- Bidirectional LSTM-CRF Models for Sequence Tagging In this paper, we propose a variety of Long Short-Term Memory (LSTM) based models for sequence tagging. These models include LSTM networks, bidirectional LSTM (BI-LSTM) networks, LSTM with a Conditional Random Field (CRF) layer (LSTM-CRF) and bidirectional LSTM with a CRF layer (BI-LSTM-CRF). Our work is the first to apply a bidirectional LSTM CRF (denoted as BI-LSTM-CRF) model to NLP benchmark sequence tagging data sets. We show that the BI-LSTM-CRF model can efficiently use both past and future input features thanks to a bidirectional LSTM component. It can also use sentence level tag information thanks to a CRF layer. The BI-LSTM-CRF model can produce state of the art (or close to) accuracy on POS, chunking and NER data sets. In addition, it is robust and has less dependence on word embedding as compared to previous observations. 3 authors · Aug 9, 2015
- Dependency-Guided LSTM-CRF for Named Entity Recognition Dependency tree structures capture long-distance and syntactic relationships between words in a sentence. The syntactic relations (e.g., nominal subject, object) can potentially infer the existence of certain named entities. In addition, the performance of a named entity recognizer could benefit from the long-distance dependencies between the words in dependency trees. In this work, we propose a simple yet effective dependency-guided LSTM-CRF model to encode the complete dependency trees and capture the above properties for the task of named entity recognition (NER). The data statistics show strong correlations between the entity types and dependency relations. We conduct extensive experiments on several standard datasets and demonstrate the effectiveness of the proposed model in improving NER and achieving state-of-the-art performance. Our analysis reveals that the significant improvements mainly result from the dependency relations and long-distance interactions provided by dependency trees. 2 authors · Sep 23, 2019
- A Morpho-Syntactically Informed LSTM-CRF Model for Named Entity Recognition We propose a morphologically informed model for named entity recognition, which is based on LSTM-CRF architecture and combines word embeddings, Bi-LSTM character embeddings, part-of-speech (POS) tags, and morphological information. While previous work has focused on learning from raw word input, using word and character embeddings only, we show that for morphologically rich languages, such as Bulgarian, access to POS information contributes more to the performance gains than the detailed morphological information. Thus, we show that named entity recognition needs only coarse-grained POS tags, but at the same time it can benefit from simultaneously using some POS information of different granularity. Our evaluation results over a standard dataset show sizable improvements over the state-of-the-art for Bulgarian NER. 4 authors · Aug 27, 2019
- Arabic Multi-Dialect Segmentation: bi-LSTM-CRF vs. SVM Arabic word segmentation is essential for a variety of NLP applications such as machine translation and information retrieval. Segmentation entails breaking words into their constituent stems, affixes and clitics. In this paper, we compare two approaches for segmenting four major Arabic dialects using only several thousand training examples for each dialect. The two approaches involve posing the problem as a ranking problem, where an SVM ranker picks the best segmentation, and as a sequence labeling problem, where a bi-LSTM RNN coupled with CRF determines where best to segment words. We are able to achieve solid segmentation results for all dialects using rather limited training data. We also show that employing Modern Standard Arabic data for domain adaptation and assuming context independence improve overall results. 7 authors · Aug 19, 2017
- An Automatic SOAP Classification System Using Weakly Supervision And Transfer Learning In this paper, we introduce a comprehensive framework for developing a machine learning-based SOAP (Subjective, Objective, Assessment, and Plan) classification system without manually SOAP annotated training data or with less manually SOAP annotated training data. The system is composed of the following two parts: 1) Data construction, 2) A neural network-based SOAP classifier, and 3) Transfer learning framework. In data construction, since a manual construction of a large size training dataset is expensive, we propose a rule-based weak labeling method utilizing the structured information of an EHR note. Then, we present a SOAP classifier composed of a pre-trained language model and bi-directional long-short term memory with conditional random field (Bi-LSTM-CRF). Finally, we propose a transfer learning framework that re-uses the trained parameters of the SOAP classifier trained with the weakly labeled dataset for datasets collected from another hospital. The proposed weakly label-based learning model successfully performed SOAP classification (89.99 F1-score) on the notes collected from the target hospital. Otherwise, in the notes collected from other hospitals and departments, the performance dramatically decreased. Meanwhile, we verified that the transfer learning framework is advantageous for inter-hospital adaptation of the model increasing the models' performance in every cases. In particular, the transfer learning approach was more efficient when the manually annotated data size was smaller. We showed that SOAP classification models trained with our weakly labeling algorithm can perform SOAP classification without manually annotated data on the EHR notes from the same hospital. The transfer learning framework helps SOAP classification model's inter-hospital migration with a minimal size of the manually annotated dataset. 3 authors · Nov 26, 2022
- FLERT: Document-Level Features for Named Entity Recognition Current state-of-the-art approaches for named entity recognition (NER) typically consider text at the sentence-level and thus do not model information that crosses sentence boundaries. However, the use of transformer-based models for NER offers natural options for capturing document-level features. In this paper, we perform a comparative evaluation of document-level features in the two standard NER architectures commonly considered in the literature, namely "fine-tuning" and "feature-based LSTM-CRF". We evaluate different hyperparameters for document-level features such as context window size and enforcing document-locality. We present experiments from which we derive recommendations for how to model document context and present new state-of-the-art scores on several CoNLL-03 benchmark datasets. Our approach is integrated into the Flair framework to facilitate reproduction of our experiments. 2 authors · Nov 13, 2020
- Investigating Bi-LSTM and CRF with POS Tag Embedding for Indonesian Named Entity Tagger Researches on Indonesian named entity (NE) tagger have been conducted since years ago. However, most did not use deep learning and instead employed traditional machine learning algorithms such as association rule, support vector machine, random forest, na\"ive bayes, etc. In those researches, word lists as gazetteers or clue words were provided to enhance the accuracy. Here, we attempt to employ deep learning in our Indonesian NE tagger. We use long short-term memory (LSTM) as the topology since it is the state-of-the-art of NE tagger. By using LSTM, we do not need a word list in order to enhance the accuracy. Basically, there are two main things that we investigate. The first is the output layer of the network: Softmax vs conditional random field (CRF). The second is the usage of part of speech (POS) tag embedding input layer. Using 8400 sentences as the training data and 97 sentences as the evaluation data, we find that using POS tag embedding as additional input improves the performance of our Indonesian NE tagger. As for the comparison between Softmax and CRF, we find that both architectures have a weakness in classifying an NE tag. 2 authors · Sep 11, 2020
- End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF State-of-the-art sequence labeling systems traditionally require large amounts of task-specific knowledge in the form of hand-crafted features and data pre-processing. In this paper, we introduce a novel neutral network architecture that benefits from both word- and character-level representations automatically, by using combination of bidirectional LSTM, CNN and CRF. Our system is truly end-to-end, requiring no feature engineering or data pre-processing, thus making it applicable to a wide range of sequence labeling tasks. We evaluate our system on two data sets for two sequence labeling tasks --- Penn Treebank WSJ corpus for part-of-speech (POS) tagging and CoNLL 2003 corpus for named entity recognition (NER). We obtain state-of-the-art performance on both the two data --- 97.55\% accuracy for POS tagging and 91.21\% F1 for NER. 2 authors · Mar 4, 2016
- Dialogue Act Sequence Labeling using Hierarchical encoder with CRF Dialogue Act recognition associate dialogue acts (i.e., semantic labels) to utterances in a conversation. The problem of associating semantic labels to utterances can be treated as a sequence labeling problem. In this work, we build a hierarchical recurrent neural network using bidirectional LSTM as a base unit and the conditional random field (CRF) as the top layer to classify each utterance into its corresponding dialogue act. The hierarchical network learns representations at multiple levels, i.e., word level, utterance level, and conversation level. The conversation level representations are input to the CRF layer, which takes into account not only all previous utterances but also their dialogue acts, thus modeling the dependency among both, labels and utterances, an important consideration of natural dialogue. We validate our approach on two different benchmark data sets, Switchboard and Meeting Recorder Dialogue Act, and show performance improvement over the state-of-the-art methods by 2.2% and 4.1% absolute points, respectively. It is worth noting that the inter-annotator agreement on Switchboard data set is 84%, and our method is able to achieve the accuracy of about 79% despite being trained on the noisy data. 5 authors · Sep 13, 2017
- Neural sequence labeling for Vietnamese POS Tagging and NER This paper presents a neural architecture for Vietnamese sequence labeling tasks including part-of-speech (POS) tagging and named entity recognition (NER). We applied the model described in lample-EtAl:2016:N16-1 that is a combination of bidirectional Long-Short Term Memory and Conditional Random Fields, which rely on two sources of information about words: character-based word representations learned from the supervised corpus and pre-trained word embeddings learned from other unannotated corpora. Experiments on benchmark datasets show that this work achieves state-of-the-art performances on both tasks - 93.52\% accuracy for POS tagging and 94.88\% F1 for NER. Our sourcecode is available at here. 3 authors · Nov 8, 2018