, yet they often struggle with complex reasoning and decision-making tasks. Decision-making games, which inherently require multifaceted reasoning logic, serve as ideal sandboxes for evaluating and enhancing the reasoning abilities of LLMs. In this work, we first explore whether LLMs can master complex decision-making games through targeted post-training. To this end, we design data synthesis strategies and curate extensive offline datasets from two classic games, Doudizhu and Go. We further develop a suite of techniques to effectively incorporate this data into LLM training, resulting in two novel agents: Mastermind-Dou and Mastermind-Go. Our experimental results demonstrate that these Mastermind LLMs achieve competitive performance in their respective games. Additionally, we explore whether integrating decision-making data can enhance the general reasoning abilities of LLMs. Our findings suggest that such post-training improves certain aspects of reasoning, providing valuable insights for optimizing LLM data collection and synthesis strategies.
TMGBench: A Systematic Game Benchmark for Evaluating Strategic Reasoning Abilities of LLMs
The rapid advancement of large language models (LLMs) has accelerated their application in reasoning, with strategic reasoning drawing increasing attention. To evaluate LLMs' strategic reasoning capabilities, game theory, with its concise structure, has become a preferred approach. However, current research focuses on a limited selection of games, resulting in low coverage. Classic game scenarios risk data leakage, and existing benchmarks often lack extensibility, making them inadequate for evaluating state-of-the-art models. To address these challenges, we propose TMGBench, a benchmark with comprehensive game type coverage, novel scenarios, and flexible organization. Specifically, we incorporate all 144 game types summarized by the Robinson-Goforth topology of 2x2 games, constructed as classic games. We also employ synthetic data generation to create diverse, higher-quality scenarios through topic guidance and human inspection, referred to as story-based games. Lastly, we provide a sustainable framework for increasingly powerful LLMs by treating these games as atomic units and organizing them into more complex forms via sequential, parallel, and nested structures. Our comprehensive evaluation of mainstream LLMs covers tests on rational reasoning, robustness, Theory-of-Mind (ToM), and reasoning in complex forms. Results reveal flaws in accuracy, consistency, and varying mastery of ToM. Additionally, o1-mini, OpenAI's latest reasoning model, achieved accuracy rates of 66.6%, 60.0%, and 70.0% on sequential, parallel, and nested games, highlighting TMGBench's challenges.
The StudyChat Dataset: Student Dialogues With ChatGPT in an Artificial Intelligence Course
The widespread availability of large language models (LLMs), such as ChatGPT, has significantly impacted education, raising both opportunities and challenges. Students can frequently interact with LLM-powered, interactive learning tools, but their usage patterns need to be analyzed to ensure ethical usage of these tools. To better understand how students interact with LLMs in an academic setting, we introduce StudyChat, a publicly available dataset capturing real-world student interactions with an LLM-powered tutoring chatbot in a semester-long, university-level artificial intelligence (AI) course. We deploy a web application that replicates ChatGPT's core functionalities, and use it to log student interactions with the LLM while working on programming assignments. We collect 1,197 conversations, which we annotate using a dialogue act labeling schema inspired by observed interaction patterns and prior research. Additionally, we analyze these interactions, highlight behavioral trends, and analyze how specific usage patterns relate to course outcomes. StudyChat provides a rich resource for the learning sciences and AI in education communities, enabling further research into the evolving role of LLMs in education.
WebRL: Training LLM Web Agents via Self-Evolving Online Curriculum Reinforcement Learning
Large language models (LLMs) have shown remarkable potential as autonomous agents, particularly in web-based tasks. However, existing LLM web agents heavily rely on expensive proprietary LLM APIs, while open LLMs lack the necessary decision-making capabilities. This paper introduces WebRL, a self-evolving online curriculum reinforcement learning framework designed to train high-performance web agents using open LLMs. WebRL addresses three key challenges in building LLM web agents, including the scarcity of training tasks, sparse feedback signals, and policy distribution drift in online learning. Specifically, WebRL incorporates 1) a self-evolving curriculum that generates new tasks from unsuccessful attempts, 2) a robust outcome-supervised reward model (ORM), and 3) adaptive reinforcement learning strategies to ensure consistent improvements. We apply WebRL to transform open Llama-3.1 and GLM-4 models into proficient web agents. On WebArena-Lite, WebRL improves the success rate of Llama-3.1-8B from 4.8% to 42.4%, and from 6.1% to 43% for GLM-4-9B. These open models significantly surpass the performance of GPT-4-Turbo (17.6%) and GPT-4o (13.9%) and outperform previous state-of-the-art web agents trained on open LLMs (AutoWebGLM, 18.2%). Our findings demonstrate WebRL's effectiveness in bridging the gap between open and proprietary LLM-based web agents, paving the way for more accessible and powerful autonomous web interaction systems.
Progent: Programmable Privilege Control for LLM Agents
LLM agents are an emerging form of AI systems where large language models (LLMs) serve as the central component, utilizing a diverse set of tools to complete user-assigned tasks. Despite their great potential, LLM agents pose significant security risks. When interacting with the external world, they may encounter malicious commands from attackers, leading to the execution of dangerous actions. A promising way to address this is by enforcing the principle of least privilege: allowing only essential actions for task completion while blocking unnecessary ones. However, achieving this is challenging, as it requires covering diverse agent scenarios while preserving both security and utility. We introduce Progent, the first privilege control mechanism for LLM agents. At its core is a domain-specific language for flexibly expressing privilege control policies applied during agent execution. These policies provide fine-grained constraints over tool calls, deciding when tool calls are permissible and specifying fallbacks if they are not. This enables agent developers and users to craft suitable policies for their specific use cases and enforce them deterministically to guarantee security. Thanks to its modular design, integrating Progent does not alter agent internals and requires only minimal changes to agent implementation, enhancing its practicality and potential for widespread adoption. To automate policy writing, we leverage LLMs to generate policies based on user queries, which are then updated dynamically for improved security and utility. Our extensive evaluation shows that it enables strong security while preserving high utility across three distinct scenarios or benchmarks: AgentDojo, ASB, and AgentPoison. Furthermore, we perform an in-depth analysis, showcasing the effectiveness of its core components and the resilience of its automated policy generation against adaptive attacks.
SPIRAL: Self-Play on Zero-Sum Games Incentivizes Reasoning via Multi-Agent Multi-Turn Reinforcement Learning
Recent advances in reinforcement learning have shown that language models can develop sophisticated reasoning through training on tasks with verifiable rewards, but these approaches depend on human-curated problem-answer pairs and domain-specific reward engineering. We introduce SPIRAL, a self-play framework where models learn by playing multi-turn, zero-sum games against continuously improving versions of themselves, eliminating the need for human supervision. Through self-play, SPIRAL generates an infinite curriculum of progressively challenging problems as models must constantly adapt to stronger opponents. To enable this self-play training at scale, We implement a fully online, multi-turn, multi-agent reinforcement learning system for LLMs and propose role-conditioned advantage estimation (RAE) to stabilize multi-agent training. Using SPIRAL, self-play on zero-sum games produces reasoning capabilities that transfer broadly. Training Qwen3-4B-Base on Kuhn Poker alone achieves 8.6% improvement on math and 8.4% on general reasoning, outperforming SFT on 25,000 expert game trajectories. Analysis reveals that this transfer occurs through three cognitive patterns: systematic decomposition, expected value calculation, and case-by-case analysis. Multi-game training (TicTacToe, Kuhn Poker, Simple Negotiation) further enhances performance as each game develops distinct reasoning strengths. Applying SPIRAL to a strong reasoning model (DeepSeek-R1-Distill-Qwen-7B) can still lead to 2.0% average improvement. These results demonstrate that zero-sum games naturally develop transferable reasoning capabilities, highlighting a promising direction for autonomous reasoning development.
HAMLET: Hyperadaptive Agent-based Modeling for Live Embodied Theatrics
Creating an immersive and interactive theatrical experience is a long-term goal in the field of interactive narrative. The emergence of large language model (LLM) is providing a new path to achieve this goal. However, existing LLM-based drama generation methods often result in agents that lack initiative and cannot interact with the physical scene. Furthermore, these methods typically require detailed user input to drive the drama. These limitations reduce the interactivity and immersion of online real-time performance. To address the above challenges, we propose HAMLET, a multi-agent framework focused on drama creation and online performance. Given a simple topic, the framework generates a narrative blueprint, guiding the subsequent improvisational performance. During the online performance, each actor is given an autonomous mind. This means that actors can make independent decisions based on their own background, goals, and emotional state. In addition to conversations with other actors, their decisions can also change the state of scene props through actions such as opening a letter or picking up a weapon. The change is then broadcast to other related actors, updating what they know and care about, which in turn influences their next action. To evaluate the quality of drama performance generated by HAMLET, we designed an evaluation method to assess three primary aspects, including character performance, narrative quality, and interaction experience. The experimental evaluation shows that HAMLET can create expressive and coherent theatrical experiences.
Assessing and Understanding Creativity in Large Language Models
In the field of natural language processing, the rapid development of large language model (LLM) has attracted more and more attention. LLMs have shown a high level of creativity in various tasks, but the methods for assessing such creativity are inadequate. The assessment of LLM creativity needs to consider differences from humans, requiring multi-dimensional measurement while balancing accuracy and efficiency. This paper aims to establish an efficient framework for assessing the level of creativity in LLMs. By adapting the modified Torrance Tests of Creative Thinking, the research evaluates the creative performance of various LLMs across 7 tasks, emphasizing 4 criteria including Fluency, Flexibility, Originality, and Elaboration. In this context, we develop a comprehensive dataset of 700 questions for testing and an LLM-based evaluation method. In addition, this study presents a novel analysis of LLMs' responses to diverse prompts and role-play situations. We found that the creativity of LLMs primarily falls short in originality, while excelling in elaboration. Besides, the use of prompts and the role-play settings of the model significantly influence creativity. Additionally, the experimental results also indicate that collaboration among multiple LLMs can enhance originality. Notably, our findings reveal a consensus between human evaluations and LLMs regarding the personality traits that influence creativity. The findings underscore the significant impact of LLM design on creativity and bridges artificial intelligence and human creativity, offering insights into LLMs' creativity and potential applications.
LLMs vs. Chinese Anime Enthusiasts: A Comparative Study on Emotionally Supportive Role-Playing
Large Language Models (LLMs) have demonstrated impressive capabilities in role-playing conversations and providing emotional support as separate research directions. However, there remains a significant research gap in combining these capabilities to enable emotionally supportive interactions with virtual characters. To address this research gap, we focus on anime characters as a case study because of their well-defined personalities and large fan bases. This choice enables us to effectively evaluate how well LLMs can provide emotional support while maintaining specific character traits. We introduce ChatAnime, the first Emotionally Supportive Role-Playing (ESRP) dataset. We first thoughtfully select 20 top-tier characters from popular anime communities and design 60 emotion-centric real-world scenario questions. Then, we execute a nationwide selection process to identify 40 Chinese anime enthusiasts with profound knowledge of specific characters and extensive experience in role-playing. Next, we systematically collect two rounds of dialogue data from 10 LLMs and these 40 Chinese anime enthusiasts. To evaluate the ESRP performance of LLMs, we design a user experience-oriented evaluation system featuring 9 fine-grained metrics across three dimensions: basic dialogue, role-playing and emotional support, along with an overall metric for response diversity. In total, the dataset comprises 2,400 human-written and 24,000 LLM-generated answers, supported by over 132,000 human annotations. Experimental results show that top-performing LLMs surpass human fans in role-playing and emotional support, while humans still lead in response diversity. We hope this work can provide valuable resources and insights for future research on optimizing LLMs in ESRP. Our datasets are available at https://github.com/LanlanQiu/ChatAnime.
Xiangqi-R1: Enhancing Spatial Strategic Reasoning in LLMs for Chinese Chess via Reinforcement Learning
Game playing has long served as a fundamental benchmark for evaluating Artificial General Intelligence (AGI). While Large Language Models (LLMs) have demonstrated impressive capabilities in general reasoning, their effectiveness in spatial strategic reasoning, which is critical for complex and fully observable board games, remains insufficiently explored. In this work, we adopt Chinese Chess (Xiangqi) as a challenging and rich testbed due to its intricate rules and spatial complexity. To advance LLMs' strategic competence in such environments, we propose a training framework tailored to Xiangqi, built upon a large-scale dataset of five million board-move pairs enhanced with expert annotations and engine evaluations. Building on this foundation, we introduce Xiangqi-R1, a 7B-parameter model trained in multi-stage manner: (1) fine-tuning for legal move prediction to capture basic spatial rules, (2) incorporating strategic annotations to improve decision-making, and (3) applying reinforcement learning via Group Relative Policy Optimization (GRPO) with multi-dimensional reward signals to enhance reasoning stability. Our Experimental results indicate that, despite their size and power, general-purpose LLMs struggle to achieve satisfactory performance in these tasks. Compared to general-purpose LLMs, Xiangqi-R1 greatly advances with an 18% rise in move legality and a 22% boost in analysis accuracy. Our results point to a promising path for creating general strategic intelligence in spatially complex areas.
Large Language Model based Multi-Agents: A Survey of Progress and Challenges
Large Language Models (LLMs) have achieved remarkable success across a wide array of tasks. Due to the impressive planning and reasoning abilities of LLMs, they have been used as autonomous agents to do many tasks automatically. Recently, based on the development of using one LLM as a single planning or decision-making agent, LLM-based multi-agent systems have achieved considerable progress in complex problem-solving and world simulation. To provide the community with an overview of this dynamic field, we present this survey to offer an in-depth discussion on the essential aspects of multi-agent systems based on LLMs, as well as the challenges. Our goal is for readers to gain substantial insights on the following questions: What domains and environments do LLM-based multi-agents simulate? How are these agents profiled and how do they communicate? What mechanisms contribute to the growth of agents' capacities? For those interested in delving into this field of study, we also summarize the commonly used datasets or benchmarks for them to have convenient access. To keep researchers updated on the latest studies, we maintain an open-source GitHub repository, dedicated to outlining the research on LLM-based multi-agent systems.
Part I: Tricks or Traps? A Deep Dive into RL for LLM Reasoning
Reinforcement learning for LLM reasoning has rapidly emerged as a prominent research area, marked by a significant surge in related studies on both algorithmic innovations and practical applications. Despite this progress, several critical challenges remain, including the absence of standardized guidelines for employing RL techniques and a fragmented understanding of their underlying mechanisms. Additionally, inconsistent experimental settings, variations in training data, and differences in model initialization have led to conflicting conclusions, obscuring the key characteristics of these techniques and creating confusion among practitioners when selecting appropriate techniques. This paper systematically reviews widely adopted RL techniques through rigorous reproductions and isolated evaluations within a unified open-source framework. We analyze the internal mechanisms, applicable scenarios, and core principles of each technique through fine-grained experiments, including datasets of varying difficulty, model sizes, and architectures. Based on these insights, we present clear guidelines for selecting RL techniques tailored to specific setups, and provide a reliable roadmap for practitioners navigating the RL for the LLM domain. Finally, we reveal that a minimalist combination of two techniques can unlock the learning capability of critic-free policies using vanilla PPO loss. The results demonstrate that our simple combination consistently improves performance, surpassing strategies like GRPO and DAPO.
Codenames as a Benchmark for Large Language Models
In this paper, we propose the use of the popular word-based board game Codenames as a suitable benchmark for evaluating the reasoning capabilities of Large Language Models (LLMs). Codenames presents a highly interesting challenge for achieving successful AI performance, requiring both a sophisticated understanding of language, theory of mind, and epistemic reasoning capabilities. Prior attempts to develop agents for Codenames have largely relied on word embedding techniques, which have a limited vocabulary range and perform poorly when paired with differing approaches. LLMs have demonstrated enhanced reasoning and comprehension capabilities for language-based tasks, but can still suffer in lateral thinking challenges. We evaluate the capabilities of several state-of-the-art LLMs, including GPT-4o, Gemini 1.5, Claude 3.5 Sonnet, and Llama 3.1, across a variety of board setups. Our results indicate that while certain LLMs perform better than others overall, different models exhibit varying emergent behaviours during gameplay and excel at specific roles. We also evaluate the performance of different combinations of LLMs when playing cooperatively together, demonstrating that LLM agents are more generalisable to a wider range of teammates than prior techniques.
The Next Chapter: A Study of Large Language Models in Storytelling
To enhance the quality of generated stories, recent story generation models have been investigating the utilization of higher-level attributes like plots or commonsense knowledge. The application of prompt-based learning with large language models (LLMs), exemplified by GPT-3, has exhibited remarkable performance in diverse natural language processing (NLP) tasks. This paper conducts a comprehensive investigation, utilizing both automatic and human evaluation, to compare the story generation capacity of LLMs with recent models across three datasets with variations in style, register, and length of stories. The results demonstrate that LLMs generate stories of significantly higher quality compared to other story generation models. Moreover, they exhibit a level of performance that competes with human authors, albeit with the preliminary observation that they tend to replicate real stories in situations involving world knowledge, resembling a form of plagiarism.
LLM-I: LLMs are Naturally Interleaved Multimodal Creators
We propose LLM-Interleaved (LLM-I), a flexible and dynamic framework that reframes interleaved image-text generation as a tool-use problem. LLM-I is designed to overcome the "one-tool" bottleneck of current unified models, which are limited to synthetic imagery and struggle with tasks requiring factual grounding or programmatic precision. Our framework empowers a central LLM or MLLM agent to intelligently orchestrate a diverse toolkit of specialized visual tools, including online image search, diffusion-based generation, code execution, and image editing. The agent is trained to select and apply these tools proficiently via a Reinforcement Learning (RL) framework that features a hybrid reward system combining rule-based logic with judgments from LLM and MLLM evaluators. Trained on a diverse new dataset using four different model backbones, LLM-I demonstrates state-of-the-art performance, outperforming existing methods by a large margin across four benchmarks. We also introduce a novel test-time scaling strategy that provides further performance gains. Project Page: https://github.com/ByteDance-BandAI/LLM-I.
Zero-Shot Goal-Directed Dialogue via RL on Imagined Conversations
Large language models (LLMs) have emerged as powerful and general solutions to many natural language tasks. However, many of the most important applications of language generation are interactive, where an agent has to talk to a person to reach a desired outcome. For example, a teacher might try to understand their student's current comprehension level to tailor their instruction accordingly, and a travel agent might ask questions of their customer to understand their preferences in order to recommend activities they might enjoy. LLMs trained with supervised fine-tuning or "single-step" RL, as with standard RLHF, might struggle which tasks that require such goal-directed behavior, since they are not trained to optimize for overall conversational outcomes after multiple turns of interaction. In this work, we explore a new method for adapting LLMs with RL for such goal-directed dialogue. Our key insight is that, though LLMs might not effectively solve goal-directed dialogue tasks out of the box, they can provide useful data for solving such tasks by simulating suboptimal but human-like behaviors. Given a textual description of a goal-directed dialogue task, we leverage LLMs to sample diverse synthetic rollouts of hypothetical in-domain human-human interactions. Our algorithm then utilizes this dataset with offline reinforcement learning to train an interactive conversational agent that can optimize goal-directed objectives over multiple turns. In effect, the LLM produces examples of possible interactions, and RL then processes these examples to learn to perform more optimal interactions. Empirically, we show that our proposed approach achieves state-of-the-art performance in various goal-directed dialogue tasks that include teaching and preference elicitation.
Fraud-R1 : A Multi-Round Benchmark for Assessing the Robustness of LLM Against Augmented Fraud and Phishing Inducements
We introduce Fraud-R1, a benchmark designed to evaluate LLMs' ability to defend against internet fraud and phishing in dynamic, real-world scenarios. Fraud-R1 comprises 8,564 fraud cases sourced from phishing scams, fake job postings, social media, and news, categorized into 5 major fraud types. Unlike previous benchmarks, Fraud-R1 introduces a multi-round evaluation pipeline to assess LLMs' resistance to fraud at different stages, including credibility building, urgency creation, and emotional manipulation. Furthermore, we evaluate 15 LLMs under two settings: 1. Helpful-Assistant, where the LLM provides general decision-making assistance, and 2. Role-play, where the model assumes a specific persona, widely used in real-world agent-based interactions. Our evaluation reveals the significant challenges in defending against fraud and phishing inducement, especially in role-play settings and fake job postings. Additionally, we observe a substantial performance gap between Chinese and English, underscoring the need for improved multilingual fraud detection capabilities.
Introspective Tips: Large Language Model for In-Context Decision Making
The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.
Self-playing Adversarial Language Game Enhances LLM Reasoning
We explore the self-play training procedure of large language models (LLMs) in a two-player adversarial language game called Adversarial Taboo. In this game, an attacker and a defender communicate around a target word only visible to the attacker. The attacker aims to induce the defender to speak the target word unconsciously, while the defender tries to infer the target word from the attacker's utterances. To win the game, both players should have sufficient knowledge about the target word and high-level reasoning ability to infer and express in this information-reserved conversation. Hence, we are curious about whether LLMs' reasoning ability can be further enhanced by self-play in this adversarial language game (SPAG). With this goal, we select several open-source LLMs and let each act as the attacker and play with a copy of itself as the defender on an extensive range of target words. Through reinforcement learning on the game outcomes, we observe that the LLMs' performances uniformly improve on a broad range of reasoning benchmarks. Furthermore, iteratively adopting this self-play process can continuously promote LLMs' reasoning abilities. The code is at https://github.com/Linear95/SPAG.
Prompt reinforcing for long-term planning of large language models
Large language models (LLMs) have achieved remarkable success in a wide range of natural language processing tasks and can be adapted through prompting. However, they remain suboptimal in multi-turn interactions, often relying on incorrect early assumptions and failing to track user goals over time, which makes such tasks particularly challenging. Prior works in dialogue systems have shown that long-term planning is essential for handling interactive tasks. In this work, we propose a prompt optimisation framework inspired by reinforcement learning, which enables such planning to take place by only modifying the task instruction prompt of the LLM-based agent. By generating turn-by-turn feedback and leveraging experience replay for prompt rewriting, our proposed method shows significant improvement in multi-turn tasks such as text-to-SQL and task-oriented dialogue. Moreover, it generalises across different LLM-based agents and can leverage diverse LLMs as meta-prompting agents. This warrants future research in reinforcement learning-inspired parameter-free optimisation methods.
I Cast Detect Thoughts: Learning to Converse and Guide with Intents and Theory-of-Mind in Dungeons and Dragons
We propose a novel task, G4C, to study teacher-student natural language interactions in a goal-driven and grounded environment. Dungeons and Dragons (D&D), a role-playing game, provides an ideal setting to investigate such interactions. Here, the Dungeon Master (DM), i.e., the teacher, guides the actions of several players -- students, each with their own personas and abilities -- to achieve shared goals grounded in a fantasy world. Our approach is to decompose and model these interactions into (1) the DM's intent to guide players toward a given goal; (2) the DM's guidance utterance to the players expressing this intent; and (3) a theory-of-mind (ToM) model that anticipates the players' reaction to the guidance one turn into the future. We develop a novel reinforcement learning (RL) method for training a DM that generates guidance for players by rewarding utterances where the intent matches the ToM-anticipated player actions. Human and automated evaluations show that a DM trained to explicitly model intents and incorporate ToM of the players using RL generates better-quality guidance that is 3x more likely to fulfill the DM's intent than a vanilla natural language generation (NLG) approach.
EnvGen: Generating and Adapting Environments via LLMs for Training Embodied Agents
Recent SOTA approaches for embodied learning via interaction directly employ large language models (LLMs) as agents to determine the next steps in an environment. Due to their world knowledge and reasoning capabilities, LLM agents achieve stronger performance than previous smaller agents based on reinforcement learning (RL); however, frequently calling LLMs is slow and expensive. Instead of directly employing LLMs as agents, can we use LLMs' reasoning capabilities to adaptively create training environments to help smaller embodied RL agents learn useful skills that they are weak at? We propose EnvGen, a novel framework to address this question. First, we prompt an LLM to generate training environments that allow agents to quickly learn different tasks in parallel. Concretely, the LLM is given the task description and simulator objectives that the agents should learn and is then asked to generate a set of environment configurations (e.g., different terrains, items given to agents, etc.). Next, we train a small RL agent in a mixture of the original and LLM-generated environments. Then, we enable the LLM to continuously adapt the generated environments to progressively improve the skills that the agent is weak at, by providing feedback to the LLM in the form of the agent's performance. We demonstrate the usefulness of EnvGen with comprehensive experiments in Crafter and Heist environments. We find that a small RL agent trained with EnvGen can outperform SOTA methods, including a GPT-4 agent, and learns long-horizon tasks significantly faster. We show qualitatively how the LLM adapts training environments to help improve RL agents' weaker skills over time. Additionally, EnvGen is substantially more efficient as it only uses a small number of LLM calls (e.g., 4 in total), whereas LLM agents require thousands of LLM calls. Lastly, we present detailed ablation studies for our design choices.
Orca: Enhancing Role-Playing Abilities of Large Language Models by Integrating Personality Traits
Large language models has catalyzed the development of personalized dialogue systems, numerous role-playing conversational agents have emerged. While previous research predominantly focused on enhancing the model's capability to follow instructions by designing character profiles, neglecting the psychological factors that drive human conversations. In this paper, we propose Orca, a framework for data processing and training LLMs of custom characters by integrating personality traits. Orca comprises four stages: (1) Personality traits inferring, leverage LLMs to infer user's BigFive personality trait reports and scores. (2) Data Augment, simulate user's profile, background story, and psychological activities. (3) Dataset construction, personality-conditioned instruction prompting (PCIP) to stimulate LLMs. (4) Modeling and Training, personality-conditioned instruction tuning (PTIT and PSIT), using the generated data to enhance existing open-source LLMs. We introduce OrcaBench, the first benchmark for evaluating the quality of content generated by LLMs on social platforms across multiple scales. Our experiments demonstrate that our proposed model achieves superior performance on this benchmark, demonstrating its excellence and effectiveness in perceiving personality traits that significantly improve role-playing abilities. Our Code is available at https://github.com/Aipura/Orca.
Collaborating Action by Action: A Multi-agent LLM Framework for Embodied Reasoning
Collaboration is ubiquitous and essential in day-to-day life -- from exchanging ideas, to delegating tasks, to generating plans together. This work studies how LLMs can adaptively collaborate to perform complex embodied reasoning tasks. To this end we introduce MINDcraft, an easily extensible platform built to enable LLM agents to control characters in the open-world game of Minecraft; and MineCollab, a benchmark to test the different dimensions of embodied and collaborative reasoning. An experimental study finds that the primary bottleneck in collaborating effectively for current state-of-the-art agents is efficient natural language communication, with agent performance dropping as much as 15% when they are required to communicate detailed task completion plans. We conclude that existing LLM agents are ill-optimized for multi-agent collaboration, especially in embodied scenarios, and highlight the need to employ methods beyond in-context and imitation learning. Our website can be found here: https://mindcraft-minecollab.github.io/
Atari-GPT: Investigating the Capabilities of Multimodal Large Language Models as Low-Level Policies for Atari Games
Recent advancements in large language models (LLMs) have expanded their capabilities beyond traditional text-based tasks to multimodal domains, integrating visual, auditory, and textual data. While multimodal LLMs have been extensively explored for high-level planning in domains like robotics and games, their potential as low-level controllers remains largely untapped. This paper explores the application of multimodal LLMs as low-level controllers in the domain of Atari video games, introducing Atari game performance as a new benchmark for evaluating the ability of multimodal LLMs to perform low-level control tasks. Unlike traditional reinforcement learning (RL) and imitation learning (IL) methods that require extensive computational resources as well as reward function specification, these LLMs utilize pre-existing multimodal knowledge to directly engage with game environments. Our study assesses multiple multimodal LLMs performance against traditional RL agents, human players, and random agents, focusing on their ability to understand and interact with complex visual scenes and formulate strategic responses. Additionally, we examine the impact of In-Context Learning (ICL) by incorporating human-demonstrated game-play trajectories to enhance the models contextual understanding. Through this investigation, we aim to determine the extent to which multimodal LLMs can leverage their extensive training to effectively function as low-level controllers, thereby redefining potential applications in dynamic and visually complex environments. Additional results and videos are available at our project webpage: https://sites.google.com/view/atari-gpt/.
RoleCraft-GLM: Advancing Personalized Role-Playing in Large Language Models
This study presents RoleCraft-GLM, an innovative framework aimed at enhancing personalized role-playing with Large Language Models (LLMs). RoleCraft-GLM addresses the key issue of lacking personalized interactions in conversational AI, and offers a solution with detailed and emotionally nuanced character portrayals. We contribute a unique conversational dataset that shifts from conventional celebrity-centric characters to diverse, non-celebrity personas, thus enhancing the realism and complexity of language modeling interactions. Additionally, our approach includes meticulous character development, ensuring dialogues are both realistic and emotionally resonant. The effectiveness of RoleCraft-GLM is validated through various case studies, highlighting its versatility and skill in different scenarios. Our framework excels in generating dialogues that accurately reflect characters' personality traits and emotions, thereby boosting user engagement. In conclusion, RoleCraft-GLM marks a significant leap in personalized AI interactions, and paves the way for more authentic and immersive AI-assisted role-playing experiences by enabling more nuanced and emotionally rich dialogues
Out of the Cage: How Stochastic Parrots Win in Cyber Security Environments
Large Language Models (LLMs) have gained widespread popularity across diverse domains involving text generation, summarization, and various natural language processing tasks. Despite their inherent limitations, LLM-based designs have shown promising capabilities in planning and navigating open-world scenarios. This paper introduces a novel application of pre-trained LLMs as agents within cybersecurity network environments, focusing on their utility for sequential decision-making processes. We present an approach wherein pre-trained LLMs are leveraged as attacking agents in two reinforcement learning environments. Our proposed agents demonstrate similar or better performance against state-of-the-art agents trained for thousands of episodes in most scenarios and configurations. In addition, the best LLM agents perform similarly to human testers of the environment without any additional training process. This design highlights the potential of LLMs to efficiently address complex decision-making tasks within cybersecurity. Furthermore, we introduce a new network security environment named NetSecGame. The environment is designed to eventually support complex multi-agent scenarios within the network security domain. The proposed environment mimics real network attacks and is designed to be highly modular and adaptable for various scenarios.
Beyond One World: Benchmarking Super Heros in Role-Playing Across Multiversal Contexts
Large language models (LLMs) are increasingly used as role-playing agents, yet their capacity to faithfully and consistently portray version-specific characters -- for example, superheroes across comic and cinematic universes -- remains underexplored. Superhero canons such as Marvel and DC provide a rich testbed: decades of storytelling yield multiple incarnations of the same character with distinct histories, values, and moral codes. To study this problem, we introduce Beyond One World, a benchmark for character-grounded roleplay spanning 30 iconic heroes and 90 canon-specific versions. The benchmark comprises two tasks: (i) Canon Events, which probes factual recall of pivotal life stages, and (ii) Moral Dilemmas, which confronts models with ethically charged scenarios. We score responses for canonical accuracy and reasoning fidelity under a framework that separates internal deliberation ("thinking") from outward decisions ("acting"). We further propose Think-Act Matching, a metric that quantifies alignment between reasons and actions and serves as a proxy for model trustworthiness. Experiments across reasoning- and non-reasoning-oriented models yield three findings: (1) chain-of-thought prompting improves narrative coherence in weaker models but can reduce canonical accuracy in stronger ones; (2) cross-version generalization within a character remains a major obstacle; and (3) models often excel at either thinking or acting, but rarely both. Beyond One World exposes critical gaps in multiversal consistency and reasoning alignment, offering a challenging evaluation for role-playing LLMs.
LLaMA Rider: Spurring Large Language Models to Explore the Open World
Recently, various studies have leveraged Large Language Models (LLMs) to help decision-making and planning in environments, and try to align the LLMs' knowledge with the world conditions. Nonetheless, the capacity of LLMs to continuously acquire environmental knowledge and adapt in an open world remains uncertain. In this paper, we propose an approach to spur LLMs to explore the open world, gather experiences, and learn to improve their task-solving capabilities. In this approach, a multi-round feedback-revision mechanism is utilized to encourage LLMs to actively select appropriate revision actions guided by feedback information from the environment. This facilitates exploration and enhances the model's performance. Besides, we integrate sub-task relabeling to assist LLMs in maintaining consistency in sub-task planning and help the model learn the combinatorial nature between tasks, enabling it to complete a wider range of tasks through training based on the acquired exploration experiences. By evaluation in Minecraft, an open-ended sandbox world, we demonstrate that our approach LLaMA-Rider enhances the efficiency of the LLM in exploring the environment, and effectively improves the LLM's ability to accomplish more tasks through fine-tuning with merely 1.3k instances of collected data, showing minimal training costs compared to the baseline using reinforcement learning.
CGMI: Configurable General Multi-Agent Interaction Framework
Benefiting from the powerful capabilities of large language models (LLMs), agents based on LLMs have shown the potential to address domain-specific tasks and emulate human behaviors. However, the content generated by these agents remains somewhat superficial, owing to their limited domain expertise and the absence of an effective cognitive architecture. To address this, we present the Configurable General Multi-Agent Interaction (CGMI) framework, designed to replicate human interactions in real-world scenarios. Specifically, we propose a tree-structured methodology for the assignment, detection, and maintenance of agent personality. Additionally, we designed a cognitive architecture equipped with a skill library based on the ACT* model, which contains memory, reflection, and planning modules. We have also integrated general agents to augment the virtual environment's realism. Using the CGMI framework, we simulated numerous classroom interactions between teacher and students. The experiments indicate that aspects such as the teaching methodology, curriculum, and student performance closely mirror real classroom settings. We will open source our work.
Think in Games: Learning to Reason in Games via Reinforcement Learning with Large Language Models
Large language models (LLMs) excel at complex reasoning tasks such as mathematics and coding, yet they frequently struggle with simple interactive tasks that young children perform effortlessly. This discrepancy highlights a critical gap between declarative knowledge (knowing about something) and procedural knowledge (knowing how to do something). Although traditional reinforcement learning (RL) agents can acquire procedural knowledge through environmental interaction, they often operate as black boxes and require substantial training data. In contrast, LLMs possess extensive world knowledge and reasoning capabilities, but are unable to effectively convert this static knowledge into dynamic decision-making in interactive settings. To address this challenge, we propose Think in Games (TiG), a novel framework that empowers LLMs to develop procedural understanding through direct interaction with game environments, while retaining their inherent reasoning and explanatory abilities. Specifically, TiG reformulates RL-based decision-making as a language modeling task: LLMs generate language-guided policies, which are refined iteratively through online reinforcement learning based on environmental feedback. Our experimental results show that TiG successfully bridges the gap between declarative and procedural knowledge, achieving competitive performance with dramatically lower data and computational demands compared to conventional RL methods. Moreover, TiG provides step-by-step natural language explanations for its decisions, greatly improving transparency and interpretability in complex interactive tasks.
CAMEL: Communicative Agents for "Mind" Exploration of Large Scale Language Model Society
The rapid advancement of conversational and chat-based language models has led to remarkable progress in complex task-solving. However, their success heavily relies on human input to guide the conversation, which can be challenging and time-consuming. This paper explores the potential of building scalable techniques to facilitate autonomous cooperation among communicative agents and provide insight into their "cognitive" processes. To address the challenges of achieving autonomous cooperation, we propose a novel communicative agent framework named role-playing. Our approach involves using inception prompting to guide chat agents toward task completion while maintaining consistency with human intentions. We showcase how role-playing can be used to generate conversational data for studying the behaviors and capabilities of chat agents, providing a valuable resource for investigating conversational language models. Our contributions include introducing a novel communicative agent framework, offering a scalable approach for studying the cooperative behaviors and capabilities of multi-agent systems, and open-sourcing our library to support research on communicative agents and beyond. The GitHub repository of this project is made publicly available on: https://github.com/lightaime/camel.
WebEvolver: Enhancing Web Agent Self-Improvement with Coevolving World Model
Agent self-improvement, where the backbone Large Language Model (LLM) of the agent are trained on trajectories sampled autonomously based on their own policies, has emerged as a promising approach for enhancing performance. Recent advancements, particularly in web environments, face a critical limitation: their performance will reach a stagnation point during autonomous learning cycles, hindering further improvement. We argue that this stems from limited exploration of the web environment and insufficient exploitation of pre-trained web knowledge in LLMs. To improve the performance of self-improvement, we propose a novel framework that introduces a co-evolving World Model LLM. This world model predicts the next observation based on the current observation and action within the web environment. Leveraging LLMs' pretrained knowledge of abundant web content, the World Model serves dual roles: (1) as a virtual web server generating self-instructed training data to continuously refine the agent's policy, and (2) as an imagination engine during inference, enabling look-ahead simulation to guide action selection for the agent LLM. Experiments in real-world web environments (Mind2Web-Live, WebVoyager, and GAIA-web) show a 10% performance gain over existing self-evolving agents, demonstrating the efficacy and generalizability of our approach, without using any distillation from more powerful close-sourced models. Our work establishes the necessity of integrating world models into autonomous agent frameworks to unlock sustained adaptability.
PersonaLLM: Investigating the Ability of Large Language Models to Express Personality Traits
Despite the many use cases for large language models (LLMs) in creating personalized chatbots, there has been limited research on evaluating the extent to which the behaviors of personalized LLMs accurately and consistently reflect specific personality traits. We consider studying the behavior of LLM-based agents which we refer to as LLM personas and present a case study with GPT-3.5 and GPT-4 to investigate whether LLMs can generate content that aligns with their assigned personality profiles. To this end, we simulate distinct LLM personas based on the Big Five personality model, have them complete the 44-item Big Five Inventory (BFI) personality test and a story writing task, and then assess their essays with automatic and human evaluations. Results show that LLM personas' self-reported BFI scores are consistent with their designated personality types, with large effect sizes observed across five traits. Additionally, LLM personas' writings have emerging representative linguistic patterns for personality traits when compared with a human writing corpus. Furthermore, human evaluation shows that humans can perceive some personality traits with an accuracy of up to 80\%. Interestingly, the accuracy drops significantly when the annotators were informed of the AI's authorship.
SweetieChat: A Strategy-Enhanced Role-playing Framework for Diverse Scenarios Handling Emotional Support Agent
Large Language Models (LLMs) have demonstrated promising potential in providing empathetic support during interactions. However, their responses often become verbose or overly formulaic, failing to adequately address the diverse emotional support needs of real-world scenarios. To tackle this challenge, we propose an innovative strategy-enhanced role-playing framework, designed to simulate authentic emotional support conversations. Specifically, our approach unfolds in two steps: (1) Strategy-Enhanced Role-Playing Interactions, which involve three pivotal roles -- Seeker, Strategy Counselor, and Supporter -- engaging in diverse scenarios to emulate real-world interactions and promote a broader range of dialogues; and (2) Emotional Support Agent Training, achieved through fine-tuning LLMs using our specially constructed dataset. Within this framework, we develop the ServeForEmo dataset, comprising an extensive collection of 3.7K+ multi-turn dialogues and 62.8K+ utterances. We further present SweetieChat, an emotional support agent capable of handling diverse open-domain scenarios. Extensive experiments and human evaluations confirm the framework's effectiveness in enhancing emotional support, highlighting its unique ability to provide more nuanced and tailored assistance.
Language Self-Play For Data-Free Training
Large language models (LLMs) have advanced rapidly in recent years, driven by scale, abundant high-quality training data, and reinforcement learning. Yet this progress faces a fundamental bottleneck: the need for ever more data from which models can continue to learn. In this work, we propose a reinforcement learning approach that removes this dependency by enabling models to improve without additional data. Our method leverages a game-theoretic framework of self-play, where a model's capabilities are cast as performance in a competitive game and stronger policies emerge by having the model play against itself - a process we call Language Self-Play (LSP). Experiments with Llama-3.2-3B-Instruct on instruction-following benchmarks show that pretrained models can not only enhance their performance on challenging tasks through self-play alone, but can also do so more effectively than data-driven baselines.
From LLMs to LLM-based Agents for Software Engineering: A Survey of Current, Challenges and Future
With the rise of large language models (LLMs), researchers are increasingly exploring their applications in var ious vertical domains, such as software engineering. LLMs have achieved remarkable success in areas including code generation and vulnerability detection. However, they also exhibit numerous limitations and shortcomings. LLM-based agents, a novel tech nology with the potential for Artificial General Intelligence (AGI), combine LLMs as the core for decision-making and action-taking, addressing some of the inherent limitations of LLMs such as lack of autonomy and self-improvement. Despite numerous studies and surveys exploring the possibility of using LLMs in software engineering, it lacks a clear distinction between LLMs and LLM based agents. It is still in its early stage for a unified standard and benchmarking to qualify an LLM solution as an LLM-based agent in its domain. In this survey, we broadly investigate the current practice and solutions for LLMs and LLM-based agents for software engineering. In particular we summarise six key topics: requirement engineering, code generation, autonomous decision-making, software design, test generation, and software maintenance. We review and differentiate the work of LLMs and LLM-based agents from these six topics, examining their differences and similarities in tasks, benchmarks, and evaluation metrics. Finally, we discuss the models and benchmarks used, providing a comprehensive analysis of their applications and effectiveness in software engineering. We anticipate this work will shed some lights on pushing the boundaries of LLM-based agents in software engineering for future research.
ProgPrompt: Generating Situated Robot Task Plans using Large Language Models
Task planning can require defining myriad domain knowledge about the world in which a robot needs to act. To ameliorate that effort, large language models (LLMs) can be used to score potential next actions during task planning, and even generate action sequences directly, given an instruction in natural language with no additional domain information. However, such methods either require enumerating all possible next steps for scoring, or generate free-form text that may contain actions not possible on a given robot in its current context. We present a programmatic LLM prompt structure that enables plan generation functional across situated environments, robot capabilities, and tasks. Our key insight is to prompt the LLM with program-like specifications of the available actions and objects in an environment, as well as with example programs that can be executed. We make concrete recommendations about prompt structure and generation constraints through ablation experiments, demonstrate state of the art success rates in VirtualHome household tasks, and deploy our method on a physical robot arm for tabletop tasks. Website at progprompt.github.io
LLM Agents in Interaction: Measuring Personality Consistency and Linguistic Alignment in Interacting Populations of Large Language Models
While both agent interaction and personalisation are vibrant topics in research on large language models (LLMs), there has been limited focus on the effect of language interaction on the behaviour of persona-conditioned LLM agents. Such an endeavour is important to ensure that agents remain consistent to their assigned traits yet are able to engage in open, naturalistic dialogues. In our experiments, we condition GPT-3.5 on personality profiles through prompting and create a two-group population of LLM agents using a simple variability-inducing sampling algorithm. We then administer personality tests and submit the agents to a collaborative writing task, finding that different profiles exhibit different degrees of personality consistency and linguistic alignment to their conversational partners. Our study seeks to lay the groundwork for better understanding of dialogue-based interaction between LLMs and highlights the need for new approaches to crafting robust, more human-like LLM personas for interactive environments.
HeroBench: A Benchmark for Long-Horizon Planning and Structured Reasoning in Virtual Worlds
Large language models (LLMs) have shown remarkable capabilities in isolated step-by-step reasoning tasks such as mathematics and programming, but their proficiency in long-horizon planning, where solutions require extended, structured sequences of interdependent actions, remains underexplored. Existing benchmarks typically assess LLMs through abstract or low-dimensional algorithmic tasks, failing to capture the complexity of realistic planning environments. We introduce HeroBench, a novel benchmark designed specifically to evaluate long-horizon planning and structured reasoning within complex RPG-inspired virtual worlds. HeroBench provides a rigorously constructed dataset of tasks covering a wide range of difficulties, a simulated environment to execute and validate agent plans, and detailed analytical tools for evaluating model performance. Tasks challenge models to formulate strategic plans, efficiently gather resources, master necessary skills, craft equipment, and defeat adversaries, reflecting practical scenarios' layered dependencies and constraints. Our extensive evaluation of 25 state-of-the-art LLMs, spanning both open-source and proprietary models, including the GPT-5 family, reveals substantial performance disparities rarely observed in conventional reasoning benchmarks. Detailed error analysis further uncovers specific weaknesses in current models' abilities to generate robust high-level plans and reliably execute structured actions. HeroBench thus not only significantly advances the evaluation of LLM reasoning but also provides a flexible, scalable foundation for future research into advanced, autonomous planning in virtual environments.
SWEET-RL: Training Multi-Turn LLM Agents on Collaborative Reasoning Tasks
Large language model (LLM) agents need to perform multi-turn interactions in real-world tasks. However, existing multi-turn RL algorithms for optimizing LLM agents fail to perform effective credit assignment over multiple turns while leveraging the generalization capabilities of LLMs and it remains unclear how to develop such algorithms. To study this, we first introduce a new benchmark, ColBench, where an LLM agent interacts with a human collaborator over multiple turns to solve realistic tasks in backend programming and frontend design. Building on this benchmark, we propose a novel RL algorithm, SWEET-RL (RL with Step-WisE Evaluation from Training-time information), that uses a carefully designed optimization objective to train a critic model with access to additional training-time information. The critic provides step-level rewards for improving the policy model. Our experiments demonstrate that SWEET-RL achieves a 6% absolute improvement in success and win rates on ColBench compared to other state-of-the-art multi-turn RL algorithms, enabling Llama-3.1-8B to match or exceed the performance of GPT4-o in realistic collaborative content creation.
MALT: Improving Reasoning with Multi-Agent LLM Training
Enabling effective collaboration among LLMs is a crucial step toward developing autonomous systems capable of solving complex problems. While LLMs are typically used as single-model generators, where humans critique and refine their outputs, the potential for jointly-trained collaborative models remains largely unexplored. Despite promising results in multi-agent communication and debate settings, little progress has been made in training models to work together on tasks. In this paper, we present a first step toward "Multi-agent LLM training" (MALT) on reasoning problems. Our approach employs a sequential multi-agent setup with heterogeneous LLMs assigned specialized roles: a generator, verifier, and refinement model iteratively solving problems. We propose a trajectory-expansion-based synthetic data generation process and a credit assignment strategy driven by joint outcome based rewards. This enables our post-training setup to utilize both positive and negative trajectories to autonomously improve each model's specialized capabilities as part of a joint sequential system. We evaluate our approach across MATH, GSM8k, and CQA, where MALT on Llama 3.1 8B models achieves relative improvements of 14.14%, 7.12%, and 9.40% respectively over the same baseline model. This demonstrates an early advance in multi-agent cooperative capabilities for performance on mathematical and common sense reasoning questions. More generally, our work provides a concrete direction for research around multi-agent LLM training approaches.
LLMs as Method Actors: A Model for Prompt Engineering and Architecture
We introduce "Method Actors" as a mental model for guiding LLM prompt engineering and prompt architecture. Under this mental model, LLMs should be thought of as actors; prompts as scripts and cues; and LLM responses as performances. We apply this mental model to the task of improving LLM performance at playing Connections, a New York Times word puzzle game that prior research identified as a challenging benchmark for evaluating LLM reasoning. Our experiments with GPT-4o show that a "Method Actors" approach can significantly improve LLM performance over both a vanilla and "Chain of Thoughts" approach. A vanilla approach solves 27% of Connections puzzles in our dataset and a "Chain of Thoughts" approach solves 41% of puzzles, whereas our strongest "Method Actor" approach solves 86% of puzzles. We also test OpenAI's newest model designed specifically for complex reasoning tasks, o1-preview. When asked to solve a puzzle all at once, o1-preview solves 79% of Connections puzzles in our dataset, and when allowed to build puzzle solutions one guess at a time over multiple API calls, o1-preview solves 100% of the puzzles. Incorporating a "Method Actor" prompt architecture increases the percentage of puzzles that o1-preview solves perfectly from 76% to 87%.
Teaching Models to Improve on Tape
Large Language Models (LLMs) often struggle when prompted to generate content under specific constraints. However, in such cases it is often easy to check whether these constraints are satisfied or violated. Recent works have shown that LLMs can benefit from such "corrective feedback". Here we claim that this skill of LLMs can be significantly enhanced via training. We introduce an RL framework for teaching models to use such rewards, by simulating interaction sessions, and rewarding the model according to its ability to satisfy the constraints. We refer to our method as CORGI (Controlled Generation with RL for Guided Interaction), and evaluate it on a variety of controlled generation tasks using unlabeled training data. We find that CORGI consistently outperforms the baseline reinforcement learning method that does not incorporate conversational feedback. Furthermore, CORGI's interactive framework enables meta-learning, allowing the LLM to generalize better to guided interaction in new tasks. Our results clearly show that conversational optimization, when combined with reinforcement learning, significantly improves the effectiveness of LLMs in controlled generation contexts.
On the Emergence of Thinking in LLMs I: Searching for the Right Intuition
Recent AI advancements, such as OpenAI's new models, are transforming LLMs into LRMs (Large Reasoning Models) that perform reasoning during inference, taking extra time and compute for higher-quality outputs. We aim to uncover the algorithmic framework for training LRMs. Methods like self-consistency, PRM, and AlphaZero suggest reasoning as guided search. We ask: what is the simplest, most scalable way to enable search in LLMs? We propose a post-training framework called Reinforcement Learning via Self-Play (RLSP). RLSP involves three steps: (1) supervised fine-tuning with human or synthetic demonstrations of the reasoning process, (2) using an exploration reward signal to encourage diverse and efficient reasoning behaviors, and (3) RL training with an outcome verifier to ensure correctness while preventing reward hacking. Our key innovation is to decouple exploration and correctness signals during PPO training, carefully balancing them to improve performance and efficiency. Empirical studies in the math domain show that RLSP improves reasoning. On the Llama-3.1-8B-Instruct model, RLSP can boost performance by 23% in MATH-500 test set; On AIME 2024 math problems, Qwen2.5-32B-Instruct improved by 10% due to RLSP. However, a more important finding of this work is that the models trained using RLSP, even with the simplest exploration reward that encourages the model to take more intermediate steps, showed several emergent behaviors such as backtracking, exploration of ideas, and verification. These findings demonstrate that RLSP framework might be enough to enable emergence of complex reasoning abilities in LLMs when scaled. Lastly, we propose a theory as to why RLSP search strategy is more suitable for LLMs inspired by a remarkable result that says CoT provably increases computational power of LLMs, which grows as the number of steps in CoT li2024chain,merrill2023expresssive.
How Well Can LLMs Echo Us? Evaluating AI Chatbots' Role-Play Ability with ECHO
The role-play ability of Large Language Models (LLMs) has emerged as a popular research direction. However, existing studies focus on imitating well-known public figures or fictional characters, overlooking the potential for simulating ordinary individuals. Such an oversight limits the potential for advancements in digital human clones and non-player characters in video games. To bridge this gap, we introduce ECHO, an evaluative framework inspired by the Turing test. This framework engages the acquaintances of the target individuals to distinguish between human and machine-generated responses. Notably, our framework focuses on emulating average individuals rather than historical or fictional figures, presenting a unique advantage to apply the Turing Test. We evaluated three role-playing LLMs using ECHO, with GPT-3.5 and GPT-4 serving as foundational models, alongside the online application GPTs from OpenAI. Our results demonstrate that GPT-4 more effectively deceives human evaluators, and GPTs achieves a leading success rate of 48.3%. Furthermore, we investigated whether LLMs could discern between human-generated and machine-generated texts. While GPT-4 can identify differences, it could not determine which texts were human-produced. Our code and results of reproducing the role-playing LLMs are made publicly available via https://github.com/CUHK-ARISE/ECHO.
Multiverse of Greatness: Generating Story Branches with LLMs
This paper presents Dynamic Context Prompting/Programming (DCP/P), a novel framework for interacting with LLMs to generate graph-based content with a dynamic context window history. While there is an existing study utilizing LLMs to generate a visual novel game, the previous study involved a manual process of output extraction and did not provide flexibility in generating a longer, coherent story. We evaluate DCP/P against our baseline, which does not provide context history to an LLM and only relies on the initial story data. Through objective evaluation, we show that simply providing the LLM with a summary leads to a subpar story compared to additionally providing the LLM with the proper context of the story. We also provide an extensive qualitative analysis and discussion. We qualitatively examine the quality of the objectively best-performing generated game from each approach. In addition, we examine biases in word choices and word sentiment of the generated content. We find a consistent observation with previous studies that LLMs are biased towards certain words, even with a different LLM family. Finally, we provide a comprehensive discussion on opportunities for future studies.
A Survey on LLM-based Multi-Agent System: Recent Advances and New Frontiers in Application
LLM-based Multi-Agent Systems ( LLM-MAS ) have become a research hotspot since the rise of large language models (LLMs). However, with the continuous influx of new related works, the existing reviews struggle to capture them comprehensively. This paper presents a comprehensive survey of these studies. We first discuss the definition of LLM-MAS, a framework encompassing much of previous work. We provide an overview of the various applications of LLM-MAS in (i) solving complex tasks, (ii) simulating specific scenarios, and (iii) evaluating generative agents. Building on previous studies, we also highlight several challenges and propose future directions for research in this field.
Simulating Classroom Education with LLM-Empowered Agents
Large language models (LLMs) have been employed in various intelligent educational tasks to assist teaching. While preliminary explorations have focused on independent LLM-empowered agents for specific educational tasks, the potential for LLMs within a multi-agent collaborative framework to simulate a classroom with real user participation remains unexplored. In this work, we propose SimClass, a multi-agent classroom simulation framework involving user participation. We recognize representative class roles and introduce a novel class control mechanism for automatic classroom teaching, and conduct user experiments in two real-world courses. Utilizing the Flanders Interactive Analysis System and Community of Inquiry theoretical frame works from educational analysis, we demonstrate that LLMs can simulate traditional classroom interaction patterns effectively while enhancing user's experience. We also observe emergent group behaviors among agents in SimClass, where agents collaborate to create enlivening interactions in classrooms to improve user learning process. We hope this work pioneers the application of LLM-empowered multi-agent systems in virtual classroom teaching.
Can LLMs Replace Economic Choice Prediction Labs? The Case of Language-based Persuasion Games
Human choice prediction in economic contexts is crucial for applications in marketing, finance, public policy, and more. This task, however, is often constrained by the difficulties in acquiring human choice data. With most experimental economics studies focusing on simple choice settings, the AI community has explored whether LLMs can substitute for humans in these predictions and examined more complex experimental economics settings. However, a key question remains: can LLMs generate training data for human choice prediction? We explore this in language-based persuasion games, a complex economic setting involving natural language in strategic interactions. Our experiments show that models trained on LLM-generated data can effectively predict human behavior in these games and even outperform models trained on actual human data.
LLM-Coordination: Evaluating and Analyzing Multi-agent Coordination Abilities in Large Language Models
The emergent reasoning and Theory of Mind (ToM) abilities demonstrated by Large Language Models (LLMs) make them promising candidates for developing coordination agents. In this study, we introduce a new LLM-Coordination Benchmark aimed at a detailed analysis of LLMs within the context of Pure Coordination Games, where participating agents need to cooperate for the most gain. This benchmark evaluates LLMs through two distinct tasks: (1) Agentic Coordination, where LLMs act as proactive participants for cooperation in 4 pure coordination games; (2) Coordination Question Answering (QA), where LLMs are prompted to answer 198 multiple-choice questions from the 4 games for evaluation of three key reasoning abilities: Environment Comprehension, ToM Reasoning, and Joint Planning. Furthermore, to enable LLMs for multi-agent coordination, we introduce a Cognitive Architecture for Coordination (CAC) framework that can easily integrate different LLMs as plug-and-play modules for pure coordination games. Our findings indicate that LLM agents equipped with GPT-4-turbo achieve comparable performance to state-of-the-art reinforcement learning methods in games that require commonsense actions based on the environment. Besides, zero-shot coordination experiments reveal that, unlike RL methods, LLM agents are robust to new unseen partners. However, results on Coordination QA show a large room for improvement in the Theory of Mind reasoning and joint planning abilities of LLMs. The analysis also sheds light on how the ability of LLMs to understand their environment and their partner's beliefs and intentions plays a part in their ability to plan for coordination. Our code is available at https://github.com/eric-ai-lab/llm_coordination.
Zero-shot Model-based Reinforcement Learning using Large Language Models
The emerging zero-shot capabilities of Large Language Models (LLMs) have led to their applications in areas extending well beyond natural language processing tasks. In reinforcement learning, while LLMs have been extensively used in text-based environments, their integration with continuous state spaces remains understudied. In this paper, we investigate how pre-trained LLMs can be leveraged to predict in context the dynamics of continuous Markov decision processes. We identify handling multivariate data and incorporating the control signal as key challenges that limit the potential of LLMs' deployment in this setup and propose Disentangled In-Context Learning (DICL) to address them. We present proof-of-concept applications in two reinforcement learning settings: model-based policy evaluation and data-augmented off-policy reinforcement learning, supported by theoretical analysis of the proposed methods. Our experiments further demonstrate that our approach produces well-calibrated uncertainty estimates. We release the code at https://github.com/abenechehab/dicl.
Information Gain-based Policy Optimization: A Simple and Effective Approach for Multi-Turn LLM Agents
Large language model (LLM)-based agents are increasingly trained with reinforcement learning (RL) to enhance their ability to interact with external environments through tool use, particularly in search-based settings that require multi-turn reasoning and knowledge acquisition. However, existing approaches typically rely on outcome-based rewards that are only provided at the final answer. This reward sparsity becomes particularly problematic in multi-turn settings, where long trajectories exacerbate two critical issues: (i) advantage collapse, where all rollouts receive identical rewards and provide no useful learning signals, and (ii) lack of fine-grained credit assignment, where dependencies between turns are obscured, especially in long-horizon tasks. In this paper, we propose Information Gain-based Policy Optimization (IGPO), a simple yet effective RL framework that provides dense and intrinsic supervision for multi-turn agent training. IGPO models each interaction turn as an incremental process of acquiring information about the ground truth, and defines turn-level rewards as the marginal increase in the policy's probability of producing the correct answer. Unlike prior process-level reward approaches that depend on external reward models or costly Monte Carlo estimation, IGPO derives intrinsic rewards directly from the model's own belief updates. These intrinsic turn-level rewards are combined with outcome-level supervision to form dense reward trajectories. Extensive experiments on both in-domain and out-of-domain benchmarks demonstrate that IGPO consistently outperforms strong baselines in multi-turn scenarios, achieving higher accuracy and improved sample efficiency.
