Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeSemantic Causality-Aware Vision-Based 3D Occupancy Prediction
Vision-based 3D semantic occupancy prediction is a critical task in 3D vision that integrates volumetric 3D reconstruction with semantic understanding. Existing methods, however, often rely on modular pipelines. These modules are typically optimized independently or use pre-configured inputs, leading to cascading errors. In this paper, we address this limitation by designing a novel causal loss that enables holistic, end-to-end supervision of the modular 2D-to-3D transformation pipeline. Grounded in the principle of 2D-to-3D semantic causality, this loss regulates the gradient flow from 3D voxel representations back to the 2D features. Consequently, it renders the entire pipeline differentiable, unifying the learning process and making previously non-trainable components fully learnable. Building on this principle, we propose the Semantic Causality-Aware 2D-to-3D Transformation, which comprises three components guided by our causal loss: Channel-Grouped Lifting for adaptive semantic mapping, Learnable Camera Offsets for enhanced robustness against camera perturbations, and Normalized Convolution for effective feature propagation. Extensive experiments demonstrate that our method achieves state-of-the-art performance on the Occ3D benchmark, demonstrating significant robustness to camera perturbations and improved 2D-to-3D semantic consistency.
Unleashing HyDRa: Hybrid Fusion, Depth Consistency and Radar for Unified 3D Perception
Low-cost, vision-centric 3D perception systems for autonomous driving have made significant progress in recent years, narrowing the gap to expensive LiDAR-based methods. The primary challenge in becoming a fully reliable alternative lies in robust depth prediction capabilities, as camera-based systems struggle with long detection ranges and adverse lighting and weather conditions. In this work, we introduce HyDRa, a novel camera-radar fusion architecture for diverse 3D perception tasks. Building upon the principles of dense BEV (Bird's Eye View)-based architectures, HyDRa introduces a hybrid fusion approach to combine the strengths of complementary camera and radar features in two distinct representation spaces. Our Height Association Transformer module leverages radar features already in the perspective view to produce more robust and accurate depth predictions. In the BEV, we refine the initial sparse representation by a Radar-weighted Depth Consistency. HyDRa achieves a new state-of-the-art for camera-radar fusion of 64.2 NDS (+1.8) and 58.4 AMOTA (+1.5) on the public nuScenes dataset. Moreover, our new semantically rich and spatially accurate BEV features can be directly converted into a powerful occupancy representation, beating all previous camera-based methods on the Occ3D benchmark by an impressive 3.7 mIoU. Code and models are available at https://github.com/phi-wol/hydra.
PanoOcc: Unified Occupancy Representation for Camera-based 3D Panoptic Segmentation
Comprehensive modeling of the surrounding 3D world is key to the success of autonomous driving. However, existing perception tasks like object detection, road structure segmentation, depth & elevation estimation, and open-set object localization each only focus on a small facet of the holistic 3D scene understanding task. This divide-and-conquer strategy simplifies the algorithm development procedure at the cost of losing an end-to-end unified solution to the problem. In this work, we address this limitation by studying camera-based 3D panoptic segmentation, aiming to achieve a unified occupancy representation for camera-only 3D scene understanding. To achieve this, we introduce a novel method called PanoOcc, which utilizes voxel queries to aggregate spatiotemporal information from multi-frame and multi-view images in a coarse-to-fine scheme, integrating feature learning and scene representation into a unified occupancy representation. We have conducted extensive ablation studies to verify the effectiveness and efficiency of the proposed method. Our approach achieves new state-of-the-art results for camera-based semantic segmentation and panoptic segmentation on the nuScenes dataset. Furthermore, our method can be easily extended to dense occupancy prediction and has shown promising performance on the Occ3D benchmark. The code will be released at https://github.com/Robertwyq/PanoOcc.
Deep Height Decoupling for Precise Vision-based 3D Occupancy Prediction
The task of vision-based 3D occupancy prediction aims to reconstruct 3D geometry and estimate its semantic classes from 2D color images, where the 2D-to-3D view transformation is an indispensable step. Most previous methods conduct forward projection, such as BEVPooling and VoxelPooling, both of which map the 2D image features into 3D grids. However, the current grid representing features within a certain height range usually introduces many confusing features that belong to other height ranges. To address this challenge, we present Deep Height Decoupling (DHD), a novel framework that incorporates explicit height prior to filter out the confusing features. Specifically, DHD first predicts height maps via explicit supervision. Based on the height distribution statistics, DHD designs Mask Guided Height Sampling (MGHS) to adaptively decouple the height map into multiple binary masks. MGHS projects the 2D image features into multiple subspaces, where each grid contains features within reasonable height ranges. Finally, a Synergistic Feature Aggregation (SFA) module is deployed to enhance the feature representation through channel and spatial affinities, enabling further occupancy refinement. On the popular Occ3D-nuScenes benchmark, our method achieves state-of-the-art performance even with minimal input frames. Source code is released at https://github.com/yanzq95/DHD.
ProtoOcc: Accurate, Efficient 3D Occupancy Prediction Using Dual Branch Encoder-Prototype Query Decoder
In this paper, we introduce ProtoOcc, a novel 3D occupancy prediction model designed to predict the occupancy states and semantic classes of 3D voxels through a deep semantic understanding of scenes. ProtoOcc consists of two main components: the Dual Branch Encoder (DBE) and the Prototype Query Decoder (PQD). The DBE produces a new 3D voxel representation by combining 3D voxel and BEV representations across multiple scales through a dual branch structure. This design enhances both performance and computational efficiency by providing a large receptive field for the BEV representation while maintaining a smaller receptive field for the voxel representation. The PQD introduces Prototype Queries to accelerate the decoding process. Scene-Adaptive Prototypes are derived from the 3D voxel features of input sample, while Scene-Agnostic Prototypes are computed by applying Scene-Adaptive Prototypes to an Exponential Moving Average during the training phase. By using these prototype-based queries for decoding, we can directly predict 3D occupancy in a single step, eliminating the need for iterative Transformer decoding. Additionally, we propose the Robust Prototype Learning, which injects noise into prototype generation process and trains the model to denoise during the training phase. ProtoOcc achieves state-of-the-art performance with 45.02% mIoU on the Occ3D-nuScenes benchmark. For single-frame method, it reaches 39.56% mIoU with an inference speed of 12.83 FPS on an NVIDIA RTX 3090. Our code can be found at https://github.com/SPA-junghokim/ProtoOcc.
GaussRender: Learning 3D Occupancy with Gaussian Rendering
Understanding the 3D geometry and semantics of driving scenes is critical for safe autonomous driving. Recent advances in 3D occupancy prediction have improved scene representation but often suffer from spatial inconsistencies, leading to floating artifacts and poor surface localization. Existing voxel-wise losses (e.g., cross-entropy) fail to enforce geometric coherence. In this paper, we propose GaussRender, a module that improves 3D occupancy learning by enforcing projective consistency. Our key idea is to project both predicted and ground-truth 3D occupancy into 2D camera views, where we apply supervision. Our method penalizes 3D configurations that produce inconsistent 2D projections, thereby enforcing a more coherent 3D structure. To achieve this efficiently, we leverage differentiable rendering with Gaussian splatting. GaussRender seamlessly integrates with existing architectures while maintaining efficiency and requiring no inference-time modifications. Extensive evaluations on multiple benchmarks (SurroundOcc-nuScenes, Occ3D-nuScenes, SSCBench-KITTI360) demonstrate that GaussRender significantly improves geometric fidelity across various 3D occupancy models (TPVFormer, SurroundOcc, Symphonies), achieving state-of-the-art results, particularly on surface-sensitive metrics. The code is open-sourced at https://github.com/valeoai/GaussRender.
Omni3D: A Large Benchmark and Model for 3D Object Detection in the Wild
Recognizing scenes and objects in 3D from a single image is a longstanding goal of computer vision with applications in robotics and AR/VR. For 2D recognition, large datasets and scalable solutions have led to unprecedented advances. In 3D, existing benchmarks are small in size and approaches specialize in few object categories and specific domains, e.g. urban driving scenes. Motivated by the success of 2D recognition, we revisit the task of 3D object detection by introducing a large benchmark, called Omni3D. Omni3D re-purposes and combines existing datasets resulting in 234k images annotated with more than 3 million instances and 97 categories.3D detection at such scale is challenging due to variations in camera intrinsics and the rich diversity of scene and object types. We propose a model, called Cube R-CNN, designed to generalize across camera and scene types with a unified approach. We show that Cube R-CNN outperforms prior works on the larger Omni3D and existing benchmarks. Finally, we prove that Omni3D is a powerful dataset for 3D object recognition, show that it improves single-dataset performance and can accelerate learning on new smaller datasets via pre-training.
OmniObject3D: Large-Vocabulary 3D Object Dataset for Realistic Perception, Reconstruction and Generation
Recent advances in modeling 3D objects mostly rely on synthetic datasets due to the lack of large-scale realscanned 3D databases. To facilitate the development of 3D perception, reconstruction, and generation in the real world, we propose OmniObject3D, a large vocabulary 3D object dataset with massive high-quality real-scanned 3D objects. OmniObject3D has several appealing properties: 1) Large Vocabulary: It comprises 6,000 scanned objects in 190 daily categories, sharing common classes with popular 2D datasets (e.g., ImageNet and LVIS), benefiting the pursuit of generalizable 3D representations. 2) Rich Annotations: Each 3D object is captured with both 2D and 3D sensors, providing textured meshes, point clouds, multiview rendered images, and multiple real-captured videos. 3) Realistic Scans: The professional scanners support highquality object scans with precise shapes and realistic appearances. With the vast exploration space offered by OmniObject3D, we carefully set up four evaluation tracks: a) robust 3D perception, b) novel-view synthesis, c) neural surface reconstruction, and d) 3D object generation. Extensive studies are performed on these four benchmarks, revealing new observations, challenges, and opportunities for future research in realistic 3D vision.
CodeElo: Benchmarking Competition-level Code Generation of LLMs with Human-comparable Elo Ratings
With the increasing code reasoning capabilities of existing large language models (LLMs) and breakthroughs in reasoning models like OpenAI o1 and o3, there is a growing need to develop more challenging and comprehensive benchmarks that effectively test their sophisticated competition-level coding abilities. Existing benchmarks, like LiveCodeBench and USACO, fall short due to the unavailability of private test cases, lack of support for special judges, and misaligned execution environments. To bridge this gap, we introduce CodeElo, a standardized competition-level code generation benchmark that effectively addresses all these challenges for the first time. CodeElo benchmark is mainly based on the official CodeForces platform and tries to align with the platform as much as possible. We compile the recent six months of contest problems on CodeForces with detailed information such as contest divisions, problem difficulty ratings, and problem algorithm tags. We introduce a unique judging method in which problems are submitted directly to the platform and develop a reliable Elo rating calculation system that aligns with the platform and is comparable with human participants but has lower variance. By testing on our CodeElo, we provide the Elo ratings of 30 existing popular open-source and 3 proprietary LLMs for the first time. The results show that o1-mini and QwQ-32B-Preview stand out significantly, achieving Elo ratings of 1578 and 1261, respectively, while other models struggle even with the easiest problems, placing in the lowest 20 percent among all human participants. Detailed analysis experiments are also conducted to provide insights into performance across algorithms and comparisons between using C++ and Python, which can suggest directions for future studies.
GSOT3D: Towards Generic 3D Single Object Tracking in the Wild
In this paper, we present a novel benchmark, GSOT3D, that aims at facilitating development of generic 3D single object tracking (SOT) in the wild. Specifically, GSOT3D offers 620 sequences with 123K frames, and covers a wide selection of 54 object categories. Each sequence is offered with multiple modalities, including the point cloud (PC), RGB image, and depth. This allows GSOT3D to support various 3D tracking tasks, such as single-modal 3D SOT on PC and multi-modal 3D SOT on RGB-PC or RGB-D, and thus greatly broadens research directions for 3D object tracking. To provide highquality per-frame 3D annotations, all sequences are labeled manually with multiple rounds of meticulous inspection and refinement. To our best knowledge, GSOT3D is the largest benchmark dedicated to various generic 3D object tracking tasks. To understand how existing 3D trackers perform and to provide comparisons for future research on GSOT3D, we assess eight representative point cloud-based tracking models. Our evaluation results exhibit that these models heavily degrade on GSOT3D, and more efforts are required for robust and generic 3D object tracking. Besides, to encourage future research, we present a simple yet effective generic 3D tracker, named PROT3D, that localizes the target object via a progressive spatial-temporal network and outperforms all current solutions by a large margin. By releasing GSOT3D, we expect to advance further 3D tracking in future research and applications. Our benchmark and model as well as the evaluation results will be publicly released at our webpage https://github.com/ailovejinx/GSOT3D.
OmniNOCS: A unified NOCS dataset and model for 3D lifting of 2D objects
We propose OmniNOCS, a large-scale monocular dataset with 3D Normalized Object Coordinate Space (NOCS) maps, object masks, and 3D bounding box annotations for indoor and outdoor scenes. OmniNOCS has 20 times more object classes and 200 times more instances than existing NOCS datasets (NOCS-Real275, Wild6D). We use OmniNOCS to train a novel, transformer-based monocular NOCS prediction model (NOCSformer) that can predict accurate NOCS, instance masks and poses from 2D object detections across diverse classes. It is the first NOCS model that can generalize to a broad range of classes when prompted with 2D boxes. We evaluate our model on the task of 3D oriented bounding box prediction, where it achieves comparable results to state-of-the-art 3D detection methods such as Cube R-CNN. Unlike other 3D detection methods, our model also provides detailed and accurate 3D object shape and segmentation. We propose a novel benchmark for the task of NOCS prediction based on OmniNOCS, which we hope will serve as a useful baseline for future work in this area. Our dataset and code will be at the project website: https://omninocs.github.io.
TARGO: Benchmarking Target-driven Object Grasping under Occlusions
Recent advances in predicting 6D grasp poses from a single depth image have led to promising performance in robotic grasping. However, previous grasping models face challenges in cluttered environments where nearby objects impact the target object's grasp. In this paper, we first establish a new benchmark dataset for TARget-driven Grasping under Occlusions, named TARGO. We make the following contributions: 1) We are the first to study the occlusion level of grasping. 2) We set up an evaluation benchmark consisting of large-scale synthetic data and part of real-world data, and we evaluated five grasp models and found that even the current SOTA model suffers when the occlusion level increases, leaving grasping under occlusion still a challenge. 3) We also generate a large-scale training dataset via a scalable pipeline, which can be used to boost the performance of grasping under occlusion and generalized to the real world. 4) We further propose a transformer-based grasping model involving a shape completion module, termed TARGO-Net, which performs most robustly as occlusion increases. Our benchmark dataset can be found at https://TARGO-benchmark.github.io/.
Complex-Edit: CoT-Like Instruction Generation for Complexity-Controllable Image Editing Benchmark
We introduce Complex-Edit, a comprehensive benchmark designed to systematically evaluate instruction-based image editing models across instructions of varying complexity. To develop this benchmark, we harness GPT-4o to automatically collect a diverse set of editing instructions at scale. Our approach follows a well-structured ``Chain-of-Edit'' pipeline: we first generate individual atomic editing tasks independently and then integrate them to form cohesive, complex instructions. Additionally, we introduce a suite of metrics to assess various aspects of editing performance, along with a VLM-based auto-evaluation pipeline that supports large-scale assessments. Our benchmark yields several notable insights: 1) Open-source models significantly underperform relative to proprietary, closed-source models, with the performance gap widening as instruction complexity increases; 2) Increased instructional complexity primarily impairs the models' ability to retain key elements from the input images and to preserve the overall aesthetic quality; 3) Decomposing a complex instruction into a sequence of atomic steps, executed in a step-by-step manner, substantially degrades performance across multiple metrics; 4) A straightforward Best-of-N selection strategy improves results for both direct editing and the step-by-step sequential approach; and 5) We observe a ``curse of synthetic data'': when synthetic data is involved in model training, the edited images from such models tend to appear increasingly synthetic as the complexity of the editing instructions rises -- a phenomenon that intriguingly also manifests in the latest GPT-4o outputs.
OJBench: A Competition Level Code Benchmark For Large Language Models
Recent advancements in large language models (LLMs) have demonstrated significant progress in math and code reasoning capabilities. However, existing code benchmark are limited in their ability to evaluate the full spectrum of these capabilities, particularly at the competitive level. To bridge this gap, we introduce OJBench, a novel and challenging benchmark designed to assess the competitive-level code reasoning abilities of LLMs. OJBench comprises 232 programming competition problems from NOI and ICPC, providing a more rigorous test of models' reasoning skills. We conducted a comprehensive evaluation using OJBench on 37 models, including both closed-source and open-source models, reasoning-oriented and non-reasoning-oriented models. Our results indicate that even state-of-the-art reasoning-oriented models, such as o4-mini and Gemini-2.5-pro-exp, struggle with highly challenging competition-level problems. This highlights the significant challenges that models face in competitive-level code reasoning.
OIBench: Benchmarking Strong Reasoning Models with Olympiad in Informatics
As models become increasingly sophisticated, conventional algorithm benchmarks are increasingly saturated, underscoring the need for more challenging benchmarks to guide future improvements in algorithmic reasoning. This paper introduces OIBench, a high-quality, private, and challenging olympiad-level informatics dataset comprising 250 carefully curated original problems. We detail the construction methodology of the benchmark, ensuring a comprehensive assessment across various programming paradigms and complexities, and we demonstrate its contamination-resistant properties via experiments. We propose Time/Space Completion Curves for finer-grained efficiency analysis and enable direct human-model comparisons through high-level participant evaluations. Our experiments reveal that while open-source models lag behind closed-source counterparts, current SOTA models already outperform most human participants in both correctness and efficiency, while still being suboptimal compared to the canonical solutions. By releasing OIBench as a fully open-source resource (https://huggingface.co/datasets/AGI-Eval/OIBench), we hope this benchmark will contribute to advancing code reasoning capabilities for future LLMs.
WorldScore: A Unified Evaluation Benchmark for World Generation
We introduce the WorldScore benchmark, the first unified benchmark for world generation. We decompose world generation into a sequence of next-scene generation tasks with explicit camera trajectory-based layout specifications, enabling unified evaluation of diverse approaches from 3D and 4D scene generation to video generation models. The WorldScore benchmark encompasses a curated dataset of 3,000 test examples that span diverse worlds: static and dynamic, indoor and outdoor, photorealistic and stylized. The WorldScore metrics evaluate generated worlds through three key aspects: controllability, quality, and dynamics. Through extensive evaluation of 19 representative models, including both open-source and closed-source ones, we reveal key insights and challenges for each category of models. Our dataset, evaluation code, and leaderboard can be found at https://haoyi-duan.github.io/WorldScore/
A Multi-Language Object-Oriented Programming Benchmark for Large Language Models
Establishing fair and robust benchmarks is essential for evaluating intelligent code generation by large language models (LLMs). Our survey of 35 existing benchmarks uncovers three major imbalances: 85.7% focus on a single programming language; 94.3% target only function-level or statement-level tasks; and over 80% include fewer than ten test cases on average. To address these gaps, we propose MultiOOP, a multi-language object-oriented programming benchmark covering six popular languages (Python, PHP, C++, C#, Java, JavaScript) with 267 tasks per language. We design a translator that extends an existing single-language OOP benchmark and the pass@o metric to a multilingual setting. Moreover, we propose an automated framework for augmenting test cases to ensure the reliability of the evaluation results. We evaluate 14 mainstream LLMs under zero-shot prompting and report three key findings: 1) Substantial performance degradation: pass@1 scores on MultiOOP drop by up to 65.6 percentage points compared to function-level tasks (e.g., HumanEval). 2) Cross-language variability: GPT-4o mini achieves pass@1 of 48.06% in Python but only 0.12%-15.26% in other languages, indicating limited multilingual generalization. 3) Conceptual gaps: pass@o scores are consistently 1.1-19.2 points lower than pass@k, demonstrating that LLMs often generate executable code without fully capturing core OOP concepts. Our benchmark, metric extensions, and evaluation scripts will be publicly released to foster a more balanced and comprehensive assessment of LLMs in object-oriented code generation. Our code and data will be released at https://github.com/alphadl/OOP-eval and https://huggingface.co/datasets/codeai-dteam/MultiOOP respectively.
Stable-Sim2Real: Exploring Simulation of Real-Captured 3D Data with Two-Stage Depth Diffusion
3D data simulation aims to bridge the gap between simulated and real-captured 3D data, which is a fundamental problem for real-world 3D visual tasks. Most 3D data simulation methods inject predefined physical priors but struggle to capture the full complexity of real data. An optimal approach involves learning an implicit mapping from synthetic to realistic data in a data-driven manner, but progress in this solution has met stagnation in recent studies. This work explores a new solution path of data-driven 3D simulation, called Stable-Sim2Real, based on a novel two-stage depth diffusion model. The initial stage finetunes Stable-Diffusion to generate the residual between the real and synthetic paired depth, producing a stable but coarse depth, where some local regions may deviate from realistic patterns. To enhance this, both the synthetic and initial output depth are fed into a second-stage diffusion, where diffusion loss is adjusted to prioritize these distinct areas identified by a 3D discriminator. We provide a new benchmark scheme to evaluate 3D data simulation methods. Extensive experiments show that training the network with the 3D simulated data derived from our method significantly enhances performance in real-world 3D visual tasks. Moreover, the evaluation demonstrates the high similarity between our 3D simulated data and real-captured patterns. Project page: https://mutianxu.github.io/stable-sim2real/.
Benchmarking and Learning Multi-Dimensional Quality Evaluator for Text-to-3D Generation
Text-to-3D generation has achieved remarkable progress in recent years, yet evaluating these methods remains challenging for two reasons: i) Existing benchmarks lack fine-grained evaluation on different prompt categories and evaluation dimensions. ii) Previous evaluation metrics only focus on a single aspect (e.g., text-3D alignment) and fail to perform multi-dimensional quality assessment. To address these problems, we first propose a comprehensive benchmark named MATE-3D. The benchmark contains eight well-designed prompt categories that cover single and multiple object generation, resulting in 1,280 generated textured meshes. We have conducted a large-scale subjective experiment from four different evaluation dimensions and collected 107,520 annotations, followed by detailed analyses of the results. Based on MATE-3D, we propose a novel quality evaluator named HyperScore. Utilizing hypernetwork to generate specified mapping functions for each evaluation dimension, our metric can effectively perform multi-dimensional quality assessment. HyperScore presents superior performance over existing metrics on MATE-3D, making it a promising metric for assessing and improving text-to-3D generation. The project is available at https://mate-3d.github.io/.
A Case Study of Web App Coding with OpenAI Reasoning Models
This paper presents a case study of coding tasks by the latest reasoning models of OpenAI, i.e. o1-preview and o1-mini, in comparison with other frontier models. The o1 models deliver SOTA results for WebApp1K, a single-task benchmark. To this end, we introduce WebApp1K-Duo, a harder benchmark doubling number of tasks and test cases. The new benchmark causes the o1 model performances to decline significantly, falling behind Claude 3.5. Moreover, they consistently fail when confronted with atypical yet correct test cases, a trap non-reasoning models occasionally avoid. We hypothesize that the performance variability is due to instruction comprehension. Specifically, the reasoning mechanism boosts performance when all expectations are captured, meanwhile exacerbates errors when key expectations are missed, potentially impacted by input lengths. As such, we argue that the coding success of reasoning models hinges on the top-notch base model and SFT to ensure meticulous adherence to instructions.
VOccl3D: A Video Benchmark Dataset for 3D Human Pose and Shape Estimation under real Occlusions
Human pose and shape (HPS) estimation methods have been extensively studied, with many demonstrating high zero-shot performance on in-the-wild images and videos. However, these methods often struggle in challenging scenarios involving complex human poses or significant occlusions. Although some studies address 3D human pose estimation under occlusion, they typically evaluate performance on datasets that lack realistic or substantial occlusions, e.g., most existing datasets introduce occlusions with random patches over the human or clipart-style overlays, which may not reflect real-world challenges. To bridge this gap in realistic occlusion datasets, we introduce a novel benchmark dataset, VOccl3D, a Video-based human Occlusion dataset with 3D body pose and shape annotations. Inspired by works such as AGORA and BEDLAM, we constructed this dataset using advanced computer graphics rendering techniques, incorporating diverse real-world occlusion scenarios, clothing textures, and human motions. Additionally, we fine-tuned recent HPS methods, CLIFF and BEDLAM-CLIFF, on our dataset, demonstrating significant qualitative and quantitative improvements across multiple public datasets, as well as on the test split of our dataset, while comparing its performance with other state-of-the-art methods. Furthermore, we leveraged our dataset to enhance human detection performance under occlusion by fine-tuning an existing object detector, YOLO11, thus leading to a robust end-to-end HPS estimation system under occlusions. Overall, this dataset serves as a valuable resource for future research aimed at benchmarking methods designed to handle occlusions, offering a more realistic alternative to existing occlusion datasets. See the Project page for code and dataset:https://yashgarg98.github.io/VOccl3D-dataset/
Step1X-3D: Towards High-Fidelity and Controllable Generation of Textured 3D Assets
While generative artificial intelligence has advanced significantly across text, image, audio, and video domains, 3D generation remains comparatively underdeveloped due to fundamental challenges such as data scarcity, algorithmic limitations, and ecosystem fragmentation. To this end, we present Step1X-3D, an open framework addressing these challenges through: (1) a rigorous data curation pipeline processing >5M assets to create a 2M high-quality dataset with standardized geometric and textural properties; (2) a two-stage 3D-native architecture combining a hybrid VAE-DiT geometry generator with an diffusion-based texture synthesis module; and (3) the full open-source release of models, training code, and adaptation modules. For geometry generation, the hybrid VAE-DiT component produces TSDF representations by employing perceiver-based latent encoding with sharp edge sampling for detail preservation. The diffusion-based texture synthesis module then ensures cross-view consistency through geometric conditioning and latent-space synchronization. Benchmark results demonstrate state-of-the-art performance that exceeds existing open-source methods, while also achieving competitive quality with proprietary solutions. Notably, the framework uniquely bridges the 2D and 3D generation paradigms by supporting direct transfer of 2D control techniques~(e.g., LoRA) to 3D synthesis. By simultaneously advancing data quality, algorithmic fidelity, and reproducibility, Step1X-3D aims to establish new standards for open research in controllable 3D asset generation.
Open World Object Detection in the Era of Foundation Models
Object detection is integral to a bevy of real-world applications, from robotics to medical image analysis. To be used reliably in such applications, models must be capable of handling unexpected - or novel - objects. The open world object detection (OWD) paradigm addresses this challenge by enabling models to detect unknown objects and learn discovered ones incrementally. However, OWD method development is hindered due to the stringent benchmark and task definitions. These definitions effectively prohibit foundation models. Here, we aim to relax these definitions and investigate the utilization of pre-trained foundation models in OWD. First, we show that existing benchmarks are insufficient in evaluating methods that utilize foundation models, as even naive integration methods nearly saturate these benchmarks. This result motivated us to curate a new and challenging benchmark for these models. Therefore, we introduce a new benchmark that includes five real-world application-driven datasets, including challenging domains such as aerial and surgical images, and establish baselines. We exploit the inherent connection between classes in application-driven datasets and introduce a novel method, Foundation Object detection Model for the Open world, or FOMO, which identifies unknown objects based on their shared attributes with the base known objects. FOMO has ~3x unknown object mAP compared to baselines on our benchmark. However, our results indicate a significant place for improvement - suggesting a great research opportunity in further scaling object detection methods to real-world domains. Our code and benchmark are available at https://orrzohar.github.io/projects/fomo/.
OCRBench v2: An Improved Benchmark for Evaluating Large Multimodal Models on Visual Text Localization and Reasoning
Scoring the Optical Character Recognition (OCR) capabilities of Large Multimodal Models (LMMs) has witnessed growing interest recently. Existing benchmarks have highlighted the impressive performance of LMMs in text recognition; however, their abilities on certain challenging tasks, such as text localization, handwritten content extraction, and logical reasoning, remain underexplored. To bridge this gap, we introduce OCRBench v2, a large-scale bilingual text-centric benchmark with currently the most comprehensive set of tasks (4x more tasks than the previous multi-scene benchmark OCRBench), the widest coverage of scenarios (31 diverse scenarios including street scene, receipt, formula, diagram, and so on), and thorough evaluation metrics, with a total of 10,000 human-verified question-answering pairs and a high proportion of difficult samples. After carefully benchmarking state-of-the-art LMMs on OCRBench v2, we find that 20 out of 22 LMMs score below 50 (100 in total) and suffer from five-type limitations, including less frequently encountered text recognition, fine-grained perception, layout perception, complex element parsing, and logical reasoning. The benchmark and evaluation scripts are available at https://github.com/Yuliang-liu/MultimodalOCR.
OOP: Object-Oriented Programming Evaluation Benchmark for Large Language Models
Advancing automated programming necessitates robust and comprehensive code generation benchmarks, yet current evaluation frameworks largely neglect object-oriented programming (OOP) in favor of functional programming (FP), e.g., HumanEval and MBPP. To address this, our study introduces a pioneering OOP-focused benchmark, featuring 431 Python programs that encompass essential OOP concepts and features like classes and encapsulation methods. We propose a novel evaluation metric, pass@o, tailored for OOP, enhancing traditional pass@k measures. Our evaluation of 23 leading large language models (LLMs), including both general and code-specialized models, reveals three key insights: 1) pass@o offers a more relevant and comprehensive assessment for OOP code generation; 2) Despite excelling in FP, code-specialized LLMs like WizardCoder lag in OOP compared to models like ChatGPT; 3) The poor performance of all advanced LLMs on our OOP benchmark highlights a critical need for improvements in this field. Our benchmark and scripts are publicly released at: https://github.com/alphadl/OOP-eval.
BARS-CTR: Open Benchmarking for Click-Through Rate Prediction
Click-through rate (CTR) prediction is a critical task for many applications, as its accuracy has a direct impact on user experience and platform revenue. In recent years, CTR prediction has been widely studied in both academia and industry, resulting in a wide variety of CTR prediction models. Unfortunately, there is still a lack of standardized benchmarks and uniform evaluation protocols for CTR prediction research. This leads to non-reproducible or even inconsistent experimental results among existing studies, which largely limits the practical value and potential impact of their research. In this work, we aim to perform open benchmarking for CTR prediction and present a rigorous comparison of different models in a reproducible manner. To this end, we ran over 7,000 experiments for more than 12,000 GPU hours in total to re-evaluate 24 existing models on multiple datasets and settings. Surprisingly, our experiments show that with sufficient hyper-parameter search and model tuning, many deep models have smaller differences than expected. The results also reveal that making real progress on the modeling of CTR prediction is indeed a very challenging research task. We believe that our benchmarking work could not only allow researchers to gauge the effectiveness of new models conveniently but also make them fairly compare with the state of the arts. We have publicly released the benchmarking code, evaluation protocols, and hyper-parameter settings of our work to promote reproducible research in this field.
From Charts to Code: A Hierarchical Benchmark for Multimodal Models
We introduce Chart2Code, a new benchmark for evaluating the chart understanding and code generation capabilities of large multimodal models (LMMs). Chart2Code is explicitly designed from a user-driven perspective, capturing diverse real-world scenarios and progressively increasing task difficulty. It consists of three levels: Level 1 (Chart Reproduction) reproduces charts from a reference figure and user query; Level 2 (Chart Editing) involves complex modifications such as changing chart types or adding elements; and Level 3 (Long-Table to Chart Generation) requires models to transform long, information-dense tables into faithful charts following user instructions. To our knowledge, this is the first hierarchical benchmark that reflects practical chart2code usage while systematically scaling task complexity. In total, Chart2Code contains 2,023 tasks across 22 chart types, paired with multi-level evaluation metrics that assess both code correctness and the visual fidelity of rendered charts. We benchmark 25 state-of-the-art (SoTA) LMMs, including both proprietary and the latest open-source models such as GPT-5, Qwen2.5-VL, InternVL3/3.5, MiMo-VL, and Seed-1.6-VL. Experimental results demonstrate that even the SoTA model GPT-5 averages only 0.57 on code-based evaluation and 0.22 on chart-quality assessment across the editing tasks, underscoring the difficulty of Chart2Code. We anticipate this benchmark will drive advances in multimodal reasoning and foster the development of more robust and general-purpose LMMs. Our code and data are available on Chart2Code.
OVO-Bench: How Far is Your Video-LLMs from Real-World Online Video Understanding?
Temporal Awareness, the ability to reason dynamically based on the timestamp when a question is raised, is the key distinction between offline and online video LLMs. Unlike offline models, which rely on complete videos for static, post hoc analysis, online models process video streams incrementally and dynamically adapt their responses based on the timestamp at which the question is posed. Despite its significance, temporal awareness has not been adequately evaluated in existing benchmarks. To fill this gap, we present OVO-Bench (Online-VideO-Benchmark), a novel video benchmark that emphasizes the importance of timestamps for advanced online video understanding capability benchmarking. OVO-Bench evaluates the ability of video LLMs to reason and respond to events occurring at specific timestamps under three distinct scenarios: (1) Backward tracing: trace back to past events to answer the question. (2) Real-time understanding: understand and respond to events as they unfold at the current timestamp. (3) Forward active responding: delay the response until sufficient future information becomes available to answer the question accurately. OVO-Bench comprises 12 tasks, featuring 644 unique videos and approximately human-curated 2,800 fine-grained meta-annotations with precise timestamps. We combine automated generation pipelines with human curation. With these high-quality samples, we further developed an evaluation pipeline to systematically query video LLMs along the video timeline. Evaluations of nine Video-LLMs reveal that, despite advancements on traditional benchmarks, current models struggle with online video understanding, showing a significant gap compared to human agents. We hope OVO-Bench will drive progress in video LLMs and inspire future research in online video reasoning. Our benchmark and code can be accessed at https://github.com/JoeLeelyf/OVO-Bench.
Evaluation of OpenAI Codex for HPC Parallel Programming Models Kernel Generation
We evaluate AI-assisted generative capabilities on fundamental numerical kernels in high-performance computing (HPC), including AXPY, GEMV, GEMM, SpMV, Jacobi Stencil, and CG. We test the generated kernel codes for a variety of language-supported programming models, including (1) C++ (e.g., OpenMP [including offload], OpenACC, Kokkos, SyCL, CUDA, and HIP), (2) Fortran (e.g., OpenMP [including offload] and OpenACC), (3) Python (e.g., numba, Numba, cuPy, and pyCUDA), and (4) Julia (e.g., Threads, CUDA.jl, AMDGPU.jl, and KernelAbstractions.jl). We use the GitHub Copilot capabilities powered by OpenAI Codex available in Visual Studio Code as of April 2023 to generate a vast amount of implementations given simple <kernel> + <programming model> + <optional hints> prompt variants. To quantify and compare the results, we propose a proficiency metric around the initial 10 suggestions given for each prompt. Results suggest that the OpenAI Codex outputs for C++ correlate with the adoption and maturity of programming models. For example, OpenMP and CUDA score really high, whereas HIP is still lacking. We found that prompts from either a targeted language such as Fortran or the more general-purpose Python can benefit from adding code keywords, while Julia prompts perform acceptably well for its mature programming models (e.g., Threads and CUDA.jl). We expect for these benchmarks to provide a point of reference for each programming model's community. Overall, understanding the convergence of large language models, AI, and HPC is crucial due to its rapidly evolving nature and how it is redefining human-computer interactions.
VisCoder2: Building Multi-Language Visualization Coding Agents
Large language models (LLMs) have recently enabled coding agents capable of generating, executing, and revising visualization code. However, existing models often fail in practical workflows due to limited language coverage, unreliable execution, and lack of iterative correction mechanisms. Progress has been constrained by narrow datasets and benchmarks that emphasize single-round generation and single-language tasks. To address these challenges, we introduce three complementary resources for advancing visualization coding agents. VisCode-Multi-679K is a large-scale, supervised dataset containing 679K validated and executable visualization samples with multi-turn correction dialogues across 12 programming languages. VisPlotBench is a benchmark for systematic evaluation, featuring executable tasks, rendered outputs, and protocols for both initial generation and multi-round self-debug. Finally, we present VisCoder2, a family of multi-language visualization models trained on VisCode-Multi-679K. Experiments show that VisCoder2 significantly outperforms strong open-source baselines and approaches the performance of proprietary models like GPT-4.1, with further gains from iterative self-debug, reaching 82.4% overall execution pass rate at the 32B scale, particularly in symbolic or compiler-dependent languages.
Program Synthesis Benchmark for Visual Programming in XLogoOnline Environment
Large language and multimodal models have shown remarkable successes on various benchmarks focused on specific skills such as general-purpose programming, natural language understanding, math word problem-solving, and visual question answering. However, it is unclear how well these models perform on tasks that require a combination of these skills. In this paper, we curate a novel program synthesis benchmark based on the XLogoOnline visual programming environment. The benchmark comprises 85 real-world tasks from the Mini-level of the XLogoOnline environment, each requiring a combination of different skills such as spatial planning, basic programming, and logical reasoning. Our evaluation shows that current state-of-the-art models like GPT-4V and Llama3-70B struggle to solve these tasks, achieving only 20% and 2.35% success rates. Next, we develop a fine-tuning pipeline to boost the performance of models by leveraging a large-scale synthetic training dataset with over 80000 tasks. Moreover, we showcase how emulator-driven feedback can be used to design a curriculum over training data distribution. We showcase that a fine-tuned Llama3-8B drastically outperforms GPT-4V and Llama3-70B models, and provide an in-depth analysis of the models' expertise across different skill dimensions. We will publicly release the benchmark for future research on program synthesis in visual programming.
Thingi10K: A Dataset of 10,000 3D-Printing Models
Empirically validating new 3D-printing related algorithms and implementations requires testing data representative of inputs encountered in the wild. An ideal benchmarking dataset should not only draw from the same distribution of shapes people print in terms of class (e.g., toys, mechanisms, jewelry), representation type (e.g., triangle soup meshes) and complexity (e.g., number of facets), but should also capture problems and artifacts endemic to 3D printing models (e.g., self-intersections, non-manifoldness). We observe that the contextual and geometric characteristics of 3D printing models differ significantly from those used for computer graphics applications, not to mention standard models (e.g., Stanford bunny, Armadillo, Fertility). We present a new dataset of 10,000 models collected from an online 3D printing model-sharing database. Via analysis of both geometric (e.g., triangle aspect ratios, manifoldness) and contextual (e.g., licenses, tags, classes) characteristics, we demonstrate that this dataset represents a more concise summary of real-world models used for 3D printing compared to existing datasets. To facilitate future research endeavors, we also present an online query interface to select subsets of the dataset according to project-specific characteristics. The complete dataset and per-model statistical data are freely available to the public.
Image Scene Graph Generation (SGG) Benchmark
There is a surge of interest in image scene graph generation (object, attribute and relationship detection) due to the need of building fine-grained image understanding models that go beyond object detection. Due to the lack of a good benchmark, the reported results of different scene graph generation models are not directly comparable, impeding the research progress. We have developed a much-needed scene graph generation benchmark based on the maskrcnn-benchmark and several popular models. This paper presents main features of our benchmark and a comprehensive ablation study of scene graph generation models using the Visual Genome and OpenImages Visual relationship detection datasets. Our codebase is made publicly available at https://github.com/microsoft/scene_graph_benchmark.
NAVSIM: Data-Driven Non-Reactive Autonomous Vehicle Simulation and Benchmarking
Benchmarking vision-based driving policies is challenging. On one hand, open-loop evaluation with real data is easy, but these results do not reflect closed-loop performance. On the other, closed-loop evaluation is possible in simulation, but is hard to scale due to its significant computational demands. Further, the simulators available today exhibit a large domain gap to real data. This has resulted in an inability to draw clear conclusions from the rapidly growing body of research on end-to-end autonomous driving. In this paper, we present NAVSIM, a middle ground between these evaluation paradigms, where we use large datasets in combination with a non-reactive simulator to enable large-scale real-world benchmarking. Specifically, we gather simulation-based metrics, such as progress and time to collision, by unrolling bird's eye view abstractions of the test scenes for a short simulation horizon. Our simulation is non-reactive, i.e., the evaluated policy and environment do not influence each other. As we demonstrate empirically, this decoupling allows open-loop metric computation while being better aligned with closed-loop evaluations than traditional displacement errors. NAVSIM enabled a new competition held at CVPR 2024, where 143 teams submitted 463 entries, resulting in several new insights. On a large set of challenging scenarios, we observe that simple methods with moderate compute requirements such as TransFuser can match recent large-scale end-to-end driving architectures such as UniAD. Our modular framework can potentially be extended with new datasets, data curation strategies, and metrics, and will be continually maintained to host future challenges. Our code is available at https://github.com/autonomousvision/navsim.
EffiBench-X: A Multi-Language Benchmark for Measuring Efficiency of LLM-Generated Code
Existing code generation benchmarks primarily evaluate functional correctness, with limited focus on code efficiency and often restricted to a single language like Python. To address this gap, we introduce EffiBench-X, the first multi-language benchmark designed to measure the efficiency of LLM-generated code. EffiBench-X supports Python, C++, Java, JavaScript, Ruby, and Golang. It comprises competitive programming tasks with human-expert solutions as efficiency baselines. Evaluating state-of-the-art LLMs on EffiBench-X reveals that while models generate functionally correct code, they consistently underperform human experts in efficiency. Even the most efficient LLM-generated solutions (Qwen3-32B) achieve only around 62\% of human efficiency on average, with significant language-specific variations. LLMs show better efficiency in Python, Ruby, and JavaScript than in Java, C++, and Golang. For instance, DeepSeek-R1's Python code is significantly more efficient than its Java code. These results highlight the critical need for research into LLM optimization techniques to improve code efficiency across diverse languages. The dataset and evaluation infrastructure are submitted and available at https://github.com/EffiBench/EffiBench-X.git and https://huggingface.co/datasets/EffiBench/effibench-x.
DependEval: Benchmarking LLMs for Repository Dependency Understanding
While large language models (LLMs) have shown considerable promise in code generation, real-world software development demands advanced repository-level reasoning. This includes understanding dependencies, project structures, and managing multi-file changes. However, the ability of LLMs to effectively comprehend and handle complex code repositories has yet to be fully explored. To address challenges, we introduce a hierarchical benchmark designed to evaluate repository dependency understanding (DependEval). Benchmark is based on 15,576 repositories collected from real-world websites. It evaluates models on three core tasks: Dependency Recognition, Repository Construction, and Multi-file Editing, across 8 programming languages from actual code repositories. Our evaluation of over 25 LLMs reveals substantial performance gaps and provides valuable insights into repository-level code understanding.
PostoMETRO: Pose Token Enhanced Mesh Transformer for Robust 3D Human Mesh Recovery
With the recent advancements in single-image-based human mesh recovery, there is a growing interest in enhancing its performance in certain extreme scenarios, such as occlusion, while maintaining overall model accuracy. Although obtaining accurately annotated 3D human poses under occlusion is challenging, there is still a wealth of rich and precise 2D pose annotations that can be leveraged. However, existing works mostly focus on directly leveraging 2D pose coordinates to estimate 3D pose and mesh. In this paper, we present PostoMETRO(Pose token enhanced MEsh TRansfOrmer), which integrates occlusion-resilient 2D pose representation into transformers in a token-wise manner. Utilizing a specialized pose tokenizer, we efficiently condense 2D pose data to a compact sequence of pose tokens and feed them to the transformer together with the image tokens. This process not only ensures a rich depiction of texture from the image but also fosters a robust integration of pose and image information. Subsequently, these combined tokens are queried by vertex and joint tokens to decode 3D coordinates of mesh vertices and human joints. Facilitated by the robust pose token representation and the effective combination, we are able to produce more precise 3D coordinates, even under extreme scenarios like occlusion. Experiments on both standard and occlusion-specific benchmarks demonstrate the effectiveness of PostoMETRO. Qualitative results further illustrate the clarity of how 2D pose can help 3D reconstruction. Code will be made available.
LEGO-Eval: Towards Fine-Grained Evaluation on Synthesizing 3D Embodied Environments with Tool Augmentation
Despite recent progress in using Large Language Models (LLMs) for automatically generating 3D scenes, generated scenes often lack realistic spatial layouts and object attributes found in real-world environments. As this problem stems from insufficiently detailed, coarse-grained instructions, advancing 3D scene synthesis guided by more detailed, fine-grained instructions that reflect real-world environments becomes crucial. Without such realistic scenes, training embodied agents in unrealistic environments can lead them to learn priors that diverge significantly from real-world physics and semantics, degrading their performance when deployed. Thus, verifying the alignment between the fine-grained instruction and the generated scene is essential for effective learning. However, current evaluation methods, such as CLIPScore and vision-language models (VLMs), often fail to reliably assess such alignment. This shortcoming arises primarily from their shallow understanding of 3D scenes, which often leads to improperly grounded scene components. To address this, we introduce LEGO-Eval, an evaluation framework equipped with diverse tools designed to explicitly ground scene components, enabling more accurate alignment assessments. We also present LEGO-Bench, a benchmark of detailed instructions that specify complex layouts and attributes of real-world environments. Experiments demonstrate that LEGO-Eval outperforms VLM-as-a-judge by 0.41 F1 score in assessing scene-instruction alignment. Benchmarking with LEGO-Bench reveals significant limitations in current generation methods. Across all evaluated approaches, success rates reached at most 10% in generating scenes that fully align with fine-grained instructions.
Image2Struct: Benchmarking Structure Extraction for Vision-Language Models
We introduce Image2Struct, a benchmark to evaluate vision-language models (VLMs) on extracting structure from images. Our benchmark 1) captures real-world use cases, 2) is fully automatic and does not require human judgment, and 3) is based on a renewable stream of fresh data. In Image2Struct, VLMs are prompted to generate the underlying structure (e.g., LaTeX code or HTML) from an input image (e.g., webpage screenshot). The structure is then rendered to produce an output image (e.g., rendered webpage), which is compared against the input image to produce a similarity score. This round-trip evaluation allows us to quantitatively evaluate VLMs on tasks with multiple valid structures. We create a pipeline that downloads fresh data from active online communities upon execution and evaluates the VLMs without human intervention. We introduce three domains (Webpages, LaTeX, and Musical Scores) and use five image metrics (pixel similarity, cosine similarity between the Inception vectors, learned perceptual image patch similarity, structural similarity index measure, and earth mover similarity) that allow efficient and automatic comparison between pairs of images. We evaluate Image2Struct on 14 prominent VLMs and find that scores vary widely, indicating that Image2Struct can differentiate between the performances of different VLMs. Additionally, the best score varies considerably across domains (e.g., 0.402 on sheet music vs. 0.830 on LaTeX equations), indicating that Image2Struct contains tasks of varying difficulty. For transparency, we release the full results at https://crfm.stanford.edu/helm/image2struct/v1.0.1/.
Touchstone Benchmark: Are We on the Right Way for Evaluating AI Algorithms for Medical Segmentation?
How can we test AI performance? This question seems trivial, but it isn't. Standard benchmarks often have problems such as in-distribution and small-size test sets, oversimplified metrics, unfair comparisons, and short-term outcome pressure. As a consequence, good performance on standard benchmarks does not guarantee success in real-world scenarios. To address these problems, we present Touchstone, a large-scale collaborative segmentation benchmark of 9 types of abdominal organs. This benchmark is based on 5,195 training CT scans from 76 hospitals around the world and 5,903 testing CT scans from 11 additional hospitals. This diverse test set enhances the statistical significance of benchmark results and rigorously evaluates AI algorithms across various out-of-distribution scenarios. We invited 14 inventors of 19 AI algorithms to train their algorithms, while our team, as a third party, independently evaluated these algorithms on three test sets. In addition, we also evaluated pre-existing AI frameworks--which, differing from algorithms, are more flexible and can support different algorithms--including MONAI from NVIDIA, nnU-Net from DKFZ, and numerous other open-source frameworks. We are committed to expanding this benchmark to encourage more innovation of AI algorithms for the medical domain.
Craftax: A Lightning-Fast Benchmark for Open-Ended Reinforcement Learning
Benchmarks play a crucial role in the development and analysis of reinforcement learning (RL) algorithms. We identify that existing benchmarks used for research into open-ended learning fall into one of two categories. Either they are too slow for meaningful research to be performed without enormous computational resources, like Crafter, NetHack and Minecraft, or they are not complex enough to pose a significant challenge, like Minigrid and Procgen. To remedy this, we first present Craftax-Classic: a ground-up rewrite of Crafter in JAX that runs up to 250x faster than the Python-native original. A run of PPO using 1 billion environment interactions finishes in under an hour using only a single GPU and averages 90% of the optimal reward. To provide a more compelling challenge we present the main Craftax benchmark, a significant extension of the Crafter mechanics with elements inspired from NetHack. Solving Craftax requires deep exploration, long term planning and memory, as well as continual adaptation to novel situations as more of the world is discovered. We show that existing methods including global and episodic exploration, as well as unsupervised environment design fail to make material progress on the benchmark. We believe that Craftax can for the first time allow researchers to experiment in a complex, open-ended environment with limited computational resources.
MORSE-500: A Programmatically Controllable Video Benchmark to Stress-Test Multimodal Reasoning
Despite rapid advances in vision-language models (VLMs), current benchmarks for multimodal reasoning fall short in three key dimensions. First, they overwhelmingly rely on static images, failing to capture the temporal complexity of real-world environments. Second, they narrowly focus on mathematical problem-solving, neglecting the broader spectrum of reasoning skills -- including abstract, physical, planning, spatial, and temporal capabilities -- required for robust multimodal intelligence. Third, many benchmarks quickly saturate, offering limited headroom for diagnosing failure modes or measuring continued progress. We introduce MORSE-500 (Multimodal Reasoning Stress-test Environment), a video benchmark composed of 500 fully scripted clips with embedded questions spanning six complementary reasoning categories. Each instance is programmatically generated using deterministic Python scripts (via Manim, Matplotlib, MoviePy), generative video models, and curated real footage. This script-driven design allows fine-grained control over visual complexity, distractor density, and temporal dynamics -- enabling difficulty to be scaled systematically as models improve. Unlike static benchmarks that become obsolete once saturated, MORSE-500 is built to evolve: its controllable generation pipeline supports the creation of arbitrarily challenging new instances, making it ideally suited for stress-testing next-generation models. Initial experiments with state-of-the-art systems -- including various Gemini 2.5 Pro and OpenAI o3 which represent the strongest available at the time, alongside strong open-source models -- reveal substantial performance gaps across all categories, with particularly large deficits in abstract and planning tasks. We release the full dataset, generation scripts, and evaluation harness to support transparent, reproducible, and forward-looking multimodal reasoning research.
SiM3D: Single-instance Multiview Multimodal and Multisetup 3D Anomaly Detection Benchmark
We propose SiM3D, the first benchmark considering the integration of multiview and multimodal information for comprehensive 3D anomaly detection and segmentation (ADS), where the task is to produce a voxel-based Anomaly Volume. Moreover, SiM3D focuses on a scenario of high interest in manufacturing: single-instance anomaly detection, where only one object, either real or synthetic, is available for training. In this respect, SiM3D stands out as the first ADS benchmark that addresses the challenge of generalising from synthetic training data to real test data. SiM3D includes a novel multimodal multiview dataset acquired using top-tier industrial sensors and robots. The dataset features multiview high-resolution images (12 Mpx) and point clouds (7M points) for 333 instances of eight types of objects, alongside a CAD model for each type. We also provide manually annotated 3D segmentation GTs for anomalous test samples. To establish reference baselines for the proposed multiview 3D ADS task, we adapt prominent singleview methods and assess their performance using novel metrics that operate on Anomaly Volumes.
Find Any Part in 3D
We study open-world part segmentation in 3D: segmenting any part in any object based on any text query. Prior methods are limited in object categories and part vocabularies. Recent advances in AI have demonstrated effective open-world recognition capabilities in 2D. Inspired by this progress, we propose an open-world, direct-prediction model for 3D part segmentation that can be applied zero-shot to any object. Our approach, called Find3D, trains a general-category point embedding model on large-scale 3D assets from the internet without any human annotation. It combines a data engine, powered by foundation models for annotating data, with a contrastive training method. We achieve strong performance and generalization across multiple datasets, with up to a 3x improvement in mIoU over the next best method. Our model is 6x to over 300x faster than existing baselines. To encourage research in general-category open-world 3D part segmentation, we also release a benchmark for general objects and parts. Project website: https://ziqi-ma.github.io/find3dsite/
Sora Generates Videos with Stunning Geometrical Consistency
The recently developed Sora model [1] has exhibited remarkable capabilities in video generation, sparking intense discussions regarding its ability to simulate real-world phenomena. Despite its growing popularity, there is a lack of established metrics to evaluate its fidelity to real-world physics quantitatively. In this paper, we introduce a new benchmark that assesses the quality of the generated videos based on their adherence to real-world physics principles. We employ a method that transforms the generated videos into 3D models, leveraging the premise that the accuracy of 3D reconstruction is heavily contingent on the video quality. From the perspective of 3D reconstruction, we use the fidelity of the geometric constraints satisfied by the constructed 3D models as a proxy to gauge the extent to which the generated videos conform to real-world physics rules. Project page: https://sora-geometrical-consistency.github.io/
The Fused Kernel Library: A C++ API to Develop Highly-Efficient GPU Libraries
Existing GPU libraries often struggle to fully exploit the parallel resources and on-chip memory (SRAM) of GPUs when chaining multiple GPU functions as individual kernels. While Kernel Fusion (KF) techniques like Horizontal Fusion (HF) and Vertical Fusion (VF) can mitigate this, current library implementations often require library developers to manually create fused kernels. Hence, library users rely on limited sets of pre-compiled or template-based fused kernels. This limits the use cases that can benefit from HF and VF and increases development costs. In order to solve these issues, we present a novel methodology for building GPU libraries that enables automatic on-demand HF and VF for arbitrary combinations of GPU library functions. Our methodology defines reusable, fusionable components that users combine via high-level programming interfaces. Leveraging C++17 metaprogramming features available in compilers like nvcc, our methodology generates a single and optimized fused kernel tailored to the user's specific sequence of operations at compile time, without needing a custom compiler or manual development and pre-compilation of kernel combinations. This approach abstracts low-level GPU complexities while maximizing GPU resource utilization and keeping intermediate data in SRAM. We provide an open-source implementation demonstrating significant speedups compared to traditional libraries in various benchmarks, validating the effectiveness of this methodology for improving GPU performance in the range of 2x to more than 1000x, while preserving high-level programmability.
RefEdit: A Benchmark and Method for Improving Instruction-based Image Editing Model on Referring Expressions
Despite recent advances in inversion and instruction-based image editing, existing approaches primarily excel at editing single, prominent objects but significantly struggle when applied to complex scenes containing multiple entities. To quantify this gap, we first introduce RefEdit-Bench, a rigorous real-world benchmark rooted in RefCOCO, where even baselines trained on millions of samples perform poorly. To overcome this limitation, we introduce RefEdit -- an instruction-based editing model trained on our scalable synthetic data generation pipeline. Our RefEdit, trained on only 20,000 editing triplets, outperforms the Flux/SD3 model-based baselines trained on millions of data. Extensive evaluations across various benchmarks demonstrate that our model not only excels in referring expression tasks but also enhances performance on traditional benchmarks, achieving state-of-the-art results comparable to closed-source methods. We release data \& checkpoint for reproducibility.
OpenCodeReasoning-II: A Simple Test Time Scaling Approach via Self-Critique
Recent advancements in reasoning-based Large Language Models (LLMs), particularly their potential through test-time scaling, have created significant opportunities for distillation in code generation and critique. However, progress in both areas fundamentally depends on large-scale, high-quality datasets. In this work, we introduce OpenCodeReasoning-II, a dataset consists of 2.5M question-solution-critique triples (approx. 35K unique programming questions), making it nearly twice the size of the previous largest publicly available code reasoning dataset. In this work, we employ a two-stage supervised fine-tuning strategy. The first stage focuses on fine-tuning for code generation, while the second stage involves the joint training of models for both code generation and critique. Our resulting finetuned Qwen2.5-Instruct models achieve performance in code generation that either exceeds or equals the best prior open-weight distilled models. Notably, the integration of our code generation and critique models leads to significant improvements in competitive coding performance. Furthermore, we present an extension of the LiveCodeBench benchmark to specifically support the C++ programming language, thereby facilitating more comprehensive LLM evaluation using this benchmark.
GraphNet: A Large-Scale Computational Graph Dataset for Tensor Compiler Research
We introduce GraphNet, a dataset of 2.7K real-world deep learning computational graphs with rich metadata, spanning six major task categories across multiple deep learning frameworks. To evaluate tensor compiler performance on these samples, we propose the benchmark metric Speedup Score S(t), which jointly considers runtime speedup and execution correctness under tunable tolerance levels, offering a reliable measure of general optimization capability. Furthermore, we extend S(t) to the Error-aware Speedup Score ES(t), which incorporates error information and helps compiler developers identify key performance bottlenecks. In this report, we benchmark the default tensor compilers, CINN for PaddlePaddle and TorchInductor for PyTorch, on computer vision (CV) and natural language processing (NLP) samples to demonstrate the practicality of GraphNet. The full construction pipeline with graph extraction and compiler evaluation tools is available at https://github.com/PaddlePaddle/GraphNet .
V-GameGym: Visual Game Generation for Code Large Language Models
Code large language models have demonstrated remarkable capabilities in programming tasks, yet current benchmarks primarily focus on single modality rather than visual game development. Most existing code-related benchmarks evaluate syntax correctness and execution accuracy, overlooking critical game-specific metrics such as playability, visual aesthetics, and user engagement that are essential for real-world deployment. To address the gap between current LLM capabilities in algorithmic problem-solving and competitive programming versus the comprehensive requirements of practical game development, we present V-GameGym, a comprehensive benchmark comprising 2,219 high-quality samples across 100 thematic clusters derived from real-world repositories, adopting a novel clustering-based curation methodology to ensure both diversity and structural completeness. Further, we introduce a multimodal evaluation framework with an automated LLM-driven pipeline for visual code synthesis using complete UI sandbox environments. Our extensive analysis reveals that V-GameGym effectively bridges the gap between code generation accuracy and practical game development workflows, providing quantifiable quality metrics for visual programming and interactive element generation.
LiveXiv -- A Multi-Modal Live Benchmark Based on Arxiv Papers Content
The large-scale training of multi-modal models on data scraped from the web has shown outstanding utility in infusing these models with the required world knowledge to perform effectively on multiple downstream tasks. However, one downside of scraping data from the web can be the potential sacrifice of the benchmarks on which the abilities of these models are often evaluated. To safeguard against test data contamination and to truly test the abilities of these foundation models we propose LiveXiv: A scalable evolving live benchmark based on scientific ArXiv papers. LiveXiv accesses domain-specific manuscripts at any given timestamp and proposes to automatically generate visual question-answer pairs (VQA). This is done without any human-in-the-loop, using the multi-modal content in the manuscripts, like graphs, charts, and tables. Moreover, we introduce an efficient evaluation approach that estimates the performance of all models on the evolving benchmark using evaluations of only a subset of models. This significantly reduces the overall evaluation cost. We benchmark multiple open and proprietary Large Multi-modal Models (LMMs) on the first version of our benchmark, showing its challenging nature and exposing the models true abilities, avoiding contamination. Lastly, in our commitment to high quality, we have collected and evaluated a manually verified subset. By comparing its overall results to our automatic annotations, we have found that the performance variance is indeed minimal (<2.5%). Our dataset is available online on HuggingFace, and our code will be available here.
SemiHVision: Enhancing Medical Multimodal Models with a Semi-Human Annotated Dataset and Fine-Tuned Instruction Generation
Multimodal large language models (MLLMs) have made significant strides, yet they face challenges in the medical domain due to limited specialized knowledge. While recent medical MLLMs demonstrate strong performance in lab settings, they often struggle in real-world applications, highlighting a substantial gap between research and practice. In this paper, we seek to address this gap at various stages of the end-to-end learning pipeline, including data collection, model fine-tuning, and evaluation. At the data collection stage, we introduce SemiHVision, a dataset that combines human annotations with automated augmentation techniques to improve both medical knowledge representation and diagnostic reasoning. For model fine-tuning, we trained PMC-Cambrian-8B-AN over 2400 H100 GPU hours, resulting in performance that surpasses public medical models like HuatuoGPT-Vision-34B (79.0% vs. 66.7%) and private general models like Claude3-Opus (55.7%) on traditional benchmarks such as SLAKE and VQA-RAD. In the evaluation phase, we observed that traditional benchmarks cannot accurately reflect realistic clinical task capabilities. To overcome this limitation and provide more targeted guidance for model evaluation, we introduce the JAMA Clinical Challenge, a novel benchmark specifically designed to evaluate diagnostic reasoning. On this benchmark, PMC-Cambrian-AN achieves state-of-the-art performance with a GPT-4 score of 1.29, significantly outperforming HuatuoGPT-Vision-34B (1.13) and Claude3-Opus (1.17), demonstrating its superior diagnostic reasoning abilities.
MMBench: Is Your Multi-modal Model an All-around Player?
Large vision-language models have recently achieved remarkable progress, exhibiting great perception and reasoning abilities concerning visual information. However, how to effectively evaluate these large vision-language models remains a major obstacle, hindering future model development. Traditional benchmarks like VQAv2 or COCO Caption provide quantitative performance measurements but suffer from a lack of fine-grained ability assessment and non-robust evaluation metrics. Recent subjective benchmarks, such as OwlEval, offer comprehensive evaluations of a model's abilities by incorporating human labor, but they are not scalable and display significant bias. In response to these challenges, we propose MMBench, a novel multi-modality benchmark. MMBench methodically develops a comprehensive evaluation pipeline, primarily comprised of two elements. The first element is a meticulously curated dataset that surpasses existing similar benchmarks in terms of the number and variety of evaluation questions and abilities. The second element introduces a novel CircularEval strategy and incorporates the use of ChatGPT. This implementation is designed to convert free-form predictions into pre-defined choices, thereby facilitating a more robust evaluation of the model's predictions. MMBench is a systematically-designed objective benchmark for robustly evaluating the various abilities of vision-language models. We hope MMBench will assist the research community in better evaluating their models and encourage future advancements in this domain. Project page: https://opencompass.org.cn/mmbench.
CASS: Nvidia to AMD Transpilation with Data, Models, and Benchmark
We introduce CASS, the first large-scale dataset and model suite for cross-architecture GPU code transpilation, targeting both source-level (CUDA leftrightarrow HIP) and assembly-level (Nvidia SASS leftrightarrow AMD RDNA3) translation. The dataset comprises 70k verified code pairs across host and device, addressing a critical gap in low-level GPU code portability. Leveraging this resource, we train the CASS family of domain-specific language models, achieving 95% source translation accuracy and 37.5% assembly translation accuracy, substantially outperforming commercial baselines such as GPT-4o, Claude, and Hipify. Our generated code matches native performance in over 85% of test cases, preserving runtime and memory behavior. To support rigorous evaluation, we introduce CASS-Bench, a curated benchmark spanning 16 GPU domains with ground-truth execution. All data, models, and evaluation tools are released as open source to foster progress in GPU compiler tooling, binary compatibility, and LLM-guided hardware translation. Dataset and benchmark are on https://huggingface.co/datasets/MBZUAI/cass{blue{HuggingFace}}, with code at https://github.com/GustavoStahl/CASS{blue{GitHub}}.
3DSRBench: A Comprehensive 3D Spatial Reasoning Benchmark
3D spatial reasoning is the ability to analyze and interpret the positions, orientations, and spatial relationships of objects within the 3D space. This allows models to develop a comprehensive understanding of the 3D scene, enabling their applicability to a broader range of areas, such as autonomous navigation, robotics, and AR/VR. While large multi-modal models (LMMs) have achieved remarkable progress in a wide range of image and video understanding tasks, their capabilities to perform 3D spatial reasoning on diverse natural images are less studied. In this work we present the first comprehensive 3D spatial reasoning benchmark, 3DSRBench, with 2,772 manually annotated visual question-answer pairs across 12 question types. We conduct robust and thorough evaluation of 3D spatial reasoning capabilities by balancing the data distribution and adopting a novel FlipEval strategy. To further study the robustness of 3D spatial reasoning w.r.t. camera 3D viewpoints, our 3DSRBench includes two subsets with 3D spatial reasoning questions on paired images with common and uncommon viewpoints. We benchmark a wide range of open-sourced and proprietary LMMs, uncovering their limitations in various aspects of 3D awareness, such as height, orientation, location, and multi-object reasoning, as well as their degraded performance on images with uncommon camera viewpoints. Our 3DSRBench provide valuable findings and insights about the future development of LMMs with strong 3D reasoning capabilities. Our project page and dataset is available https://3dsrbench.github.io.
CRUXEval: A Benchmark for Code Reasoning, Understanding and Execution
We present CRUXEval (Code Reasoning, Understanding, and eXecution Evaluation), a benchmark consisting of 800 Python functions (3-13 lines). Each function comes with an input-output pair, leading to two natural tasks: input prediction and output prediction. First, we propose a generic recipe for generating our execution benchmark which can be used to create future variation of the benchmark. Second, we evaluate twenty code models on our benchmark and discover that many recent high-scoring models on HumanEval do not show the same improvements on our benchmark. Third, we show that simple CoT and fine-tuning schemes can improve performance on our benchmark but remain far from solving it. The best setup, GPT-4 with chain of thought (CoT), achieves a pass@1 of 75% and 81% on input and output prediction, respectively. In contrast, Code Llama 34B achieves a pass@1 of 50% and 46% on input and output prediction, highlighting the gap between open and closed source models. As no model is close to acing CRUXEval, we provide examples of consistent GPT-4 failures on simple programs as a lens into its code reasoning capabilities and areas for improvement.
CompBench: Benchmarking Complex Instruction-guided Image Editing
While real-world applications increasingly demand intricate scene manipulation, existing instruction-guided image editing benchmarks often oversimplify task complexity and lack comprehensive, fine-grained instructions. To bridge this gap, we introduce, a large-scale benchmark specifically designed for complex instruction-guided image editing. CompBench features challenging editing scenarios that incorporate fine-grained instruction following, spatial and contextual reasoning, thereby enabling comprehensive evaluation of image editing models' precise manipulation capabilities. To construct CompBench, We propose an MLLM-human collaborative framework with tailored task pipelines. Furthermore, we propose an instruction decoupling strategy that disentangles editing intents into four key dimensions: location, appearance, dynamics, and objects, ensuring closer alignment between instructions and complex editing requirements. Extensive evaluations reveal that CompBench exposes fundamental limitations of current image editing models and provides critical insights for the development of next-generation instruction-guided image editing systems. The dataset, code, and models are available in https://comp-bench.github.io/.
Evaluating and Aligning CodeLLMs on Human Preference
Code large language models (codeLLMs) have made significant strides in code generation. Most previous code-related benchmarks, which consist of various programming exercises along with the corresponding test cases, are used as a common measure to evaluate the performance and capabilities of code LLMs. However, the current code LLMs focus on synthesizing the correct code snippet, ignoring the alignment with human preferences, where the query should be sampled from the practical application scenarios and the model-generated responses should satisfy the human preference. To bridge the gap between the model-generated response and human preference, we present a rigorous human-curated benchmark CodeArena to emulate the complexity and diversity of real-world coding tasks, where 397 high-quality samples spanning 40 categories and 44 programming languages, carefully curated from user queries. Further, we propose a diverse synthetic instruction corpus SynCode-Instruct (nearly 20B tokens) by scaling instructions from the website to verify the effectiveness of the large-scale synthetic instruction fine-tuning, where Qwen2.5-SynCoder totally trained on synthetic instruction data can achieve top-tier performance of open-source code LLMs. The results find performance differences between execution-based benchmarks and CodeArena. Our systematic experiments of CodeArena on 40+ LLMs reveal a notable performance gap between open SOTA code LLMs (e.g. Qwen2.5-Coder) and proprietary LLMs (e.g., OpenAI o1), underscoring the importance of the human preference alignment.\url{https://codearenaeval.github.io/ }
OmniGIRL: A Multilingual and Multimodal Benchmark for GitHub Issue Resolution
The GitHub issue resolution task aims to resolve issues reported in repositories automatically. With advances in large language models (LLMs), this task has gained increasing attention, and several benchmarks are proposed to evaluate the issue resolution ability of LLMs. However, existing benchmarks have three main limitations. First, current benchmarks focus on a single programming language, limiting the evaluation of issues from repositories across different languages. Second, they usually cover a narrow range of domains, which may fail to represent the diversity of real-world issues. Third, existing benchmarks rely solely on textual information in issue descriptions, overlooking multimodal information such as images in issues. In this paper, we propose OmniGIRL, a GitHub Issue ResoLution benchmark that is multilingual, multimodal, and multi-domain. OmniGIRL includes 959 task instances, which are collected from repositories across four programming languages (i.e., Python, JavaScript, TypeScript, and Java) and eight different domains. Our evaluation shows that current LLMs show limited performances on OmniGIRL. Notably, the best-performing model, GPT-4o, resolves only 8.6% of the issues. Besides, we find that current LLMs struggle to resolve issues requiring understanding images. The best performance is achieved by Claude-3.5-Sonnet, which resolves only 10.5% of the issues with image information. Finally, we analyze the reasons behind current LLMs' failure on OmniGIRL, providing insights for future improvements.
OSUniverse: Benchmark for Multimodal GUI-navigation AI Agents
In this paper, we introduce OSUniverse: a benchmark of complex, multimodal desktop-oriented tasks for advanced GUI-navigation AI agents that focuses on ease of use, extensibility, comprehensive coverage of test cases, and automated validation. We divide the tasks in increasing levels of complexity, from basic precision clicking to multistep, multiapplication tests requiring dexterity, precision, and clear thinking from the agent. In version one of the benchmark, presented here, we have calibrated the complexity of the benchmark test cases to ensure that the SOTA (State of the Art) agents (at the time of publication) do not achieve results higher than 50%, while the average white collar worker can perform all these tasks with perfect accuracy. The benchmark can be scored manually, but we also introduce an automated validation mechanism that has an average error rate less than 2%. Therefore, this benchmark presents solid ground for fully automated measuring of progress, capabilities and the effectiveness of GUI-navigation AI agents over the short and medium-term horizon. The source code of the benchmark is available at https://github.com/agentsea/osuniverse.
Closing the Performance Gap with Modern C++
On the way to Exascale, programmers face the increasing challenge of having to support multiple hardware architectures from the same code base. At the same time, portability of code and performance are increasingly difficult to achieve as hardware architectures are becoming more and more diverse. Today's heterogeneous systems often include two or more completely distinct and incompatible hardware execution models, such as GPGPU's, SIMD vector units, and general purpose cores which conventionally have to be programmed using separate tool chains representing non-overlapping programming models. The recent revival of interest in the industry and the wider community for the C++ language has spurred a remarkable amount of standardization proposals and technical specifications in the arena of concurrency and parallelism. This recently includes an increasing amount of discussion around the need for a uniform, higher-level abstraction and programming model for parallelism in the C++ standard targeting heterogeneous and distributed computing. Such an abstraction should perfectly blend with existing, already standardized language and library features, but should also be generic enough to support future hardware developments. In this paper, we present the results from developing such a higher-level programming abstraction for parallelism in C++ which aims at enabling code and performance portability over a wide range of architectures and for various types of parallelism. We present and compare performance data obtained from running the well-known STREAM benchmark ported to our higher level C++ abstraction with the corresponding results from running it natively. We show that our abstractions enable performance at least as good as the comparable base-line benchmarks while providing a uniform programming API on all compared target architectures.
JavaBench: A Benchmark of Object-Oriented Code Generation for Evaluating Large Language Models
Code generation benchmarks such as HumanEval are widely adopted to evaluate LLMs' capabilities. However, after consolidating the latest 24 benchmarks, we noticed three significant imbalances. First, imbalanced programming language. 95.8% of benchmarks involve Python, while only 5 benchmarks involve Java. Second, imbalanced code granularity. Function-/statement-level benchmarks account for over 83.3% of benchmarks. Only a mere handful extends to class-/project-levels, and all are limited to Python. Third, lacking advanced features. Existing benchmarks primarily assess basic coding skills, while overlooking advanced Object-Oriented Programming (OOP) features (i.e., encapsulation, inheritance, and polymorphism). To fill these gaps, we propose JavaBench, a project-level Java benchmark that exercises OOP features. It comprises four Java projects with 389 methods in 106 Java classes. The test coverage is up to 92%, and JavaBench is attested by 282 undergraduate students, reaching a 90.93/100 average score (i.e., pass rate against the test suite), ensuring the quality of documentation, code skeleton, and tests. To better evaluate LLM's capability against JavaBench, we introduce a systematic evaluation design covering three context settings and five synthesis strategies at two granularities using three hierarchical metrics. Our extensive experiment yields several interesting findings. First, we noticed that regarding project-level Java programming, LLMs are far behind undergraduate students (no project can be correctly completed by any studied LLMs, and at most 41.17% Pass@5 in a more relaxed evaluation). Second, using method signature as prompt context may strike an ideal balance for project-level code generation. JavaBench is publicly available at https://github.com/java-bench/JavaBench.
UNO-Bench: A Unified Benchmark for Exploring the Compositional Law Between Uni-modal and Omni-modal in OmniModels
Multimodal Large Languages models have been progressing from uni-modal understanding toward unifying visual, audio and language modalities, collectively termed omni models. However, the correlation between uni-modal and omni-modal remains unclear, which requires comprehensive evaluation to drive omni model's intelligence evolution. In this work, we propose a novel, high quality and UNified Omni model benchmark, UNO-Bench, which effectively assesses both UNi-modal and Omni-modal capabilities. The benchmark consists of 3730 human curated samples, with 98% cross-modality solvability, across 44 task types, and an innovative multi-step open-ended question type for assessing complex reasoning. Besides, a general scoring model supporting 6 question types is proposed for automated evaluation with 95% accuracy. Experimental result shows the Compositional Law between omni-modal and uni-modal performance and the omni-modal capability manifests as a bottleneck effect on weak models, while exhibiting synergistic promotion on strong models. The code and data are available at https://github.com/meituan-longcat/UNO-Bench
Perception Test: A Diagnostic Benchmark for Multimodal Video Models
We propose a novel multimodal video benchmark - the Perception Test - to evaluate the perception and reasoning skills of pre-trained multimodal models (e.g. Flamingo, BEiT-3, or GPT-4). Compared to existing benchmarks that focus on computational tasks (e.g. classification, detection or tracking), the Perception Test focuses on skills (Memory, Abstraction, Physics, Semantics) and types of reasoning (descriptive, explanatory, predictive, counterfactual) across video, audio, and text modalities, to provide a comprehensive and efficient evaluation tool. The benchmark probes pre-trained models for their transfer capabilities, in a zero-shot / few-shot or limited finetuning regime. For these purposes, the Perception Test introduces 11.6k real-world videos, 23s average length, designed to show perceptually interesting situations, filmed by around 100 participants worldwide. The videos are densely annotated with six types of labels (multiple-choice and grounded video question-answers, object and point tracks, temporal action and sound segments), enabling both language and non-language evaluations. The fine-tuning and validation splits of the benchmark are publicly available (CC-BY license), in addition to a challenge server with a held-out test split. Human baseline results compared to state-of-the-art video QA models show a significant gap in performance (91.4% vs 43.6%), suggesting that there is significant room for improvement in multimodal video understanding. Dataset, baselines code, and challenge server are available at https://github.com/deepmind/perception_test
How Many Instructions Can LLMs Follow at Once?
Production-grade LLM systems require robust adherence to dozens or even hundreds of instructions simultaneously. However, the instruction-following capabilities of LLMs at high instruction densities have not yet been characterized, as existing benchmarks only evaluate models on tasks with a single or few instructions. We introduce IFScale, a simple benchmark of 500 keyword-inclusion instructions for a business report writing task to measure how instruction-following performance degrades as instruction density increases. We evaluate 20 state-of-the-art models across seven major providers and find that even the best frontier models only achieve 68% accuracy at the max density of 500 instructions. Our analysis reveals model size and reasoning capability to correlate with 3 distinct performance degradation patterns, bias towards earlier instructions, and distinct categories of instruction-following errors. Our insights can help inform design of instruction-dense prompts in real-world applications and highlight important performance-latency tradeoffs. We open-source the benchmark and all results for further analysis at https://distylai.github.io/IFScale.
OoDIS: Anomaly Instance Segmentation Benchmark
Autonomous vehicles require a precise understanding of their environment to navigate safely. Reliable identification of unknown objects, especially those that are absent during training, such as wild animals, is critical due to their potential to cause serious accidents. Significant progress in semantic segmentation of anomalies has been driven by the availability of out-of-distribution (OOD) benchmarks. However, a comprehensive understanding of scene dynamics requires the segmentation of individual objects, and thus the segmentation of instances is essential. Development in this area has been lagging, largely due to the lack of dedicated benchmarks. To address this gap, we have extended the most commonly used anomaly segmentation benchmarks to include the instance segmentation task. Our evaluation of anomaly instance segmentation methods shows that this challenge remains an unsolved problem. The benchmark website and the competition page can be found at: https://vision.rwth-aachen.de/oodis .
Learning to Estimate Hidden Motions with Global Motion Aggregation
Occlusions pose a significant challenge to optical flow algorithms that rely on local evidences. We consider an occluded point to be one that is imaged in the first frame but not in the next, a slight overloading of the standard definition since it also includes points that move out-of-frame. Estimating the motion of these points is extremely difficult, particularly in the two-frame setting. Previous work relies on CNNs to learn occlusions, without much success, or requires multiple frames to reason about occlusions using temporal smoothness. In this paper, we argue that the occlusion problem can be better solved in the two-frame case by modelling image self-similarities. We introduce a global motion aggregation module, a transformer-based approach to find long-range dependencies between pixels in the first image, and perform global aggregation on the corresponding motion features. We demonstrate that the optical flow estimates in the occluded regions can be significantly improved without damaging the performance in non-occluded regions. This approach obtains new state-of-the-art results on the challenging Sintel dataset, improving the average end-point error by 13.6% on Sintel Final and 13.7% on Sintel Clean. At the time of submission, our method ranks first on these benchmarks among all published and unpublished approaches. Code is available at https://github.com/zacjiang/GMA
Task Me Anything
Benchmarks for large multimodal language models (MLMs) now serve to simultaneously assess the general capabilities of models instead of evaluating for a specific capability. As a result, when a developer wants to identify which models to use for their application, they are overwhelmed by the number of benchmarks and remain uncertain about which benchmark's results are most reflective of their specific use case. This paper introduces Task-Me-Anything, a benchmark generation engine which produces a benchmark tailored to a user's needs. Task-Me-Anything maintains an extendable taxonomy of visual assets and can programmatically generate a vast number of task instances. Additionally, it algorithmically addresses user queries regarding MLM performance efficiently within a computational budget. It contains 113K images, 10K videos, 2K 3D object assets, over 365 object categories, 655 attributes, and 335 relationships. It can generate 750M image/video question-answering pairs, which focus on evaluating MLM perceptual capabilities. Task-Me-Anything reveals critical insights: open-source MLMs excel in object and attribute recognition but lack spatial and temporal understanding; each model exhibits unique strengths and weaknesses; larger models generally perform better, though exceptions exist; and GPT4o demonstrates challenges in recognizing rotating/moving objects and distinguishing colors.
Efficient Benchmarking (of Language Models)
The increasing versatility of language models LMs has given rise to a new class of benchmarks that comprehensively assess a broad range of capabilities. Such benchmarks are associated with massive computational costs reaching thousands of GPU hours per model. However the efficiency aspect of these evaluation efforts had raised little discussion in the literature. In this work we present the problem of Efficient Benchmarking namely intelligently reducing the computation costs of LM evaluation without compromising reliability. Using the HELM benchmark as a test case we investigate how different benchmark design choices affect the computation-reliability tradeoff. We propose to evaluate the reliability of such decisions by using a new measure Decision Impact on Reliability DIoR for short. We find for example that the current leader on HELM may change by merely removing a low-ranked model from the benchmark and observe that a handful of examples suffice to obtain the correct benchmark ranking. Conversely a slightly different choice of HELM scenarios varies ranking widely. Based on our findings we outline a set of concrete recommendations for more efficient benchmark design and utilization practices leading to dramatic cost savings with minimal loss of benchmark reliability often reducing computation by x100 or more.
CODESYNC: Synchronizing Large Language Models with Dynamic Code Evolution at Scale
Large Language Models (LLMs) have exhibited exceptional performance in software engineering yet face challenges in adapting to continually evolving code knowledge, particularly regarding the frequent updates of third-party library APIs. This limitation, stemming from static pre-training datasets, often results in non-executable code or implementations with suboptimal safety and efficiency. To this end, this paper introduces CODESYNC, a data engine for identifying outdated code patterns and collecting real-time code knowledge updates from Python third-party libraries. Building upon CODESYNC, we develop CODESYNCBENCH, a comprehensive benchmark for assessing LLMs' ability to stay synchronized with code evolution, which covers real-world updates for 220 APIs from six Python libraries. Our benchmark offers 3,300 test cases across three evaluation tasks and an update-aware instruction tuning dataset consisting of 2,200 training samples. Extensive experiments on 14 state-of-the-art LLMs reveal that they struggle with dynamic code evolution, even with the support of advanced knowledge updating methods (e.g., DPO, ORPO, and SimPO). We believe that our benchmark can offer a strong foundation for the development of more effective methods for real-time code knowledge updating in the future. The experimental code and dataset are publicly available at: https://github.com/Lucky-voyage/Code-Sync.
CoderUJB: An Executable and Unified Java Benchmark for Practical Programming Scenarios
In the evolving landscape of large language models (LLMs) tailored for software engineering, the need for benchmarks that accurately reflect real-world development scenarios is paramount. Current benchmarks are either too simplistic or fail to capture the multi-tasking nature of software development. To address this, we introduce CoderUJB, a new benchmark designed to evaluate LLMs across diverse Java programming tasks that are executable and reflective of actual development scenarios, acknowledging Java's prevalence in real-world software production. CoderUJB comprises 2,239 programming questions derived from 17 real open-source Java projects and spans five practical programming tasks. Our empirical study on this benchmark investigates the coding abilities of various open-source and closed-source LLMs, examining the effects of continued pre-training in specific programming languages code and instruction fine-tuning on their performance. The findings indicate that while LLMs exhibit strong potential, challenges remain, particularly in non-functional code generation (e.g., test generation and defect detection). Importantly, our results advise caution in the specific programming languages continued pre-training and instruction fine-tuning, as these techniques could hinder model performance on certain tasks, suggesting the need for more nuanced strategies. CoderUJB thus marks a significant step towards more realistic evaluations of programming capabilities in LLMs, and our study provides valuable insights for the future development of these models in software engineering.
DL3DV-10K: A Large-Scale Scene Dataset for Deep Learning-based 3D Vision
We have witnessed significant progress in deep learning-based 3D vision, ranging from neural radiance field (NeRF) based 3D representation learning to applications in novel view synthesis (NVS). However, existing scene-level datasets for deep learning-based 3D vision, limited to either synthetic environments or a narrow selection of real-world scenes, are quite insufficient. This insufficiency not only hinders a comprehensive benchmark of existing methods but also caps what could be explored in deep learning-based 3D analysis. To address this critical gap, we present DL3DV-10K, a large-scale scene dataset, featuring 51.2 million frames from 10,510 videos captured from 65 types of point-of-interest (POI) locations, covering both bounded and unbounded scenes, with different levels of reflection, transparency, and lighting. We conducted a comprehensive benchmark of recent NVS methods on DL3DV-10K, which revealed valuable insights for future research in NVS. In addition, we have obtained encouraging results in a pilot study to learn generalizable NeRF from DL3DV-10K, which manifests the necessity of a large-scale scene-level dataset to forge a path toward a foundation model for learning 3D representation. Our DL3DV-10K dataset, benchmark results, and models will be publicly accessible at https://dl3dv-10k.github.io/DL3DV-10K/.
AutoPresent: Designing Structured Visuals from Scratch
Designing structured visuals such as presentation slides is essential for communicative needs, necessitating both content creation and visual planning skills. In this work, we tackle the challenge of automated slide generation, where models produce slide presentations from natural language (NL) instructions. We first introduce the SlidesBench benchmark, the first benchmark for slide generation with 7k training and 585 testing examples derived from 310 slide decks across 10 domains. SlidesBench supports evaluations that are (i)reference-based to measure similarity to a target slide, and (ii)reference-free to measure the design quality of generated slides alone. We benchmark end-to-end image generation and program generation methods with a variety of models, and find that programmatic methods produce higher-quality slides in user-interactable formats. Built on the success of program generation, we create AutoPresent, an 8B Llama-based model trained on 7k pairs of instructions paired with code for slide generation, and achieve results comparable to the closed-source model GPT-4o. We further explore iterative design refinement where the model is tasked to self-refine its own output, and we found that this process improves the slide's quality. We hope that our work will provide a basis for future work on generating structured visuals.
Scene as Occupancy
Human driver can easily describe the complex traffic scene by visual system. Such an ability of precise perception is essential for driver's planning. To achieve this, a geometry-aware representation that quantizes the physical 3D scene into structured grid map with semantic labels per cell, termed as 3D Occupancy, would be desirable. Compared to the form of bounding box, a key insight behind occupancy is that it could capture the fine-grained details of critical obstacles in the scene, and thereby facilitate subsequent tasks. Prior or concurrent literature mainly concentrate on a single scene completion task, where we might argue that the potential of this occupancy representation might obsess broader impact. In this paper, we propose OccNet, a multi-view vision-centric pipeline with a cascade and temporal voxel decoder to reconstruct 3D occupancy. At the core of OccNet is a general occupancy embedding to represent 3D physical world. Such a descriptor could be applied towards a wide span of driving tasks, including detection, segmentation and planning. To validate the effectiveness of this new representation and our proposed algorithm, we propose OpenOcc, the first dense high-quality 3D occupancy benchmark built on top of nuScenes. Empirical experiments show that there are evident performance gain across multiple tasks, e.g., motion planning could witness a collision rate reduction by 15%-58%, demonstrating the superiority of our method.
Dysca: A Dynamic and Scalable Benchmark for Evaluating Perception Ability of LVLMs
Currently many benchmarks have been proposed to evaluate the perception ability of the Large Vision-Language Models (LVLMs). However, most benchmarks conduct questions by selecting images from existing datasets, resulting in the potential data leakage. Besides, these benchmarks merely focus on evaluating LVLMs on the realistic style images and clean scenarios, leaving the multi-stylized images and noisy scenarios unexplored. In response to these challenges, we propose a dynamic and scalable benchmark named Dysca for evaluating LVLMs by leveraging synthesis images. Specifically, we leverage Stable Diffusion and design a rule-based method to dynamically generate novel images, questions and the corresponding answers. We consider 51 kinds of image styles and evaluate the perception capability in 20 subtasks. Moreover, we conduct evaluations under 4 scenarios (i.e., Clean, Corruption, Print Attacking and Adversarial Attacking) and 3 question types (i.e., Multi-choices, True-or-false and Free-form). Thanks to the generative paradigm, Dysca serves as a scalable benchmark for easily adding new subtasks and scenarios. A total of 8 advanced open-source LVLMs with 10 checkpoints are evaluated on Dysca, revealing the drawbacks of current LVLMs. The benchmark is released in https://github.com/Benchmark-Dysca/Dysca.
PuzzleBench: A Fully Dynamic Evaluation Framework for Large Multimodal Models on Puzzle Solving
Large Multimodal Models (LMMs) have demonstrated impressive capabilities across a wide range of multimodal tasks, achieving ever-increasing performance on various evaluation benchmarks. However, existing benchmarks are typically static and often overlap with pre-training datasets, leading to fixed complexity constraints and substantial data contamination issues. Meanwhile, manually annotated datasets are labor-intensive, time-consuming, and subject to human bias and inconsistency, leading to reliability and reproducibility issues. To address these problems, we propose a fully dynamic multimodal evaluation framework, named Open-ended Visual Puzzle Generation (OVPG), which aims to generate fresh, diverse, and verifiable evaluation data automatically in puzzle-solving tasks. Specifically, the OVPG pipeline consists of a raw material sampling module, a visual content generation module, and a puzzle rule design module, which ensures that each evaluation instance is primitive, highly randomized, and uniquely solvable, enabling continual adaptation to the evolving capabilities of LMMs. Built upon OVPG, we construct PuzzleBench, a dynamic and scalable benchmark comprising 11,840 VQA samples. It features six carefully designed puzzle tasks targeting three core LMM competencies, visual recognition, logical reasoning, and context understanding. PuzzleBench differs from static benchmarks that quickly become outdated. It enables ongoing dataset refreshing through OVPG and a rich set of open-ended puzzle designs, allowing seamless adaptation to the evolving capabilities of LMMs.
ManiSkill2: A Unified Benchmark for Generalizable Manipulation Skills
Generalizable manipulation skills, which can be composed to tackle long-horizon and complex daily chores, are one of the cornerstones of Embodied AI. However, existing benchmarks, mostly composed of a suite of simulatable environments, are insufficient to push cutting-edge research works because they lack object-level topological and geometric variations, are not based on fully dynamic simulation, or are short of native support for multiple types of manipulation tasks. To this end, we present ManiSkill2, the next generation of the SAPIEN ManiSkill benchmark, to address critical pain points often encountered by researchers when using benchmarks for generalizable manipulation skills. ManiSkill2 includes 20 manipulation task families with 2000+ object models and 4M+ demonstration frames, which cover stationary/mobile-base, single/dual-arm, and rigid/soft-body manipulation tasks with 2D/3D-input data simulated by fully dynamic engines. It defines a unified interface and evaluation protocol to support a wide range of algorithms (e.g., classic sense-plan-act, RL, IL), visual observations (point cloud, RGBD), and controllers (e.g., action type and parameterization). Moreover, it empowers fast visual input learning algorithms so that a CNN-based policy can collect samples at about 2000 FPS with 1 GPU and 16 processes on a regular workstation. It implements a render server infrastructure to allow sharing rendering resources across all environments, thereby significantly reducing memory usage. We open-source all codes of our benchmark (simulator, environments, and baselines) and host an online challenge open to interdisciplinary researchers.
TritonBench: Benchmarking Large Language Model Capabilities for Generating Triton Operators
Triton, a high-level Python-like language designed for building efficient GPU kernels, is widely adopted in deep learning frameworks due to its portability, flexibility, and accessibility. However, programming and parallel optimization still require considerable trial and error from Triton developers. Despite advances in large language models (LLMs) for conventional code generation, these models struggle to generate accurate, performance-optimized Triton code, as they lack awareness of its specifications and the complexities of GPU programming. More critically, there is an urgent need for systematic evaluations tailored to Triton. In this work, we introduce TritonBench, the first comprehensive benchmark for Triton operator generation. TritonBench features two evaluation channels: a curated set of 184 real-world operators from GitHub and a collection of operators aligned with PyTorch interfaces. Unlike conventional code benchmarks prioritizing functional correctness, TritonBench also profiles efficiency performance on widely deployed GPUs aligned with industry applications. Our study reveals that current state-of-the-art code LLMs struggle to generate efficient Triton operators, highlighting a significant gap in high-performance code generation. TritonBench will be available at https://github.com/thunlp/TritonBench.
GEOBench-VLM: Benchmarking Vision-Language Models for Geospatial Tasks
While numerous recent benchmarks focus on evaluating generic Vision-Language Models (VLMs), they fall short in addressing the unique demands of geospatial applications. Generic VLM benchmarks are not designed to handle the complexities of geospatial data, which is critical for applications such as environmental monitoring, urban planning, and disaster management. Some of the unique challenges in geospatial domain include temporal analysis for changes, counting objects in large quantities, detecting tiny objects, and understanding relationships between entities occurring in Remote Sensing imagery. To address this gap in the geospatial domain, we present GEOBench-VLM, a comprehensive benchmark specifically designed to evaluate VLMs on geospatial tasks, including scene understanding, object counting, localization, fine-grained categorization, and temporal analysis. Our benchmark features over 10,000 manually verified instructions and covers a diverse set of variations in visual conditions, object type, and scale. We evaluate several state-of-the-art VLMs to assess their accuracy within the geospatial context. The results indicate that although existing VLMs demonstrate potential, they face challenges when dealing with geospatial-specific examples, highlighting the room for further improvements. Specifically, the best-performing GPT4o achieves only 40\% accuracy on MCQs, which is only double the random guess performance. Our benchmark is publicly available at https://github.com/The-AI-Alliance/GEO-Bench-VLM .
Robo3D: Towards Robust and Reliable 3D Perception against Corruptions
The robustness of 3D perception systems under natural corruptions from environments and sensors is pivotal for safety-critical applications. Existing large-scale 3D perception datasets often contain data that are meticulously cleaned. Such configurations, however, cannot reflect the reliability of perception models during the deployment stage. In this work, we present Robo3D, the first comprehensive benchmark heading toward probing the robustness of 3D detectors and segmentors under out-of-distribution scenarios against natural corruptions that occur in real-world environments. Specifically, we consider eight corruption types stemming from adversarial weather conditions, external disturbances, and internal sensor failure. We uncover that, although promising results have been progressively achieved on standard benchmarks, state-of-the-art 3D perception models are at risk of being vulnerable to corruptions. We draw key observations on the use of data representations, augmentation schemes, and training strategies, that could severely affect the model's performance. To pursue better robustness, we propose a density-insensitive training framework along with a simple flexible voxelization strategy to enhance the model resiliency. We hope our benchmark and approach could inspire future research in designing more robust and reliable 3D perception models. Our robustness benchmark suite is publicly available.
SWE-Bench Pro: Can AI Agents Solve Long-Horizon Software Engineering Tasks?
We introduce SWE-Bench Pro, a substantially more challenging benchmark that builds upon the best practices of SWE-BENCH [25], but is explicitly designed to capture realistic, complex, enterprise-level problems beyond the scope of SWE-BENCH. SWE-BENCH PRO contains 1,865 problems sourced from a diverse set of 41 actively maintained repositories spanning business applications, B2B services, and developer tools. The benchmark is partitioned into a public set with open access to problems sourced from 11 repositories, a held-out set of 12 repositories and a commercial set of 18 proprietary repositories where we have formal partnership agreements with early-stage startups. Problems in the held-out and the commercial set are not publicly accessible, but we release results on the commercial set. Our benchmark features long-horizon tasks that may require hours to days for a professional software engineer to complete, often involving patches across multiple files and substantial code modifications. All tasks are human-verified and augmented with sufficient context to ensure resolvability. In our evaluation of widely used coding models, under a unified scaffold, we observe that their performance on SWE-Bench PRO remains below 25% (Pass@1), with GPT-5 achieving the highest score to date at 23.3%. To better understand these limitations, we cluster the failure modes observed in the collected agent trajectories for a clearer characterization of the error patterns exhibited by current models. Overall, SWE-BENCH PRO provides a contamination-resistant testbed that more faithfully captures the complexity and diversity of real-world software development, advancing the pursuit of truly autonomous software engineering agents at a professional level.
An OpenMind for 3D medical vision self-supervised learning
The field of self-supervised learning (SSL) for 3D medical images lacks consistency and standardization. While many methods have been developed, it is impossible to identify the current state-of-the-art, due to i) varying and small pretraining datasets, ii) varying architectures, and iii) being evaluated on differing downstream datasets. In this paper, we bring clarity to this field and lay the foundation for further method advancements through three key contributions: We a) publish the largest publicly available pre-training dataset comprising 114k 3D brain MRI volumes, enabling all practitioners to pre-train on a large-scale dataset. We b) benchmark existing 3D self-supervised learning methods on this dataset for a state-of-the-art CNN and Transformer architecture, clarifying the state of 3D SSL pre-training. Among many findings, we show that pre-trained methods can exceed a strong from-scratch nnU-Net ResEnc-L baseline. Lastly, we c) publish the code of our pre-training and fine-tuning frameworks and provide the pre-trained models created during the benchmarking process to facilitate rapid adoption and reproduction.
Robin3D: Improving 3D Large Language Model via Robust Instruction Tuning
Recent advancements in 3D Large Language Models (3DLLMs) have highlighted their potential in building general-purpose agents in the 3D real world, yet challenges remain due to the lack of high-quality robust instruction-following data, leading to limited discriminative power and generalization of 3DLLMs. In this paper, we introduce Robin3D, a powerful 3DLLM trained on large-scale instruction-following data generated by our novel data engine, Robust Instruction Generation (RIG) engine. RIG generates two key instruction data: 1) the Adversarial Instruction-following data, which features mixed negative and positive samples to enhance the model's discriminative understanding. 2) the Diverse Instruction-following data, which contains various instruction styles to enhance model's generalization. As a result, we construct 1 million instruction-following data, consisting of 344K Adversarial samples, 508K Diverse samples, and 165K benchmark training set samples. To better handle these complex instructions, Robin3D first incorporates Relation-Augmented Projector to enhance spatial understanding, and then strengthens the object referring and grounding ability through ID-Feature Bonding. Robin3D consistently outperforms previous methods across five widely-used 3D multimodal learning benchmarks, without the need for task-specific fine-tuning. Notably, we achieve a 7.8\% improvement in the grounding task (Multi3DRefer) and a 6.9\% improvement in the captioning task (Scan2Cap).
Omni-SafetyBench: A Benchmark for Safety Evaluation of Audio-Visual Large Language Models
The rise of Omni-modal Large Language Models (OLLMs), which integrate visual and auditory processing with text, necessitates robust safety evaluations to mitigate harmful outputs. However, no dedicated benchmarks currently exist for OLLMs, and prior benchmarks designed for other LLMs lack the ability to assess safety performance under audio-visual joint inputs or cross-modal safety consistency. To fill this gap, we introduce Omni-SafetyBench, the first comprehensive parallel benchmark for OLLM safety evaluation, featuring 24 modality combinations and variations with 972 samples each, including dedicated audio-visual harm cases. Considering OLLMs' comprehension challenges with complex omni-modal inputs and the need for cross-modal consistency evaluation, we propose tailored metrics: a Safety-score based on conditional Attack Success Rate (C-ASR) and Refusal Rate (C-RR) to account for comprehension failures, and a Cross-Modal Safety Consistency Score (CMSC-score) to measure consistency across modalities. Evaluating 6 open-source and 4 closed-source OLLMs reveals critical vulnerabilities: (1) no model excels in both overall safety and consistency, with only 3 models achieving over 0.6 in both metrics and top performer scoring around 0.8; (2) safety defenses weaken with complex inputs, especially audio-visual joints; (3) severe weaknesses persist, with some models scoring as low as 0.14 on specific modalities. Our benchmark and metrics highlight urgent needs for enhanced OLLM safety, providing a foundation for future improvements.
Towards Real-Time Open-Vocabulary Video Instance Segmentation
In this paper, we address the challenge of performing open-vocabulary video instance segmentation (OV-VIS) in real-time. We analyze the computational bottlenecks of state-of-the-art foundation models that performs OV-VIS, and propose a new method, TROY-VIS, that significantly improves processing speed while maintaining high accuracy. We introduce three key techniques: (1) Decoupled Attention Feature Enhancer to speed up information interaction between different modalities and scales; (2) Flash Embedding Memory for obtaining fast text embeddings of object categories; and, (3) Kernel Interpolation for exploiting the temporal continuity in videos. Our experiments demonstrate that TROY-VIS achieves the best trade-off between accuracy and speed on two large-scale OV-VIS benchmarks, BURST and LV-VIS, running 20x faster than GLEE-Lite (25 FPS v.s. 1.25 FPS) with comparable or even better accuracy. These results demonstrate TROY-VIS's potential for real-time applications in dynamic environments such as mobile robotics and augmented reality. Code and model will be released at https://github.com/google-research/troyvis.
ComplexBench-Edit: Benchmarking Complex Instruction-Driven Image Editing via Compositional Dependencies
Text-driven image editing has achieved remarkable success in following single instructions. However, real-world scenarios often involve complex, multi-step instructions, particularly ``chain'' instructions where operations are interdependent. Current models struggle with these intricate directives, and existing benchmarks inadequately evaluate such capabilities. Specifically, they often overlook multi-instruction and chain-instruction complexities, and common consistency metrics are flawed. To address this, we introduce ComplexBench-Edit, a novel benchmark designed to systematically assess model performance on complex, multi-instruction, and chain-dependent image editing tasks. ComplexBench-Edit also features a new vision consistency evaluation method that accurately assesses non-modified regions by excluding edited areas. Furthermore, we propose a simple yet powerful Chain-of-Thought (CoT)-based approach that significantly enhances the ability of existing models to follow complex instructions. Our extensive experiments demonstrate ComplexBench-Edit's efficacy in differentiating model capabilities and highlight the superior performance of our CoT-based method in handling complex edits. The data and code are released at https://github.com/llllly26/ComplexBench-Edit.
ARMBench: An Object-centric Benchmark Dataset for Robotic Manipulation
This paper introduces Amazon Robotic Manipulation Benchmark (ARMBench), a large-scale, object-centric benchmark dataset for robotic manipulation in the context of a warehouse. Automation of operations in modern warehouses requires a robotic manipulator to deal with a wide variety of objects, unstructured storage, and dynamically changing inventory. Such settings pose challenges in perceiving the identity, physical characteristics, and state of objects during manipulation. Existing datasets for robotic manipulation consider a limited set of objects or utilize 3D models to generate synthetic scenes with limitation in capturing the variety of object properties, clutter, and interactions. We present a large-scale dataset collected in an Amazon warehouse using a robotic manipulator performing object singulation from containers with heterogeneous contents. ARMBench contains images, videos, and metadata that corresponds to 235K+ pick-and-place activities on 190K+ unique objects. The data is captured at different stages of manipulation, i.e., pre-pick, during transfer, and after placement. Benchmark tasks are proposed by virtue of high-quality annotations and baseline performance evaluation are presented on three visual perception challenges, namely 1) object segmentation in clutter, 2) object identification, and 3) defect detection. ARMBench can be accessed at http://armbench.com
DeepSea MOT: A benchmark dataset for multi-object tracking on deep-sea video
Benchmarking multi-object tracking and object detection model performance is an essential step in machine learning model development, as it allows researchers to evaluate model detection and tracker performance on human-generated 'test' data, facilitating consistent comparisons between models and trackers and aiding performance optimization. In this study, a novel benchmark video dataset was developed and used to assess the performance of several Monterey Bay Aquarium Research Institute object detection models and a FathomNet single-class object detection model together with several trackers. The dataset consists of four video sequences representing midwater and benthic deep-sea habitats. Performance was evaluated using Higher Order Tracking Accuracy, a metric that balances detection, localization, and association accuracy. To the best of our knowledge, this is the first publicly available benchmark for multi-object tracking in deep-sea video footage. We provide the benchmark data, a clearly documented workflow for generating additional benchmark videos, as well as example Python notebooks for computing metrics.
CrossLoc3D: Aerial-Ground Cross-Source 3D Place Recognition
We present CrossLoc3D, a novel 3D place recognition method that solves a large-scale point matching problem in a cross-source setting. Cross-source point cloud data corresponds to point sets captured by depth sensors with different accuracies or from different distances and perspectives. We address the challenges in terms of developing 3D place recognition methods that account for the representation gap between points captured by different sources. Our method handles cross-source data by utilizing multi-grained features and selecting convolution kernel sizes that correspond to most prominent features. Inspired by the diffusion models, our method uses a novel iterative refinement process that gradually shifts the embedding spaces from different sources to a single canonical space for better metric learning. In addition, we present CS-Campus3D, the first 3D aerial-ground cross-source dataset consisting of point cloud data from both aerial and ground LiDAR scans. The point clouds in CS-Campus3D have representation gaps and other features like different views, point densities, and noise patterns. We show that our CrossLoc3D algorithm can achieve an improvement of 4.74% - 15.37% in terms of the top 1 average recall on our CS-Campus3D benchmark and achieves performance comparable to state-of-the-art 3D place recognition method on the Oxford RobotCar. We will release the code and CS-Campus3D benchmark.
RealBench: Benchmarking Verilog Generation Models with Real-World IP Designs
The automatic generation of Verilog code using Large Language Models (LLMs) has garnered significant interest in hardware design automation. However, existing benchmarks for evaluating LLMs in Verilog generation fall short in replicating real-world design workflows due to their designs' simplicity, inadequate design specifications, and less rigorous verification environments. To address these limitations, we present RealBench, the first benchmark aiming at real-world IP-level Verilog generation tasks. RealBench features complex, structured, real-world open-source IP designs, multi-modal and formatted design specifications, and rigorous verification environments, including 100% line coverage testbenches and a formal checker. It supports both module-level and system-level tasks, enabling comprehensive assessments of LLM capabilities. Evaluations on various LLMs and agents reveal that even one of the best-performing LLMs, o1-preview, achieves only a 13.3% pass@1 on module-level tasks and 0% on system-level tasks, highlighting the need for stronger Verilog generation models in the future. The benchmark is open-sourced at https://github.com/IPRC-DIP/RealBench.
VBench++: Comprehensive and Versatile Benchmark Suite for Video Generative Models
Video generation has witnessed significant advancements, yet evaluating these models remains a challenge. A comprehensive evaluation benchmark for video generation is indispensable for two reasons: 1) Existing metrics do not fully align with human perceptions; 2) An ideal evaluation system should provide insights to inform future developments of video generation. To this end, we present VBench, a comprehensive benchmark suite that dissects "video generation quality" into specific, hierarchical, and disentangled dimensions, each with tailored prompts and evaluation methods. VBench has several appealing properties: 1) Comprehensive Dimensions: VBench comprises 16 dimensions in video generation (e.g., subject identity inconsistency, motion smoothness, temporal flickering, and spatial relationship, etc). The evaluation metrics with fine-grained levels reveal individual models' strengths and weaknesses. 2) Human Alignment: We also provide a dataset of human preference annotations to validate our benchmarks' alignment with human perception, for each evaluation dimension respectively. 3) Valuable Insights: We look into current models' ability across various evaluation dimensions, and various content types. We also investigate the gaps between video and image generation models. 4) Versatile Benchmarking: VBench++ supports evaluating text-to-video and image-to-video. We introduce a high-quality Image Suite with an adaptive aspect ratio to enable fair evaluations across different image-to-video generation settings. Beyond assessing technical quality, VBench++ evaluates the trustworthiness of video generative models, providing a more holistic view of model performance. 5) Full Open-Sourcing: We fully open-source VBench++ and continually add new video generation models to our leaderboard to drive forward the field of video generation.
CodeScope: An Execution-based Multilingual Multitask Multidimensional Benchmark for Evaluating LLMs on Code Understanding and Generation
Large Language Models (LLMs) have demonstrated remarkable performance on coding related tasks, particularly on assisting humans in programming and facilitating programming automation. However, existing benchmarks for evaluating the code understanding and generation capacities of LLMs suffer from severe limitations. First, most benchmarks are deficient as they focus on a narrow range of popular programming languages and specific tasks, whereas the real-world software development scenarios show dire need to implement systems with multilingual programming environments to satisfy diverse requirements. Practical programming practices also strongly expect multi-task settings for testing coding capabilities of LLMs comprehensively and robustly. Second, most benchmarks also fail to consider the actual executability and the consistency of execution results of the generated code. To bridge these gaps between existing benchmarks and expectations from practical applications, we introduce CodeScope, an execution-based, multilingual, multi-task, multi-dimensional evaluation benchmark for comprehensively gauging LLM capabilities on coding tasks. CodeScope covers 43 programming languages and 8 coding tasks. It evaluates the coding performance of LLMs from three dimensions (perspectives): difficulty, efficiency, and length. To facilitate execution-based evaluations of code generation, we develop MultiCodeEngine, an automated code execution engine that supports 14 programming languages. Finally, we systematically evaluate and analyze 8 mainstream LLMs on CodeScope tasks and demonstrate the superior breadth and challenges of CodeScope for evaluating LLMs on code understanding and generation tasks compared to other benchmarks. The CodeScope benchmark and datasets are publicly available at https://github.com/WeixiangYAN/CodeScope.
PM4Bench: A Parallel Multilingual Multi-Modal Multi-task Benchmark for Large Vision Language Model
Existing multilingual benchmarks for Large Vision Language Models (LVLMs) suffer from limitations including language-specific content biases, disjointed multimodal input formats, and a lack of safety evaluation. To address these gaps, we propose PM4Bench, the first Parallel Multilingual Multi-Modal Multi-task Benchmark for LVLMs. PM4Bench features a parallel corpus design across 10 languages, enabling fair and accurate cross-lingual comparisons. It includes the vision setting where text and queries are embedded in images, requiring LVLMs to simultaneously "see", "read", and "think", aligning with real-world applications. Additionally, PM4Bench incorporates safety evaluations, addressing critical oversight in existing multilingual benchmarks. Using PM4Bench, we evaluate 11 mainstream LVLMs, revealing significant cross-linguistic performance disparities, particularly in vision settings, and identifying OCR capability as a key determinant of these imbalances. We will release PM4Bench at https://github.com/opendatalab/PM4Bench .
MODIPHY: Multimodal Obscured Detection for IoT using PHantom Convolution-Enabled Faster YOLO
Low-light conditions and occluded scenarios impede object detection in real-world Internet of Things (IoT) applications like autonomous vehicles and security systems. While advanced machine learning models strive for accuracy, their computational demands clash with the limitations of resource-constrained devices, hampering real-time performance. In our current research, we tackle this challenge, by introducing "YOLO Phantom", one of the smallest YOLO models ever conceived. YOLO Phantom utilizes the novel Phantom Convolution block, achieving comparable accuracy to the latest YOLOv8n model while simultaneously reducing both parameters and model size by 43%, resulting in a significant 19% reduction in Giga Floating Point Operations (GFLOPs). YOLO Phantom leverages transfer learning on our multimodal RGB-infrared dataset to address low-light and occlusion issues, equipping it with robust vision under adverse conditions. Its real-world efficacy is demonstrated on an IoT platform with advanced low-light and RGB cameras, seamlessly connecting to an AWS-based notification endpoint for efficient real-time object detection. Benchmarks reveal a substantial boost of 17% and 14% in frames per second (FPS) for thermal and RGB detection, respectively, compared to the baseline YOLOv8n model. For community contribution, both the code and the multimodal dataset are available on GitHub.
3D Object Manipulation in a Single Image using Generative Models
Object manipulation in images aims to not only edit the object's presentation but also gift objects with motion. Previous methods encountered challenges in concurrently handling static editing and dynamic generation, while also struggling to achieve fidelity in object appearance and scene lighting. In this work, we introduce OMG3D, a novel framework that integrates the precise geometric control with the generative power of diffusion models, thus achieving significant enhancements in visual performance. Our framework first converts 2D objects into 3D, enabling user-directed modifications and lifelike motions at the geometric level. To address texture realism, we propose CustomRefiner, a texture refinement module that pre-train a customized diffusion model, aligning the details and style of coarse renderings of 3D rough model with the original image, further refine the texture. Additionally, we introduce IllumiCombiner, a lighting processing module that estimates and corrects background lighting to match human visual perception, resulting in more realistic shadow effects. Extensive experiments demonstrate the outstanding visual performance of our approach in both static and dynamic scenarios. Remarkably, all these steps can be done using one NVIDIA 3090. Project page is at https://whalesong-zrs.github.io/OMG3D-projectpage/
OmniEarth-Bench: Towards Holistic Evaluation of Earth's Six Spheres and Cross-Spheres Interactions with Multimodal Observational Earth Data
Existing benchmarks for Earth science multimodal learning exhibit critical limitations in systematic coverage of geosystem components and cross-sphere interactions, often constrained to isolated subsystems (only in Human-activities sphere or atmosphere) with limited evaluation dimensions (less than 16 tasks). To address these gaps, we introduce OmniEarth-Bench, the first comprehensive multimodal benchmark spanning all six Earth science spheres (atmosphere, lithosphere, Oceansphere, cryosphere, biosphere and Human-activities sphere) and cross-spheres with one hundred expert-curated evaluation dimensions. Leveraging observational data from satellite sensors and in-situ measurements, OmniEarth-Bench integrates 29,779 annotations across four tiers: perception, general reasoning, scientific knowledge reasoning and chain-of-thought (CoT) reasoning. This involves the efforts of 2-5 experts per sphere to establish authoritative evaluation dimensions and curate relevant observational datasets, 40 crowd-sourcing annotators to assist experts for annotations, and finally, OmniEarth-Bench is validated via hybrid expert-crowd workflows to reduce label ambiguity. Experiments on 9 state-of-the-art MLLMs reveal that even the most advanced models struggle with our benchmarks, where none of them reach 35\% accuracy. Especially, in some cross-spheres tasks, the performance of leading models like GPT-4o drops to 0.0\%. OmniEarth-Bench sets a new standard for geosystem-aware AI, advancing both scientific discovery and practical applications in environmental monitoring and disaster prediction. The dataset, source code, and trained models were released.
Benchmarking Neural Network Training Algorithms
Training algorithms, broadly construed, are an essential part of every deep learning pipeline. Training algorithm improvements that speed up training across a wide variety of workloads (e.g., better update rules, tuning protocols, learning rate schedules, or data selection schemes) could save time, save computational resources, and lead to better, more accurate, models. Unfortunately, as a community, we are currently unable to reliably identify training algorithm improvements, or even determine the state-of-the-art training algorithm. In this work, using concrete experiments, we argue that real progress in speeding up training requires new benchmarks that resolve three basic challenges faced by empirical comparisons of training algorithms: (1) how to decide when training is complete and precisely measure training time, (2) how to handle the sensitivity of measurements to exact workload details, and (3) how to fairly compare algorithms that require hyperparameter tuning. In order to address these challenges, we introduce a new, competitive, time-to-result benchmark using multiple workloads running on fixed hardware, the AlgoPerf: Training Algorithms benchmark. Our benchmark includes a set of workload variants that make it possible to detect benchmark submissions that are more robust to workload changes than current widely-used methods. Finally, we evaluate baseline submissions constructed using various optimizers that represent current practice, as well as other optimizers that have recently received attention in the literature. These baseline results collectively demonstrate the feasibility of our benchmark, show that non-trivial gaps between methods exist, and set a provisional state-of-the-art for future benchmark submissions to try and surpass.
VisIT-Bench: A Benchmark for Vision-Language Instruction Following Inspired by Real-World Use
We introduce VisIT-Bench (Visual InsTruction Benchmark), a benchmark for evaluation of instruction-following vision-language models for real-world use. Our starting point is curating 70 'instruction families' that we envision instruction tuned vision-language models should be able to address. Extending beyond evaluations like VQAv2 and COCO, tasks range from basic recognition to game playing and creative generation. Following curation, our dataset comprises 592 test queries, each with a human-authored instruction-conditioned caption. These descriptions surface instruction-specific factors, e.g., for an instruction asking about the accessibility of a storefront for wheelchair users, the instruction-conditioned caption describes ramps/potential obstacles. These descriptions enable 1) collecting human-verified reference outputs for each instance; and 2) automatic evaluation of candidate multimodal generations using a text-only LLM, aligning with human judgment. We quantify quality gaps between models and references using both human and automatic evaluations; e.g., the top-performing instruction-following model wins against the GPT-4 reference in just 27% of the comparison. VisIT-Bench is dynamic to participate, practitioners simply submit their model's response on the project website; Data, code and leaderboard is available at visit-bench.github.io.
How Should I Build A Benchmark? Revisiting Code-Related Benchmarks For LLMs
Various benchmarks have been proposed to assess the performance of large language models (LLMs) in different coding scenarios. We refer to them as code-related benchmarks. However, there are no systematic guidelines by which such a benchmark should be developed to ensure its quality, reliability, and reproducibility. We propose How2Bench, which is comprised of a 55- 55-criteria checklist as a set of guidelines to govern the development of code-related benchmarks comprehensively. Using HOW2BENCH, we profiled 274 benchmarks released within the past decade and found concerning issues. Nearly 70% of the benchmarks did not take measures for data quality assurance; over 10% did not even open source or only partially open source. Many highly cited benchmarks have loopholes, including duplicated samples, incorrect reference codes/tests/prompts, and unremoved sensitive/confidential information. Finally, we conducted a human study involving 49 participants, which revealed significant gaps in awareness of the importance of data quality, reproducibility, and transparency.
Benchmarking the Sim-to-Real Gap in Cloth Manipulation
Realistic physics engines play a crucial role for learning to manipulate deformable objects such as garments in simulation. By doing so, researchers can circumvent challenges such as sensing the deformation of the object in the realworld. In spite of the extensive use of simulations for this task, few works have evaluated the reality gap between deformable object simulators and real-world data. We present a benchmark dataset to evaluate the sim-to-real gap in cloth manipulation. The dataset is collected by performing a dynamic as well as a quasi-static cloth manipulation task involving contact with a rigid table. We use the dataset to evaluate the reality gap, computational time, and simulation stability of four popular deformable object simulators: MuJoCo, Bullet, Flex, and SOFA. Additionally, we discuss the benefits and drawbacks of each simulator. The benchmark dataset is open-source. Supplementary material, videos, and code, can be found at https://sites.google.com/view/cloth-sim2real-benchmark.
The ObjectFolder Benchmark: Multisensory Learning with Neural and Real Objects
We introduce the ObjectFolder Benchmark, a benchmark suite of 10 tasks for multisensory object-centric learning, centered around object recognition, reconstruction, and manipulation with sight, sound, and touch. We also introduce the ObjectFolder Real dataset, including the multisensory measurements for 100 real-world household objects, building upon a newly designed pipeline for collecting the 3D meshes, videos, impact sounds, and tactile readings of real-world objects. We conduct systematic benchmarking on both the 1,000 multisensory neural objects from ObjectFolder, and the real multisensory data from ObjectFolder Real. Our results demonstrate the importance of multisensory perception and reveal the respective roles of vision, audio, and touch for different object-centric learning tasks. By publicly releasing our dataset and benchmark suite, we hope to catalyze and enable new research in multisensory object-centric learning in computer vision, robotics, and beyond. Project page: https://objectfolder.stanford.edu
FMB: a Functional Manipulation Benchmark for Generalizable Robotic Learning
In this paper, we propose a real-world benchmark for studying robotic learning in the context of functional manipulation: a robot needs to accomplish complex long-horizon behaviors by composing individual manipulation skills in functionally relevant ways. The core design principles of our Functional Manipulation Benchmark (FMB) emphasize a harmonious balance between complexity and accessibility. Tasks are deliberately scoped to be narrow, ensuring that models and datasets of manageable scale can be utilized effectively to track progress. Simultaneously, they are diverse enough to pose a significant generalization challenge. Furthermore, the benchmark is designed to be easily replicable, encompassing all essential hardware and software components. To achieve this goal, FMB consists of a variety of 3D-printed objects designed for easy and accurate replication by other researchers. The objects are procedurally generated, providing a principled framework to study generalization in a controlled fashion. We focus on fundamental manipulation skills, including grasping, repositioning, and a range of assembly behaviors. The FMB can be used to evaluate methods for acquiring individual skills, as well as methods for combining and ordering such skills to solve complex, multi-stage manipulation tasks. We also offer an imitation learning framework that includes a suite of policies trained to solve the proposed tasks. This enables researchers to utilize our tasks as a versatile toolkit for examining various parts of the pipeline. For example, researchers could propose a better design for a grasping controller and evaluate it in combination with our baseline reorientation and assembly policies as part of a pipeline for solving multi-stage tasks. Our dataset, object CAD files, code, and evaluation videos can be found on our project website: https://functional-manipulation-benchmark.github.io
RTL-Repo: A Benchmark for Evaluating LLMs on Large-Scale RTL Design Projects
Large Language Models (LLMs) have demonstrated potential in assisting with Register Transfer Level (RTL) design tasks. Nevertheless, there remains to be a significant gap in benchmarks that accurately reflect the complexity of real-world RTL projects. To address this, this paper presents RTL-Repo, a benchmark specifically designed to evaluate LLMs on large-scale RTL design projects. RTL-Repo includes a comprehensive dataset of more than 4000 Verilog code samples extracted from public GitHub repositories, with each sample providing the full context of the corresponding repository. We evaluate several state-of-the-art models on the RTL-Repo benchmark, including GPT-4, GPT-3.5, Starcoder2, alongside Verilog-specific models like VeriGen and RTLCoder, and compare their performance in generating Verilog code for complex projects. The RTL-Repo benchmark provides a valuable resource for the hardware design community to assess and compare LLMs' performance in real-world RTL design scenarios and train LLMs specifically for Verilog code generation in complex, multi-file RTL projects. RTL-Repo is open-source and publicly available on Github.
Alpha Excel Benchmark
This study presents a novel benchmark for evaluating Large Language Models (LLMs) using challenges derived from the Financial Modeling World Cup (FMWC) Excel competitions. We introduce a methodology for converting 113 existing FMWC challenges into programmatically evaluable JSON formats and use this dataset to compare the performance of several leading LLMs. Our findings demonstrate significant variations in performance across different challenge categories, with models showing specific strengths in pattern recognition tasks but struggling with complex numerical reasoning. The benchmark provides a standardized framework for assessing LLM capabilities in realistic business-oriented tasks rather than abstract academic problems. This research contributes to the growing field of AI benchmarking by establishing proficiency among the 1.5 billion people who daily use Microsoft Excel as a meaningful evaluation metric that bridges the gap between academic AI benchmarks and practical business applications.
IWR-Bench: Can LVLMs reconstruct interactive webpage from a user interaction video?
The webpage-to-code task requires models to understand visual representations of webpages and generate corresponding code. However, existing benchmarks primarily focus on static screenshot-to-code tasks, thereby overlooking the dynamic interactions fundamental to real-world web applications. To address this limitation, this paper introduces IWR-Bench, a novel benchmark for evaluating the capabilities of Large Vision-Language Models (LVLMs) in interactive webpage reconstruction from video. IWR-Bench comprises 113 meticulously curated tasks from 100 real-world websites, with 1,001 actions and featuring diverse interaction complexities (e.g., web games), visual styles, and domains. Aligning with standard web development practices, each task includes not only user interaction videos but also all crawled static assets (e.g., images, videos). This benchmark evaluates models on two fundamental challenges: comprehensive multi-modal reasoning to infer interaction logic from video and assets, and advanced code generation to translate this logic into functional code. An agent-as-a-judge framework with a comprehensive metric system automatically assesses the functional correctness and visual fidelity of generated webpages. Extensive experiments on 28 LVLMs reveal a significant challenge: the best model achieves an overall score of only 36.35%, as functional correctness (24.39% IFS) lags significantly behind visual fidelity (64.25% VFS). These results highlight critical limitations in current models' ability to reason about temporal dynamics and synthesize event-driven logic, establishing IWR-Bench as a challenging frontier for vision-language research. The benchmark and evaluation code will be made publicly available. Code is available at https://github.com/L-O-I/IWR-Bench.
SCENEREPLICA: Benchmarking Real-World Robot Manipulation by Creating Replicable Scenes
We present a new reproducible benchmark for evaluating robot manipulation in the real world, specifically focusing on pick-and-place. Our benchmark uses the YCB objects, a commonly used dataset in the robotics community, to ensure that our results are comparable to other studies. Additionally, the benchmark is designed to be easily reproducible in the real world, making it accessible to researchers and practitioners. We also provide our experimental results and analyzes for model-based and model-free 6D robotic grasping on the benchmark, where representative algorithms are evaluated for object perception, grasping planning, and motion planning. We believe that our benchmark will be a valuable tool for advancing the field of robot manipulation. By providing a standardized evaluation framework, researchers can more easily compare different techniques and algorithms, leading to faster progress in developing robot manipulation methods.
MCUBench: A Benchmark of Tiny Object Detectors on MCUs
We introduce MCUBench, a benchmark featuring over 100 YOLO-based object detection models evaluated on the VOC dataset across seven different MCUs. This benchmark provides detailed data on average precision, latency, RAM, and Flash usage for various input resolutions and YOLO-based one-stage detectors. By conducting a controlled comparison with a fixed training pipeline, we collect comprehensive performance metrics. Our Pareto-optimal analysis shows that integrating modern detection heads and training techniques allows various YOLO architectures, including legacy models like YOLOv3, to achieve a highly efficient tradeoff between mean Average Precision (mAP) and latency. MCUBench serves as a valuable tool for benchmarking the MCU performance of contemporary object detectors and aids in model selection based on specific constraints.
MVPaint: Synchronized Multi-View Diffusion for Painting Anything 3D
Texturing is a crucial step in the 3D asset production workflow, which enhances the visual appeal and diversity of 3D assets. Despite recent advancements in Text-to-Texture (T2T) generation, existing methods often yield subpar results, primarily due to local discontinuities, inconsistencies across multiple views, and their heavy dependence on UV unwrapping outcomes. To tackle these challenges, we propose a novel generation-refinement 3D texturing framework called MVPaint, which can generate high-resolution, seamless textures while emphasizing multi-view consistency. MVPaint mainly consists of three key modules. 1) Synchronized Multi-view Generation (SMG). Given a 3D mesh model, MVPaint first simultaneously generates multi-view images by employing an SMG model, which leads to coarse texturing results with unpainted parts due to missing observations. 2) Spatial-aware 3D Inpainting (S3I). To ensure complete 3D texturing, we introduce the S3I method, specifically designed to effectively texture previously unobserved areas. 3) UV Refinement (UVR). Furthermore, MVPaint employs a UVR module to improve the texture quality in the UV space, which first performs a UV-space Super-Resolution, followed by a Spatial-aware Seam-Smoothing algorithm for revising spatial texturing discontinuities caused by UV unwrapping. Moreover, we establish two T2T evaluation benchmarks: the Objaverse T2T benchmark and the GSO T2T benchmark, based on selected high-quality 3D meshes from the Objaverse dataset and the entire GSO dataset, respectively. Extensive experimental results demonstrate that MVPaint surpasses existing state-of-the-art methods. Notably, MVPaint could generate high-fidelity textures with minimal Janus issues and highly enhanced cross-view consistency.
Depth Anything 3: Recovering the Visual Space from Any Views
We present Depth Anything 3 (DA3), a model that predicts spatially consistent geometry from an arbitrary number of visual inputs, with or without known camera poses. In pursuit of minimal modeling, DA3 yields two key insights: a single plain transformer (e.g., vanilla DINO encoder) is sufficient as a backbone without architectural specialization, and a singular depth-ray prediction target obviates the need for complex multi-task learning. Through our teacher-student training paradigm, the model achieves a level of detail and generalization on par with Depth Anything 2 (DA2). We establish a new visual geometry benchmark covering camera pose estimation, any-view geometry and visual rendering. On this benchmark, DA3 sets a new state-of-the-art across all tasks, surpassing prior SOTA VGGT by an average of 44.3% in camera pose accuracy and 25.1% in geometric accuracy. Moreover, it outperforms DA2 in monocular depth estimation. All models are trained exclusively on public academic datasets.
OpenLLM-RTL: Open Dataset and Benchmark for LLM-Aided Design RTL Generation
The automated generation of design RTL based on large language model (LLM) and natural language instructions has demonstrated great potential in agile circuit design. However, the lack of datasets and benchmarks in the public domain prevents the development and fair evaluation of LLM solutions. This paper highlights our latest advances in open datasets and benchmarks from three perspectives: (1) RTLLM 2.0, an updated benchmark assessing LLM's capability in design RTL generation. The benchmark is augmented to 50 hand-crafted designs. Each design provides the design description, test cases, and a correct RTL code. (2) AssertEval, an open-source benchmark assessing the LLM's assertion generation capabilities for RTL verification. The benchmark includes 18 designs, each providing specification, signal definition, and correct RTL code. (3) RTLCoder-Data, an extended open-source dataset with 80K instruction-code data samples. Moreover, we propose a new verification-based method to verify the functionality correctness of training data samples. Based on this technique, we further release a dataset with 7K verified high-quality samples. These three studies are integrated into one framework, providing off-the-shelf support for the development and evaluation of LLMs for RTL code generation and verification. Finally, extensive experiments indicate that LLM performance can be boosted by enlarging the training dataset, improving data quality, and improving the training scheme.
3D Arena: An Open Platform for Generative 3D Evaluation
Evaluating Generative 3D models remains challenging due to misalignment between automated metrics and human perception of quality. Current benchmarks rely on image-based metrics that ignore 3D structure or geometric measures that fail to capture perceptual appeal and real-world utility. To address this gap, we present 3D Arena, an open platform for evaluating image-to-3D generation models through large-scale human preference collection using pairwise comparisons. Since launching in June 2024, the platform has collected 123,243 votes from 8,096 users across 19 state-of-the-art models, establishing the largest human preference evaluation for Generative 3D. We contribute the iso3d dataset of 100 evaluation prompts and demonstrate quality control achieving 99.75% user authenticity through statistical fraud detection. Our ELO-based ranking system provides reliable model assessment, with the platform becoming an established evaluation resource. Through analysis of this preference data, we present insights into human preference patterns. Our findings reveal preferences for visual presentation features, with Gaussian splat outputs achieving a 16.6 ELO advantage over meshes and textured models receiving a 144.1 ELO advantage over untextured models. We provide recommendations for improving evaluation methods, including multi-criteria assessment, task-oriented evaluation, and format-aware comparison. The platform's community engagement establishes 3D Arena as a benchmark for the field while advancing understanding of human-centered evaluation in Generative 3D.
BODex: Scalable and Efficient Robotic Dexterous Grasp Synthesis Using Bilevel Optimization
Robotic dexterous grasping is important for interacting with the environment. To unleash the potential of data-driven models for dexterous grasping, a large-scale, high-quality dataset is essential. While gradient-based optimization offers a promising way for constructing such datasets, previous works suffer from limitations, such as inefficiency, strong assumptions in the grasp quality energy, or limited object sets for experiments. Moreover, the lack of a standard benchmark for comparing different methods and datasets hinders progress in this field. To address these challenges, we develop a highly efficient synthesis system and a comprehensive benchmark with MuJoCo for dexterous grasping. We formulate grasp synthesis as a bilevel optimization problem, combining a novel lower-level quadratic programming (QP) with an upper-level gradient descent process. By leveraging recent advances in CUDA-accelerated robotic libraries and GPU-based QP solvers, our system can parallelize thousands of grasps and synthesize over 49 grasps per second on a single 3090 GPU. Our synthesized grasps for Shadow, Allegro, and Leap hands all achieve a success rate above 75% in simulation, with a penetration depth under 1 mm, outperforming existing baselines on nearly all metrics. Compared to the previous large-scale dataset, DexGraspNet, our dataset significantly improves the performance of learning models, with a success rate from around 40% to 80% in simulation. Real-world testing of the trained model on the Shadow Hand achieves an 81% success rate across 20 diverse objects. The codes and datasets are released on our project page: https://pku-epic.github.io/BODex.
FiVE: A Fine-grained Video Editing Benchmark for Evaluating Emerging Diffusion and Rectified Flow Models
Numerous text-to-video (T2V) editing methods have emerged recently, but the lack of a standardized benchmark for fair evaluation has led to inconsistent claims and an inability to assess model sensitivity to hyperparameters. Fine-grained video editing is crucial for enabling precise, object-level modifications while maintaining context and temporal consistency. To address this, we introduce FiVE, a Fine-grained Video Editing Benchmark for evaluating emerging diffusion and rectified flow models. Our benchmark includes 74 real-world videos and 26 generated videos, featuring 6 fine-grained editing types, 420 object-level editing prompt pairs, and their corresponding masks. Additionally, we adapt the latest rectified flow (RF) T2V generation models, Pyramid-Flow and Wan2.1, by introducing FlowEdit, resulting in training-free and inversion-free video editing models Pyramid-Edit and Wan-Edit. We evaluate five diffusion-based and two RF-based editing methods on our FiVE benchmark using 15 metrics, covering background preservation, text-video similarity, temporal consistency, video quality, and runtime. To further enhance object-level evaluation, we introduce FiVE-Acc, a novel metric leveraging Vision-Language Models (VLMs) to assess the success of fine-grained video editing. Experimental results demonstrate that RF-based editing significantly outperforms diffusion-based methods, with Wan-Edit achieving the best overall performance and exhibiting the least sensitivity to hyperparameters. More video demo available on the anonymous website: https://sites.google.com/view/five-benchmark
VisualWebBench: How Far Have Multimodal LLMs Evolved in Web Page Understanding and Grounding?
Multimodal Large Language models (MLLMs) have shown promise in web-related tasks, but evaluating their performance in the web domain remains a challenge due to the lack of comprehensive benchmarks. Existing benchmarks are either designed for general multimodal tasks, failing to capture the unique characteristics of web pages, or focus on end-to-end web agent tasks, unable to measure fine-grained abilities such as OCR, understanding, and grounding. In this paper, we introduce , a multimodal benchmark designed to assess the capabilities of MLLMs across a variety of web tasks. consists of seven tasks, and comprises 1.5K human-curated instances from 139 real websites, covering 87 sub-domains. We evaluate 14 open-source MLLMs, Gemini Pro, Claude-3 series, and GPT-4V(ision) on , revealing significant challenges and performance gaps. Further analysis highlights the limitations of current MLLMs, including inadequate grounding in text-rich environments and subpar performance with low-resolution image inputs. We believe will serve as a valuable resource for the research community and contribute to the creation of more powerful and versatile MLLMs for web-related applications.
ManiSkill-HAB: A Benchmark for Low-Level Manipulation in Home Rearrangement Tasks
High-quality benchmarks are the foundation for embodied AI research, enabling significant advancements in long-horizon navigation, manipulation and rearrangement tasks. However, as frontier tasks in robotics get more advanced, they require faster simulation speed, more intricate test environments, and larger demonstration datasets. To this end, we present MS-HAB, a holistic benchmark for low-level manipulation and in-home object rearrangement. First, we provide a GPU-accelerated implementation of the Home Assistant Benchmark (HAB). We support realistic low-level control and achieve over 3x the speed of previous magical grasp implementations at similar GPU memory usage. Second, we train extensive reinforcement learning (RL) and imitation learning (IL) baselines for future work to compare against. Finally, we develop a rule-based trajectory filtering system to sample specific demonstrations from our RL policies which match predefined criteria for robot behavior and safety. Combining demonstration filtering with our fast environments enables efficient, controlled data generation at scale.
STEPWISE-CODEX-Bench: Evaluating Complex Multi-Function Comprehension and Fine-Grained Execution Reasoning
In recent years, large language models (LLMs) have made significant progress in code intelligence, yet systematically evaluating their code understanding and reasoning abilities remains challenging. Mainstream benchmarks such as HumanEval and MBPP primarily assess functional correctness, while reasoning benchmarks like CRUXEVAL are limited to single-function, low-complexity scenarios. As a result, advanced models achieve nearly saturated scores, limiting their discriminative power. To address this, we present STEPWISE-CODEX-Bench (SX-Bench), a novel benchmark designed for complex multi-function understanding and fine-grained execution reasoning. SX-Bench features tasks involving collaboration among multiple sub-functions (e.g., chained calls, nested loops), shifting evaluation towards overall control and data flow modeling. It defines "computation steps" as the minimal execution unit and requires models to predict the total number of steps in reasoning tasks, thereby assessing a model's in-depth understanding of dynamic execution beyond simple I/O matching. Evaluation on over 20 mainstream models (including 14 reasoning-enhanced models) demonstrates that SX-Bench is highly discriminative: even the state-of-the-art OpenAI-O3 achieves only 78.37 percent accuracy on Hard-Reasoning tasks, much lower than its saturated scores on previous benchmarks, thereby revealing bottlenecks in complex and fine-grained reasoning. We also release an automated pipeline combining program synthesis, symbolic execution, and LLM-aided validation for efficient benchmark generation and quality assurance. SX-Bench advances code evaluation from "single-function verification" to "multi-function dynamic reasoning," providing a key tool for the in-depth assessment of advanced code intelligence models.
ExecRepoBench: Multi-level Executable Code Completion Evaluation
Code completion has become an essential tool for daily software development. Existing evaluation benchmarks often employ static methods that do not fully capture the dynamic nature of real-world coding environments and face significant challenges, including limited context length, reliance on superficial evaluation metrics, and potential overfitting to training datasets. In this work, we introduce a novel framework for enhancing code completion in software development through the creation of a repository-level benchmark ExecRepoBench and the instruction corpora Repo-Instruct, aim at improving the functionality of open-source large language models (LLMs) in real-world coding scenarios that involve complex interdependencies across multiple files. ExecRepoBench includes 1.2K samples from active Python repositories. Plus, we present a multi-level grammar-based completion methodology conditioned on the abstract syntax tree to mask code fragments at various logical units (e.g. statements, expressions, and functions). Then, we fine-tune the open-source LLM with 7B parameters on Repo-Instruct to produce a strong code completion baseline model Qwen2.5-Coder-Instruct-C based on the open-source model. Qwen2.5-Coder-Instruct-C is rigorously evaluated against existing benchmarks, including MultiPL-E and ExecRepoBench, which consistently outperforms prior baselines across all programming languages. The deployment of can be used as a high-performance, local service for programming development\url{https://execrepobench.github.io/}.
Training-free Geometric Image Editing on Diffusion Models
We tackle the task of geometric image editing, where an object within an image is repositioned, reoriented, or reshaped while preserving overall scene coherence. Previous diffusion-based editing methods often attempt to handle all relevant subtasks in a single step, proving difficult when transformations become large or structurally complex. We address this by proposing a decoupled pipeline that separates object transformation, source region inpainting, and target region refinement. Both inpainting and refinement are implemented using a training-free diffusion approach, FreeFine. In experiments on our new GeoBench benchmark, which contains both 2D and 3D editing scenarios, FreeFine outperforms state-of-the-art alternatives in image fidelity, and edit precision, especially under demanding transformations. Code and benchmark are available at: https://github.com/CIawevy/FreeFine
Open-set object detection: towards unified problem formulation and benchmarking
In real-world applications where confidence is key, like autonomous driving, the accurate detection and appropriate handling of classes differing from those used during training are crucial. Despite the proposal of various unknown object detection approaches, we have observed widespread inconsistencies among them regarding the datasets, metrics, and scenarios used, alongside a notable absence of a clear definition for unknown objects, which hampers meaningful evaluation. To counter these issues, we introduce two benchmarks: a unified VOC-COCO evaluation, and the new OpenImagesRoad benchmark which provides clear hierarchical object definition besides new evaluation metrics. Complementing the benchmark, we exploit recent self-supervised Vision Transformers performance, to improve pseudo-labeling-based OpenSet Object Detection (OSOD), through OW-DETR++. State-of-the-art methods are extensively evaluated on the proposed benchmarks. This study provides a clear problem definition, ensures consistent evaluations, and draws new conclusions about effectiveness of OSOD strategies.
ArtifactsBench: Bridging the Visual-Interactive Gap in LLM Code Generation Evaluation
The generative capabilities of Large Language Models (LLMs) are rapidly expanding from static code to dynamic, interactive visual artifacts. This progress is bottlenecked by a critical evaluation gap: established benchmarks focus on algorithmic correctness and are blind to the visual fidelity and interactive integrity that define modern user experiences. To bridge this gap, we introduce ArtifactsBench, a new benchmark and paradigm for the automated, multimodal evaluation of visual code generation. Our framework programmatically renders each generated artifact and captures its dynamic behavior through temporal screenshots. This visual evidence, alongside the source code, is then assessed by a Multimodal LLM (MLLM)-as-Judge, which is rigorously guided by a fine-grained, per-task checklist to ensure holistic and reproducible scoring. We construct a new benchmark of 1,825 diverse tasks and evaluate over 30 leading LLMs. Our automated evaluation achieves a striking 94.4% ranking consistency with WebDev Arena, the gold-standard for human preference in web development, and over 90% pairwise agreement with human experts. This establishes ArtifactsBench as the first framework to reliably automate the assessment of human-perceived quality at scale. Our analysis provides a high-resolution map of the current SOTA, revealing that generalist models often outperform domain-specific ones. We open-source ArtifactsBench, including the benchmark, evaluation harness, and baseline results at https://artifactsbenchmark.github.io/, to provide the community with a scalable and accurate tool to accelerate the development of user-centric generative models.
PyBench: Evaluating LLM Agent on various real-world coding tasks
The LLM Agent, equipped with a code interpreter, is capable of automatically solving real-world coding tasks, such as data analysis and image editing. However, existing benchmarks primarily focus on either simplistic tasks, such as completing a few lines of code, or on extremely complex and specific tasks at the repository level, neither of which are representative of various daily coding tasks. To address this gap, we introduce PyBench, a benchmark encompassing five main categories of real-world tasks, covering more than 10 types of files. Given a high-level user query and related files, the LLM Agent needs to reason and execute Python code via a code interpreter for a few turns before making a formal response to fulfill the user's requirements. Successfully addressing tasks in PyBench demands a robust understanding of various Python packages, superior reasoning capabilities, and the ability to incorporate feedback from executed code. Our evaluations indicate that current open-source LLMs are struggling with these tasks. Hence, we conduct analysis and experiments on four kinds of datasets proving that comprehensive abilities are needed for PyBench. Our fine-tuned 8B size model: PyLlama3 achieves an exciting performance on PyBench which surpasses many 33B and 70B size models. Our Benchmark, Training Dataset, and Model are available at: https://github.com/Mercury7353/PyBench{https://github.com/Mercury7353/PyBench}
GRAB: A Challenging GRaph Analysis Benchmark for Large Multimodal Models
Large multimodal models (LMMs) have exhibited proficiencies across many visual tasks. Although numerous well-known benchmarks exist to evaluate model performance, they increasingly have insufficient headroom. As such, there is a pressing need for a new generation of benchmarks challenging enough for the next generation of LMMs. One area that LMMs show potential is graph analysis, specifically, the tasks an analyst might typically perform when interpreting figures such as estimating the mean, intercepts or correlations of functions and data series. In this work, we introduce GRAB, a graph analysis benchmark, fit for current and future frontier LMMs. Our benchmark is entirely synthetic, ensuring high-quality, noise-free questions. GRAB is comprised of 2170 questions, covering four tasks and 23 graph properties. We evaluate 20 LMMs on GRAB, finding it to be a challenging benchmark, with the highest performing model attaining a score of just 21.7%. Finally, we conduct various ablations to investigate where the models succeed and struggle. We release GRAB to encourage progress in this important, growing domain.
BigCodeBench: Benchmarking Code Generation with Diverse Function Calls and Complex Instructions
Automated software engineering has been greatly empowered by the recent advances in Large Language Models (LLMs) for programming. While current benchmarks have shown that LLMs can perform various software engineering tasks like human developers, the majority of their evaluations are limited to short and self-contained algorithmic tasks. Solving challenging and practical programming tasks requires the capability of utilizing diverse function calls as tools to efficiently implement functionalities like data analysis and web development. In addition, using multiple tools to solve a task needs compositional reasoning by accurately understanding complex instructions. Fulfilling both of these characteristics can pose a great challenge for LLMs. To assess how well LLMs can solve challenging and practical programming tasks, we introduce Bench, a benchmark that challenges LLMs to invoke multiple function calls as tools from 139 libraries and 7 domains for 1,140 fine-grained programming tasks. To evaluate LLMs rigorously, each programming task encompasses 5.6 test cases with an average branch coverage of 99%. In addition, we propose a natural-language-oriented variant of Bench, Benchi, that automatically transforms the original docstrings into short instructions only with essential information. Our extensive evaluation of 60 LLMs shows that LLMs are not yet capable of following complex instructions to use function calls precisely, with scores up to 60%, significantly lower than the human performance of 97%. The results underscore the need for further advancements in this area.
ONEBench to Test Them All: Sample-Level Benchmarking Over Open-Ended Capabilities
Traditional fixed test sets fall short in evaluating open-ended capabilities of foundation models. To address this, we propose ONEBench(OpeN-Ended Benchmarking), a new testing paradigm that consolidates individual evaluation datasets into a unified, ever-expanding sample pool. ONEBench allows users to generate custom, open-ended evaluation benchmarks from this pool, corresponding to specific capabilities of interest. By aggregating samples across test sets, ONEBench enables the assessment of diverse capabilities beyond those covered by the original test sets, while mitigating overfitting and dataset bias. Most importantly, it frames model evaluation as a collective process of selecting and aggregating sample-level tests. The shift from task-specific benchmarks to ONEBench introduces two challenges: (1)heterogeneity and (2)incompleteness. Heterogeneity refers to the aggregation over diverse metrics, while incompleteness describes comparing models evaluated on different data subsets. To address these challenges, we explore algorithms to aggregate sparse measurements into reliable model scores. Our aggregation algorithm ensures identifiability(asymptotically recovering ground-truth scores) and rapid convergence, enabling accurate model ranking with less data. On homogenous datasets, we show our aggregation algorithm provides rankings that highly correlate with those produced by average scores. We also demonstrate robustness to ~95% of measurements missing, reducing evaluation cost by up to 20x with little-to-no change in model rankings. We introduce ONEBench-LLM for language models and ONEBench-LMM for vision-language models, unifying evaluations across these domains. Overall, we present a technique for open-ended evaluation, which can aggregate over incomplete, heterogeneous sample-level measurements to continually grow a benchmark alongside the rapidly developing foundation models.
Reduced Precision Floating-Point Optimization for Deep Neural Network On-Device Learning on MicroControllers
Enabling On-Device Learning (ODL) for Ultra-Low-Power Micro-Controller Units (MCUs) is a key step for post-deployment adaptation and fine-tuning of Deep Neural Network (DNN) models in future TinyML applications. This paper tackles this challenge by introducing a novel reduced precision optimization technique for ODL primitives on MCU-class devices, leveraging the State-of-Art advancements in RISC-V RV32 architectures with support for vectorized 16-bit floating-point (FP16) Single-Instruction Multiple-Data (SIMD) operations. Our approach for the Forward and Backward steps of the Back-Propagation training algorithm is composed of specialized shape transform operators and Matrix Multiplication (MM) kernels, accelerated with parallelization and loop unrolling. When evaluated on a single training step of a 2D Convolution layer, the SIMD-optimized FP16 primitives result up to 1.72times faster than the FP32 baseline on a RISC-V-based 8+1-core MCU. An average computing efficiency of 3.11 Multiply and Accumulate operations per clock cycle (MAC/clk) and 0.81 MAC/clk is measured for the end-to-end training tasks of a ResNet8 and a DS-CNN for Image Classification and Keyword Spotting, respectively -- requiring 17.1 ms and 6.4 ms on the target platform to compute a training step on a single sample. Overall, our approach results more than two orders of magnitude faster than existing ODL software frameworks for single-core MCUs and outperforms by 1.6 times previous FP32 parallel implementations on a Continual Learning setup.
Point-GCC: Universal Self-supervised 3D Scene Pre-training via Geometry-Color Contrast
Geometry and color information provided by the point clouds are both crucial for 3D scene understanding. Two pieces of information characterize the different aspects of point clouds, but existing methods lack an elaborate design for the discrimination and relevance. Hence we explore a 3D self-supervised paradigm that can better utilize the relations of point cloud information. Specifically, we propose a universal 3D scene pre-training framework via Geometry-Color Contrast (Point-GCC), which aligns geometry and color information using a Siamese network. To take care of actual application tasks, we design (i) hierarchical supervision with point-level contrast and reconstruct and object-level contrast based on the novel deep clustering module to close the gap between pre-training and downstream tasks; (ii) architecture-agnostic backbone to adapt for various downstream models. Benefiting from the object-level representation associated with downstream tasks, Point-GCC can directly evaluate model performance and the result demonstrates the effectiveness of our methods. Transfer learning results on a wide range of tasks also show consistent improvements across all datasets. e.g., new state-of-the-art object detection results on SUN RGB-D and S3DIS datasets. Codes will be released at https://github.com/Asterisci/Point-GCC.
Evaluating Language Models for Efficient Code Generation
We introduce Differential Performance Evaluation (DPE), a framework designed to reliably evaluate Large Language Models (LLMs) for efficient code generation. Traditional coding benchmarks often fail to provide reliable insights into code efficiency, due to their reliance on simplistic test inputs and the absence of effective compound metrics. DPE addresses these issues by focusing on efficiency-demanding programming tasks and establishing an insightful compound metric for performance evaluation. DPE operates in two phases: To curate efficiency datasets, it selects efficiency-demanding tasks from existing coding benchmarks and generates computationally expensive inputs to stress the efficiency of LLM solutions. To assess the code efficiency, DPE profiles the new solution and compares it globally against a set of reference solutions that exhibit distinct efficiency levels, where the matched level defines its efficiency score. As a proof of concept, we use DPE to create EvalPerf, a benchmark with 121 performance-challenging coding tasks. Our comprehensive evaluation draws interesting findings on the efficiency impact of model sizes, instruction tuning, and prompting. For example, while the scaling law fails to account for code efficiency, general instruction tuning benefits both code correctness and efficiency. We also evaluate the evaluation by examining the effectiveness of DPE, showing that EvalPerf is reliable and convenient to use even across platforms.
ClassEval: A Manually-Crafted Benchmark for Evaluating LLMs on Class-level Code Generation
In this work, we make the first attempt to evaluate LLMs in a more challenging code generation scenario, i.e. class-level code generation. We first manually construct the first class-level code generation benchmark ClassEval of 100 class-level Python code generation tasks with approximately 500 person-hours. Based on it, we then perform the first study of 11 state-of-the-art LLMs on class-level code generation. Based on our results, we have the following main findings. First, we find that all existing LLMs show much worse performance on class-level code generation compared to on standalone method-level code generation benchmarks like HumanEval; and the method-level coding ability cannot equivalently reflect the class-level coding ability among LLMs. Second, we find that GPT-4 and GPT-3.5 still exhibit dominate superior than other LLMs on class-level code generation, and the second-tier models includes Instruct-Starcoder, Instruct-Codegen, and Wizardcoder with very similar performance. Third, we find that generating the entire class all at once (i.e. holistic generation strategy) is the best generation strategy only for GPT-4 and GPT-3.5, while method-by-method generation (i.e. incremental and compositional) is better strategies for the other models with limited ability of understanding long instructions and utilizing the middle information. Lastly, we find the limited model ability of generating method-dependent code and discuss the frequent error types in generated classes. Our benchmark is available at https://github.com/FudanSELab/ClassEval.
McEval: Massively Multilingual Code Evaluation
Code large language models (LLMs) have shown remarkable advances in code understanding, completion, and generation tasks. Programming benchmarks, comprised of a selection of code challenges and corresponding test cases, serve as a standard to evaluate the capability of different LLMs in such tasks. However, most existing benchmarks primarily focus on Python and are still restricted to a limited number of languages, where other languages are translated from the Python samples (e.g. MultiPL-E) degrading the data diversity. To further facilitate the research of code LLMs, we propose a massively multilingual code benchmark covering 40 programming languages (McEval) with 16K test samples, which substantially pushes the limits of code LLMs in multilingual scenarios. The benchmark contains challenging code completion, understanding, and generation evaluation tasks with finely curated massively multilingual instruction corpora McEval-Instruct. In addition, we introduce an effective multilingual coder mCoder trained on McEval-Instruct to support multilingual programming language generation. Extensive experimental results on McEval show that there is still a difficult journey between open-source models and closed-source LLMs (e.g. GPT-series models) in numerous languages. The instruction corpora, evaluation benchmark, and leaderboard are available at https://mceval.github.io/.
OSS-Bench: Benchmark Generator for Coding LLMs
In light of the rapid adoption of AI coding assistants, LLM-assisted development has become increasingly prevalent, creating an urgent need for robust evaluation of generated code quality. Existing benchmarks often require extensive manual effort to create static datasets, rely on indirect or insufficiently challenging tasks, depend on non-scalable ground truth, or neglect critical low-level security evaluations, particularly memory-safety issues. In this work, we introduce OSS-Bench, a benchmark generator that automatically constructs large-scale, live evaluation tasks from real-world open-source software. OSS-Bench replaces functions with LLM-generated code and evaluates them using three natural metrics: compilability, functional correctness, and memory safety, leveraging robust signals like compilation failures, test-suite violations, and sanitizer alerts as ground truth. In our evaluation, the benchmark, instantiated as OSS-Bench(php) and OSS-Bench(sql), profiles 17 diverse LLMs, revealing insights such as intra-family behavioral patterns and inconsistencies between model size and performance. Our results demonstrate that OSS-Bench mitigates overfitting by leveraging the evolving complexity of OSS and highlights LLMs' limited understanding of low-level code security via extended fuzzing experiments. Overall, OSS-Bench offers a practical and scalable framework for benchmarking the real-world coding capabilities of LLMs.
Unveiling the Mist over 3D Vision-Language Understanding: Object-centric Evaluation with Chain-of-Analysis
Existing 3D vision-language (3D-VL) benchmarks fall short in evaluating 3D-VL models, creating a "mist" that obscures rigorous insights into model capabilities and 3D-VL tasks. This mist persists due to three key limitations. First, flawed test data, like ambiguous referential text in the grounding task, can yield incorrect and unreliable test results. Second, oversimplified metrics such as simply averaging accuracy per question answering (QA) pair, cannot reveal true model capability due to their vulnerability to language variations. Third, existing benchmarks isolate the grounding and QA tasks, disregarding the underlying coherence that QA should be based on solid grounding capabilities. To unveil the "mist", we propose Beacon3D, a benchmark for 3D-VL grounding and QA tasks, delivering a perspective shift in the evaluation of 3D-VL understanding. Beacon3D features (i) high-quality test data with precise and natural language, (ii) object-centric evaluation with multiple tests per object to ensure robustness, and (iii) a novel chain-of-analysis paradigm to address language robustness and model performance coherence across grounding and QA. Our evaluation of state-of-the-art 3D-VL models on Beacon3D reveals that (i) object-centric evaluation elicits true model performance and particularly weak generalization in QA; (ii) grounding-QA coherence remains fragile in current 3D-VL models, and (iii) incorporating large language models (LLMs) to 3D-VL models, though as a prevalent practice, hinders grounding capabilities and has yet to elevate QA capabilities. We hope Beacon3D and our comprehensive analysis could benefit the 3D-VL community towards faithful developments.
Through-The-Mask: Mask-based Motion Trajectories for Image-to-Video Generation
We consider the task of Image-to-Video (I2V) generation, which involves transforming static images into realistic video sequences based on a textual description. While recent advancements produce photorealistic outputs, they frequently struggle to create videos with accurate and consistent object motion, especially in multi-object scenarios. To address these limitations, we propose a two-stage compositional framework that decomposes I2V generation into: (i) An explicit intermediate representation generation stage, followed by (ii) A video generation stage that is conditioned on this representation. Our key innovation is the introduction of a mask-based motion trajectory as an intermediate representation, that captures both semantic object information and motion, enabling an expressive but compact representation of motion and semantics. To incorporate the learned representation in the second stage, we utilize object-level attention objectives. Specifically, we consider a spatial, per-object, masked-cross attention objective, integrating object-specific prompts into corresponding latent space regions and a masked spatio-temporal self-attention objective, ensuring frame-to-frame consistency for each object. We evaluate our method on challenging benchmarks with multi-object and high-motion scenarios and empirically demonstrate that the proposed method achieves state-of-the-art results in temporal coherence, motion realism, and text-prompt faithfulness. Additionally, we introduce \benchmark, a new challenging benchmark for single-object and multi-object I2V generation, and demonstrate our method's superiority on this benchmark. Project page is available at https://guyyariv.github.io/TTM/.
Open-YOLO 3D: Towards Fast and Accurate Open-Vocabulary 3D Instance Segmentation
Recent works on open-vocabulary 3D instance segmentation show strong promise, but at the cost of slow inference speed and high computation requirements. This high computation cost is typically due to their heavy reliance on 3D clip features, which require computationally expensive 2D foundation models like Segment Anything (SAM) and CLIP for multi-view aggregation into 3D. As a consequence, this hampers their applicability in many real-world applications that require both fast and accurate predictions. To this end, we propose a fast yet accurate open-vocabulary 3D instance segmentation approach, named Open-YOLO 3D, that effectively leverages only 2D object detection from multi-view RGB images for open-vocabulary 3D instance segmentation. We address this task by generating class-agnostic 3D masks for objects in the scene and associating them with text prompts. We observe that the projection of class-agnostic 3D point cloud instances already holds instance information; thus, using SAM might only result in redundancy that unnecessarily increases the inference time. We empirically find that a better performance of matching text prompts to 3D masks can be achieved in a faster fashion with a 2D object detector. We validate our Open-YOLO 3D on two benchmarks, ScanNet200 and Replica, under two scenarios: (i) with ground truth masks, where labels are required for given object proposals, and (ii) with class-agnostic 3D proposals generated from a 3D proposal network. Our Open-YOLO 3D achieves state-of-the-art performance on both datasets while obtaining up to sim16times speedup compared to the best existing method in literature. On ScanNet200 val. set, our Open-YOLO 3D achieves mean average precision (mAP) of 24.7\% while operating at 22 seconds per scene. Code and model are available at github.com/aminebdj/OpenYOLO3D.
OlympiadBench: A Challenging Benchmark for Promoting AGI with Olympiad-Level Bilingual Multimodal Scientific Problems
Recent advancements have seen Large Language Models (LLMs) and Large Multimodal Models (LMMs) surpassing general human capabilities in various tasks, approaching the proficiency level of human experts across multiple domains. With traditional benchmarks becoming less challenging for these models, new rigorous challenges are essential to gauge their advanced abilities. In this work, we present OlympiadBench, an Olympiad-level bilingual multimodal scientific benchmark, featuring 8,476 problems from Olympiad-level mathematics and physics competitions, including the Chinese college entrance exam. Each problem is detailed with expert-level annotations for step-by-step reasoning. Evaluating top-tier models on OlympiadBench, we implement a comprehensive assessment methodology to accurately evaluate model responses. Notably, the best-performing model, GPT-4V, attains an average score of 17.97% on OlympiadBench, with a mere 10.74% in physics, highlighting the benchmark rigor and the intricacy of physical reasoning. Our analysis orienting GPT-4V points out prevalent issues with hallucinations, knowledge omissions, and logical fallacies. We hope that our challenging benchmark can serve as a valuable resource for helping future AGI research endeavors. The data and evaluation code are available at https://github.com/OpenBMB/OlympiadBench
DeOcc-1-to-3: 3D De-Occlusion from a Single Image via Self-Supervised Multi-View Diffusion
Reconstructing 3D objects from a single image remains challenging, especially under real-world occlusions. While recent diffusion-based view synthesis models can generate consistent novel views from a single RGB image, they typically assume fully visible inputs and fail when parts of the object are occluded, resulting in degraded 3D reconstruction quality. We propose DeOcc-1-to-3, an end-to-end framework for occlusion-aware multi-view generation that synthesizes six structurally consistent novel views directly from a single occluded image, enabling reliable 3D reconstruction without prior inpainting or manual annotations. Our self-supervised training pipeline leverages occluded-unoccluded image pairs and pseudo-ground-truth views to teach the model structure-aware completion and view consistency. Without modifying the original architecture, we fully fine-tune the view synthesis model to jointly learn completion and multi-view generation. Additionally, we introduce the first benchmark for occlusion-aware reconstruction, covering diverse occlusion levels, object categories, and masking patterns, providing a standardized protocol for future evaluation.
LiveCodeBench: Holistic and Contamination Free Evaluation of Large Language Models for Code
Large Language Models (LLMs) applied to code-related applications have emerged as a prominent field, attracting significant interest from both academia and industry. However, as new and improved LLMs are developed, existing evaluation benchmarks (e.g., HumanEval, MBPP) are no longer sufficient for assessing their capabilities. In this work, we propose LiveCodeBench, a comprehensive and contamination-free evaluation of LLMs for code, which continuously collects new problems over time from contests across three competition platforms, namely LeetCode, AtCoder, and CodeForces. Notably, our benchmark also focuses on a broader range of code related capabilities, such as self-repair, code execution, and test output prediction, beyond just code generation. Currently, LiveCodeBench hosts four hundred high-quality coding problems that were published between May 2023 and February 2024. We have evaluated 9 base LLMs and 20 instruction-tuned LLMs on LiveCodeBench. We present empirical findings on contamination, holistic performance comparisons, potential overfitting in existing benchmarks as well as individual model comparisons. We will release all prompts and model completions for further community analysis, along with a general toolkit for adding new scenarios and model
wa-hls4ml: A Benchmark and Surrogate Models for hls4ml Resource and Latency Estimation
As machine learning (ML) is increasingly implemented in hardware to address real-time challenges in scientific applications, the development of advanced toolchains has significantly reduced the time required to iterate on various designs. These advancements have solved major obstacles, but also exposed new challenges. For example, processes that were not previously considered bottlenecks, such as hardware synthesis, are becoming limiting factors in the rapid iteration of designs. To mitigate these emerging constraints, multiple efforts have been undertaken to develop an ML-based surrogate model that estimates resource usage of ML accelerator architectures. We introduce wa-hls4ml, a benchmark for ML accelerator resource and latency estimation, and its corresponding initial dataset of over 680,000 fully connected and convolutional neural networks, all synthesized using hls4ml and targeting Xilinx FPGAs. The benchmark evaluates the performance of resource and latency predictors against several common ML model architectures, primarily originating from scientific domains, as exemplar models, and the average performance across a subset of the dataset. Additionally, we introduce GNN- and transformer-based surrogate models that predict latency and resources for ML accelerators. We present the architecture and performance of the models and find that the models generally predict latency and resources for the 75% percentile within several percent of the synthesized resources on the synthetic test dataset.
BlenderGym: Benchmarking Foundational Model Systems for Graphics Editing
3D graphics editing is crucial in applications like movie production and game design, yet it remains a time-consuming process that demands highly specialized domain expertise. Automating this process is challenging because graphical editing requires performing a variety of tasks, each requiring distinct skill sets. Recently, vision-language models (VLMs) have emerged as a powerful framework for automating the editing process, but their development and evaluation are bottlenecked by the lack of a comprehensive benchmark that requires human-level perception and presents real-world editing complexity. In this work, we present BlenderGym, the first comprehensive VLM system benchmark for 3D graphics editing. BlenderGym evaluates VLM systems through code-based 3D reconstruction tasks. We evaluate closed- and open-source VLM systems and observe that even the state-of-the-art VLM system struggles with tasks relatively easy for human Blender users. Enabled by BlenderGym, we study how inference scaling techniques impact VLM's performance on graphics editing tasks. Notably, our findings reveal that the verifier used to guide the scaling of generation can itself be improved through inference scaling, complementing recent insights on inference scaling of LLM generation in coding and math tasks. We further show that inference compute is not uniformly effective and can be optimized by strategically distributing it between generation and verification.
MR^2-Bench: Going Beyond Matching to Reasoning in Multimodal Retrieval
Multimodal retrieval is becoming a crucial component of modern AI applications, yet its evaluation lags behind the demands of more realistic and challenging scenarios. Existing benchmarks primarily probe surface-level semantic correspondence (e.g., object-text matching) while failing to assess the deeper reasoning required to capture complex relationships between visual and textual information. To address this gap, we introduce MR^2-Bench, a reasoning-intensive benchmark for multimodal retrieval. MR^2-Bench presents the following critical values: 1) all tasks are reasoning-driven, going beyond shallow matching to effectively assess models' capacity for logical, spatial, and causal inference; 2) it features diverse multimodal data, such as natural images, diagrams, and visual puzzles, enabling comprehensive evaluation across content types; 3) it supports complex queries and documents containing multiple images and covers diverse retrieval scenarios, more accurately reflecting real-world applications. Our benchmark contains 1,309 curated queries, derived either from manual collection and annotation or from selective consolidation of public datasets. Despite achieving strong results on existing benchmarks, current state-of-the-art models still struggle on MR^2-Bench: for example, the leading Seed1.6-Embedding model attains a Recall@1 of 77.78 on MMEB, but only 9.91 on MR^2-Bench. This substantial performance gap highlights both the increased challenge posed by our benchmark and the pressing need for further advances in reasoning-intensive multimodal retrieval. The dataset and evaluation code will be made publicly available at https://github.com/VectorSpaceLab/MR2-Bench.
OpenDlign: Enhancing Open-World 3D Learning with Depth-Aligned Images
Recent open-world 3D representation learning methods using Vision-Language Models (VLMs) to align 3D data with image-text information have shown superior 3D zero-shot performance. However, CAD-rendered images for this alignment often lack realism and texture variation, compromising alignment robustness. Moreover, the volume discrepancy between 3D and 2D pretraining datasets highlights the need for effective strategies to transfer the representational abilities of VLMs to 3D learning. In this paper, we present OpenDlign, a novel open-world 3D model using depth-aligned images generated from a diffusion model for robust multimodal alignment. These images exhibit greater texture diversity than CAD renderings due to the stochastic nature of the diffusion model. By refining the depth map projection pipeline and designing depth-specific prompts, OpenDlign leverages rich knowledge in pre-trained VLM for 3D representation learning with streamlined fine-tuning. Our experiments show that OpenDlign achieves high zero-shot and few-shot performance on diverse 3D tasks, despite only fine-tuning 6 million parameters on a limited ShapeNet dataset. In zero-shot classification, OpenDlign surpasses previous models by 8.0% on ModelNet40 and 16.4% on OmniObject3D. Additionally, using depth-aligned images for multimodal alignment consistently enhances the performance of other state-of-the-art models.
DNA-Rendering: A Diverse Neural Actor Repository for High-Fidelity Human-centric Rendering
Realistic human-centric rendering plays a key role in both computer vision and computer graphics. Rapid progress has been made in the algorithm aspect over the years, yet existing human-centric rendering datasets and benchmarks are rather impoverished in terms of diversity, which are crucial for rendering effect. Researchers are usually constrained to explore and evaluate a small set of rendering problems on current datasets, while real-world applications require methods to be robust across different scenarios. In this work, we present DNA-Rendering, a large-scale, high-fidelity repository of human performance data for neural actor rendering. DNA-Rendering presents several alluring attributes. First, our dataset contains over 1500 human subjects, 5000 motion sequences, and 67.5M frames' data volume. Second, we provide rich assets for each subject -- 2D/3D human body keypoints, foreground masks, SMPLX models, cloth/accessory materials, multi-view images, and videos. These assets boost the current method's accuracy on downstream rendering tasks. Third, we construct a professional multi-view system to capture data, which contains 60 synchronous cameras with max 4096 x 3000 resolution, 15 fps speed, and stern camera calibration steps, ensuring high-quality resources for task training and evaluation. Along with the dataset, we provide a large-scale and quantitative benchmark in full-scale, with multiple tasks to evaluate the existing progress of novel view synthesis, novel pose animation synthesis, and novel identity rendering methods. In this manuscript, we describe our DNA-Rendering effort as a revealing of new observations, challenges, and future directions to human-centric rendering. The dataset, code, and benchmarks will be publicly available at https://dna-rendering.github.io/
Zero-shot Benchmarking: A Framework for Flexible and Scalable Automatic Evaluation of Language Models
As language models improve and become capable of performing more complex tasks across modalities, evaluating them automatically becomes increasingly challenging. Developing strong and robust task-specific automatic metrics gets harder, and human-annotated test sets -- which are expensive to create -- saturate more quickly. A compelling alternative is to design reliable strategies to automate the creation of test data and evaluation, but previous attempts either rely on pre-existing data, or focus solely on individual tasks. We present Zero-shot Benchmarking (ZSB), a framework for creating high-quality benchmarks for any task by leveraging language models for both synthetic test data creation and evaluation. ZSB is simple and flexible: it requires only the creation of a prompt for data generation and one for evaluation; it is scalable to tasks and languages where collecting real-world data is costly or impractical; it is model-agnostic, allowing the creation of increasingly challenging benchmarks as models improve. To assess the effectiveness of our framework, we create benchmarks for five text-only tasks and a multi-modal one: general capabilities in four languages (English, Chinese, French, and Korean), translation, and general vision-language capabilities in English. We then rank a broad range of open and closed systems on our benchmarks. ZSB rankings consistently correlate strongly with human rankings, outperforming widely-adopted standard benchmarks. Through ablations, we find that strong benchmarks can be created with open models, and that judge model size and dataset variety are crucial drivers of performance. We release all our benchmarks, and code to reproduce our experiments and to produce new benchmarks.
DEsignBench: Exploring and Benchmarking DALL-E 3 for Imagining Visual Design
We introduce DEsignBench, a text-to-image (T2I) generation benchmark tailored for visual design scenarios. Recent T2I models like DALL-E 3 and others, have demonstrated remarkable capabilities in generating photorealistic images that align closely with textual inputs. While the allure of creating visually captivating images is undeniable, our emphasis extends beyond mere aesthetic pleasure. We aim to investigate the potential of using these powerful models in authentic design contexts. In pursuit of this goal, we develop DEsignBench, which incorporates test samples designed to assess T2I models on both "design technical capability" and "design application scenario." Each of these two dimensions is supported by a diverse set of specific design categories. We explore DALL-E 3 together with other leading T2I models on DEsignBench, resulting in a comprehensive visual gallery for side-by-side comparisons. For DEsignBench benchmarking, we perform human evaluations on generated images in DEsignBench gallery, against the criteria of image-text alignment, visual aesthetic, and design creativity. Our evaluation also considers other specialized design capabilities, including text rendering, layout composition, color harmony, 3D design, and medium style. In addition to human evaluations, we introduce the first automatic image generation evaluator powered by GPT-4V. This evaluator provides ratings that align well with human judgments, while being easily replicable and cost-efficient. A high-resolution version is available at https://github.com/design-bench/design-bench.github.io/raw/main/designbench.pdf?download=
E-ARMOR: Edge case Assessment and Review of Multilingual Optical Character Recognition
Optical Character Recognition (OCR) in multilingual, noisy, and diverse real-world images remains a significant challenge for optical character recognition systems. With the rise of Large Vision-Language Models (LVLMs), there is growing interest in their ability to generalize and reason beyond fixed OCR pipelines. In this work, we introduce Sprinklr-Edge-OCR, a novel OCR system built specifically optimized for edge deployment in resource-constrained environments. We present a large-scale comparative evaluation of five state-of-the-art LVLMs (InternVL, Qwen, GOT OCR, LLaMA, MiniCPM) and two traditional OCR systems (Sprinklr-Edge-OCR, SuryaOCR) on a proprietary, doubly hand annotated dataset of multilingual (54 languages) images. Our benchmark covers a broad range of metrics including accuracy, semantic consistency, language coverage, computational efficiency (latency, memory, GPU usage), and deployment cost. To better reflect real-world applicability, we also conducted edge case deployment analysis, evaluating model performance on CPU only environments. Among the results, Qwen achieved the highest precision (0.54), while Sprinklr-Edge-OCR delivered the best overall F1 score (0.46) and outperformed others in efficiency, processing images 35 faster (0.17 seconds per image on average) and at less than 0.01 of the cost (0.006 USD per 1,000 images) compared to LVLM. Our findings demonstrate that the most optimal OCR systems for edge deployment are the traditional ones even in the era of LLMs due to their low compute requirements, low latency, and very high affordability.
NeurIPS 2025 E2LM Competition : Early Training Evaluation of Language Models
Existing benchmarks have proven effective for assessing the performance of fully trained large language models. However, we find striking differences in the early training stages of small models, where benchmarks often fail to provide meaningful or discriminative signals. To explore how these differences arise, this competition tackles the challenge of designing scientific knowledge evaluation tasks specifically tailored for measuring early training progress of language models. Participants are invited to develop novel evaluation methodologies or adapt existing benchmarks to better capture performance differences among language models. To support this effort, we provide three pre-trained small models (0.5B, 1B, and 3B parameters), along with intermediate checkpoints sampled during training up to 200B tokens. All experiments and development work can be run on widely available free cloud-based GPU platforms, making participation accessible to researchers with limited computational resources. Submissions will be evaluated based on three criteria: the quality of the performance signal they produce, the consistency of model rankings at 1 trillion tokens of training, and their relevance to the scientific knowledge domain. By promoting the design of tailored evaluation strategies for early training, this competition aims to attract a broad range of participants from various disciplines, including those who may not be machine learning experts or have access to dedicated GPU resources. Ultimately, this initiative seeks to make foundational LLM research more systematic and benchmark-informed from the earliest phases of model development.
Diff-XYZ: A Benchmark for Evaluating Diff Understanding
Reliable handling of code diffs is central to agents that edit and refactor repositories at scale. We introduce Diff-XYZ, a compact benchmark for code-diff understanding with three supervised tasks: apply (old code + diff rightarrow new code), anti-apply (new code - diff rightarrow old code), and diff generation (new code - old code rightarrow diff). Instances in the benchmark are triples langle old code, new code, diff rangle drawn from real commits in CommitPackFT, paired with automatic metrics and a clear evaluation protocol. We use the benchmark to do a focused empirical study of the unified diff format and run a cross-format comparison of different diff representations. Our findings reveal that different formats should be used depending on the use case and model size. For example, representing diffs in search-replace format is good for larger models in the diff generation scenario, yet not suited well for diff analysis and smaller models. The Diff-XYZ benchmark is a reusable foundation for assessing and improving diff handling in LLMs that can aid future development of diff formats and models editing code. The dataset is published on HuggingFace Hub: https://huggingface.co/datasets/JetBrains-Research/diff-xyz.
CLOVER: A Test Case Generation Benchmark with Coverage, Long-Context, and Verification
Software testing is a critical aspect of software development, yet generating test cases remains a routine task for engineers. This paper presents a benchmark, CLOVER, to evaluate models' capabilities in generating and completing test cases under specific conditions. Spanning from simple assertion completions to writing test cases that cover specific code blocks across multiple files, these tasks are based on 12 python repositories, analyzing 845 problems with context lengths ranging from 4k to 128k tokens. Utilizing code testing frameworks, we propose a method to construct retrieval contexts using coverage information. While models exhibit comparable performance with short contexts, notable differences emerge with 16k contexts. Notably, models like GPT-4o and Claude 3.5 can effectively leverage relevant snippets; however, all models score below 35\% on the complex Task III, even with the oracle context provided, underscoring the benchmark's significance and the potential for model improvement. The benchmark is containerized for code execution across tasks, and we will release the code, data, and construction methodologies.
Can Language Models Replace Programmers? REPOCOD Says 'Not Yet'
Large language models (LLMs) have shown remarkable ability in code generation with more than 90 pass@1 in solving Python coding problems in HumanEval and MBPP. Such high accuracy leads to the question: can LLMs replace human programmers? Existing manual crafted, simple, or single-line code generation benchmarks cannot answer this question due to their gap with real-world software development. To answer this question, we propose REPOCOD, a code generation benchmark with 980 problems collected from 11 popular real-world projects, with more than 58% of them requiring file-level or repository-level context information. In addition, REPOCOD has the longest average canonical solution length (331.6 tokens) and the highest average cyclomatic complexity (9.00) compared to existing benchmarks. In our evaluations on ten LLMs, none of the models can achieve more than 30 pass@1 on REPOCOD, disclosing the necessity of building stronger LLMs that can help developers in real-world software development.
Beyond Visual Understanding: Introducing PARROT-360V for Vision Language Model Benchmarking
Current benchmarks for evaluating Vision Language Models (VLMs) often fall short in thoroughly assessing model abilities to understand and process complex visual and textual content. They typically focus on simple tasks that do not require deep reasoning or the integration of multiple data modalities to solve an original problem. To address this gap, we introduce the PARROT-360V Benchmark, a novel and comprehensive benchmark featuring 2487 challenging visual puzzles designed to test VLMs on complex visual reasoning tasks. We evaluated leading models: GPT-4o, Claude-3.5-Sonnet, and Gemini-1.5-Pro, using PARROT-360V to assess their capabilities in combining visual clues with language skills to solve tasks in a manner akin to human problem-solving. Our findings reveal a notable performance gap: state-of-the-art models scored between 28 to 56 percentage on our benchmark, significantly lower than their performance on popular benchmarks. This underscores the limitations of current VLMs in handling complex, multi-step reasoning tasks and highlights the need for more robust evaluation frameworks to advance the field.
ViewFormer: Exploring Spatiotemporal Modeling for Multi-View 3D Occupancy Perception via View-Guided Transformers
3D occupancy, an advanced perception technology for driving scenarios, represents the entire scene without distinguishing between foreground and background by quantifying the physical space into a grid map. The widely adopted projection-first deformable attention, efficient in transforming image features into 3D representations, encounters challenges in aggregating multi-view features due to sensor deployment constraints. To address this issue, we propose our learning-first view attention mechanism for effective multi-view feature aggregation. Moreover, we showcase the scalability of our view attention across diverse multi-view 3D tasks, including map construction and 3D object detection. Leveraging the proposed view attention as well as an additional multi-frame streaming temporal attention, we introduce ViewFormer, a vision-centric transformer-based framework for spatiotemporal feature aggregation. To further explore occupancy-level flow representation, we present FlowOcc3D, a benchmark built on top of existing high-quality datasets. Qualitative and quantitative analyses on this benchmark reveal the potential to represent fine-grained dynamic scenes. Extensive experiments show that our approach significantly outperforms prior state-of-the-art methods. The codes are available at https://github.com/ViewFormerOcc/ViewFormer-Occ.
EffiBench: Benchmarking the Efficiency of Automatically Generated Code
Code generation models have increasingly become integral to aiding software development, offering assistance in tasks such as code completion, debugging, and code translation. Although current research has thoroughly examined the correctness of code produced by code generation models, a vital aspect, i.e., the efficiency of the generated code, has often been neglected. This paper presents EffiBench, a benchmark with 1,000 efficiency-critical coding problems for assessing the efficiency of code generated by code generation models. EffiBench contains a diverse set of LeetCode coding problems. Each problem is paired with an executable human-written canonical solution. With EffiBench, we empirically examine the capability of 21 Large Language Models (13 open-sourced and 8 closed-sourced) in generating efficient code. The results demonstrate that GPT-4-turbo generates the most efficient code, significantly outperforming Palm-2-chat-bison, Claude-instant-1, Gemini-pro, GPT-4, and GPT-3.5. Nevertheless, its code efficiency is still worse than the efficiency of human-written canonical solutions. In particular, the average and worst execution time of GPT-4-turbo generated code is 1.69 and 45.49 times that of the canonical solutions.
MERA Code: A Unified Framework for Evaluating Code Generation Across Tasks
Advancements in LLMs have enhanced task automation in software engineering; however, current evaluations primarily focus on natural language tasks, overlooking code quality. Most benchmarks prioritize high-level reasoning over executable code and real-world performance, leaving gaps in understanding true capabilities and risks associated with these models in production. To address this issue, we propose MERA Code, a new addition to the MERA benchmark family, specifically focused on evaluating code for the latest code generation LLMs in Russian. This benchmark includes 11 evaluation tasks that span 8 programming languages. Our proposed evaluation methodology features a taxonomy that outlines the practical coding skills necessary for models to complete these tasks. The benchmark comprises an open-source codebase for users to conduct MERA assessments, a scoring system compatible with various programming environments, and a platform featuring a leaderboard and submission system. We evaluate open LLMs and frontier API models, analyzing their limitations in terms of practical coding tasks in non-English languages. We are publicly releasing MERA to guide future research, anticipate groundbreaking features in model development, and standardize evaluation procedures.
OCR-Reasoning Benchmark: Unveiling the True Capabilities of MLLMs in Complex Text-Rich Image Reasoning
Recent advancements in multimodal slow-thinking systems have demonstrated remarkable performance across diverse visual reasoning tasks. However, their capabilities in text-rich image reasoning tasks remain understudied due to the lack of a systematic benchmark. To address this gap, we propose OCR-Reasoning, a comprehensive benchmark designed to systematically assess Multimodal Large Language Models on text-rich image reasoning tasks. The benchmark comprises 1,069 human-annotated examples spanning 6 core reasoning abilities and 18 practical reasoning tasks in text-rich visual scenarios. Furthermore, unlike other text-rich image understanding benchmarks that only annotate the final answers, OCR-Reasoning also annotates the reasoning process simultaneously. With the annotated reasoning process and the final answers, OCR-Reasoning evaluates not only the final answers generated by models but also their reasoning processes, enabling a holistic analysis of their problem-solving abilities. Leveraging this benchmark, we conducted a comprehensive evaluation of state-of-the-art MLLMs. Our results demonstrate the limitations of existing methodologies. Notably, even state-of-the-art MLLMs exhibit substantial difficulties, with none achieving accuracy surpassing 50\% across OCR-Reasoning, indicating that the challenges of text-rich image reasoning are an urgent issue to be addressed. The benchmark and evaluation scripts are available at https://github.com/SCUT-DLVCLab/OCR-Reasoning.
RTV-Bench: Benchmarking MLLM Continuous Perception, Understanding and Reasoning through Real-Time Video
Multimodal Large Language Models (MLLMs) increasingly excel at perception, understanding, and reasoning. However, current benchmarks inadequately evaluate their ability to perform these tasks continuously in dynamic, real-world environments. To bridge this gap, we introduce RTV-Bench, a fine-grained benchmark for MLLM real-time video analysis. RTV-Bench uses three key principles: (1) Multi-Timestamp Question Answering (MTQA), where answers evolve with scene changes; (2) Hierarchical Question Structure, combining basic and advanced queries; and (3) Multi-dimensional Evaluation, assessing the ability of continuous perception, understanding, and reasoning. RTV-Bench contains 552 diverse videos (167.2 hours) and 4,631 high-quality QA pairs. We evaluated leading MLLMs, including proprietary (GPT-4o, Gemini 2.0), open-source offline (Qwen2.5-VL, VideoLLaMA3), and open-source real-time (VITA-1.5, InternLM-XComposer2.5-OmniLive) models. Experiment results show open-source real-time models largely outperform offline ones but still trail top proprietary models. Our analysis also reveals that larger model size or higher frame sampling rates do not significantly boost RTV-Bench performance, sometimes causing slight decreases. This underscores the need for better model architectures optimized for video stream processing and long sequences to advance real-time video analysis with MLLMs. Our benchmark toolkit is available at: https://github.com/LJungang/RTV-Bench.
Hash3D: Training-free Acceleration for 3D Generation
The evolution of 3D generative modeling has been notably propelled by the adoption of 2D diffusion models. Despite this progress, the cumbersome optimization process per se presents a critical hurdle to efficiency. In this paper, we introduce Hash3D, a universal acceleration for 3D generation without model training. Central to Hash3D is the insight that feature-map redundancy is prevalent in images rendered from camera positions and diffusion time-steps in close proximity. By effectively hashing and reusing these feature maps across neighboring timesteps and camera angles, Hash3D substantially prevents redundant calculations, thus accelerating the diffusion model's inference in 3D generation tasks. We achieve this through an adaptive grid-based hashing. Surprisingly, this feature-sharing mechanism not only speed up the generation but also enhances the smoothness and view consistency of the synthesized 3D objects. Our experiments covering 5 text-to-3D and 3 image-to-3D models, demonstrate Hash3D's versatility to speed up optimization, enhancing efficiency by 1.3 to 4 times. Additionally, Hash3D's integration with 3D Gaussian splatting largely speeds up 3D model creation, reducing text-to-3D processing to about 10 minutes and image-to-3D conversion to roughly 30 seconds. The project page is at https://adamdad.github.io/hash3D/.
Can Large Language Models Write Parallel Code?
Large Language Models are becoming an increasingly popular tool for software development. Their ability to model and generate source code has been demonstrated in a variety of contexts, including code completion, summarization, translation, and lookup. However, they often struggle to generate code for more complex tasks. In this paper, we explore the ability of state-of-the-art language models to generate parallel code. We propose a benchmark, PCGBench, consisting of a set of 420 tasks for evaluating the ability of language models to generate parallel code, and we evaluate the performance of several state-of-the-art open- and closed-source language models on these tasks. We introduce novel metrics for comparing parallel code generation performance and use them to explore how well each LLM performs on various parallel programming models and computational problem types.
Turning the Tide: Repository-based Code Reflection
Code large language models (LLMs) enhance programming by understanding and generating code across languages, offering intelligent feedback, bug detection, and code updates through reflection, improving development efficiency and accessibility. While benchmarks (e.g. HumanEval/LiveCodeBench) evaluate code generation and real-world relevance, previous works ignore the scenario of modifying code in repositories. Considering challenges remaining in improving reflection capabilities and avoiding data contamination in dynamic benchmarks, we introduce LiveRepoReflection, a challenging benchmark for evaluating code understanding and generation in multi-file repository contexts, featuring 1,888 rigorously filtered test cases across 6 programming languages to ensure diversity, correctness, and high difficulty. Further, we create RepoReflection-Instruct, a large-scale, quality-filtered instruction-tuning dataset derived from diverse sources, used to train RepoReflectionCoder through a two-turn dialogue process involving code generation and error-driven repair. The leaderboard evaluates over 40 LLMs to reflect the model performance of repository-based code reflection.
Open RL Benchmark: Comprehensive Tracked Experiments for Reinforcement Learning
In many Reinforcement Learning (RL) papers, learning curves are useful indicators to measure the effectiveness of RL algorithms. However, the complete raw data of the learning curves are rarely available. As a result, it is usually necessary to reproduce the experiments from scratch, which can be time-consuming and error-prone. We present Open RL Benchmark, a set of fully tracked RL experiments, including not only the usual data such as episodic return, but also all algorithm-specific and system metrics. Open RL Benchmark is community-driven: anyone can download, use, and contribute to the data. At the time of writing, more than 25,000 runs have been tracked, for a cumulative duration of more than 8 years. Open RL Benchmark covers a wide range of RL libraries and reference implementations. Special care is taken to ensure that each experiment is precisely reproducible by providing not only the full parameters, but also the versions of the dependencies used to generate it. In addition, Open RL Benchmark comes with a command-line interface (CLI) for easy fetching and generating figures to present the results. In this document, we include two case studies to demonstrate the usefulness of Open RL Benchmark in practice. To the best of our knowledge, Open RL Benchmark is the first RL benchmark of its kind, and the authors hope that it will improve and facilitate the work of researchers in the field.
Neural Processing of Tri-Plane Hybrid Neural Fields
Driven by the appealing properties of neural fields for storing and communicating 3D data, the problem of directly processing them to address tasks such as classification and part segmentation has emerged and has been investigated in recent works. Early approaches employ neural fields parameterized by shared networks trained on the whole dataset, achieving good task performance but sacrificing reconstruction quality. To improve the latter, later methods focus on individual neural fields parameterized as large Multi-Layer Perceptrons (MLPs), which are, however, challenging to process due to the high dimensionality of the weight space, intrinsic weight space symmetries, and sensitivity to random initialization. Hence, results turn out significantly inferior to those achieved by processing explicit representations, e.g., point clouds or meshes. In the meantime, hybrid representations, in particular based on tri-planes, have emerged as a more effective and efficient alternative to realize neural fields, but their direct processing has not been investigated yet. In this paper, we show that the tri-plane discrete data structure encodes rich information, which can be effectively processed by standard deep-learning machinery. We define an extensive benchmark covering a diverse set of fields such as occupancy, signed/unsigned distance, and, for the first time, radiance fields. While processing a field with the same reconstruction quality, we achieve task performance far superior to frameworks that process large MLPs and, for the first time, almost on par with architectures handling explicit representations.
VBench: Comprehensive Benchmark Suite for Video Generative Models
Video generation has witnessed significant advancements, yet evaluating these models remains a challenge. A comprehensive evaluation benchmark for video generation is indispensable for two reasons: 1) Existing metrics do not fully align with human perceptions; 2) An ideal evaluation system should provide insights to inform future developments of video generation. To this end, we present VBench, a comprehensive benchmark suite that dissects "video generation quality" into specific, hierarchical, and disentangled dimensions, each with tailored prompts and evaluation methods. VBench has three appealing properties: 1) Comprehensive Dimensions: VBench comprises 16 dimensions in video generation (e.g., subject identity inconsistency, motion smoothness, temporal flickering, and spatial relationship, etc). The evaluation metrics with fine-grained levels reveal individual models' strengths and weaknesses. 2) Human Alignment: We also provide a dataset of human preference annotations to validate our benchmarks' alignment with human perception, for each evaluation dimension respectively. 3) Valuable Insights: We look into current models' ability across various evaluation dimensions, and various content types. We also investigate the gaps between video and image generation models. We will open-source VBench, including all prompts, evaluation methods, generated videos, and human preference annotations, and also include more video generation models in VBench to drive forward the field of video generation.
PECC: Problem Extraction and Coding Challenges
Recent advancements in large language models (LLMs) have showcased their exceptional abilities across various tasks, such as code generation, problem-solving and reasoning. Existing benchmarks evaluate tasks in isolation, yet the extent to which LLMs can understand prose-style tasks, identify the underlying problems, and then generate appropriate code solutions is still unexplored. Addressing this gap, we introduce PECC, a novel benchmark derived from Advent Of Code (AoC) challenges and Project Euler, including 2396 problems. Unlike conventional benchmarks, PECC requires LLMs to interpret narrative-embedded problems, extract requirements, and generate executable code. A key feature of our dataset is the complexity added by natural language prompting in chat-based evaluations, mirroring real-world instruction ambiguities. Results show varying model performance between narrative and neutral problems, with specific challenges in the Euler math-based subset with GPT-3.5-Turbo passing 50% of the AoC challenges and only 8% on the Euler problems. By probing the limits of LLMs' capabilities, our benchmark provides a framework to monitor and assess the subsequent progress of LLMs as a universal problem solver.
TRUEBench: Can LLM Response Meet Real-world Constraints as Productivity Assistant?
Large language models (LLMs) are increasingly integral as productivity assistants, but existing benchmarks fall short in rigorously evaluating their real-world instruction-following capabilities. Current benchmarks often (i) lack sufficient multilinguality, (ii) fail to capture the implicit constraints inherent in user requests, and (iii) overlook the complexities of multi-turn dialogue. To address these critical gaps and provide a more realistic assessment, we introduce TRUEBench (Trustworthy Real-world Usage Evaluation Benchmark)1, a novel benchmark specifically designed for LLM-based productivity assistants. TRUEBench distinguishes itself by featuring input prompts across 12 languages, incorporating intra-instance multilingual instructions, employing rigorous evaluation criteria to capture both explicit and implicit constraints, and including complex multi-turn dialogue scenarios with both accumulating constraints and context switches. Furthermore, to ensure reliability in evaluation, we refined constraints using an LLM validator. Extensive experiments demonstrate that TRUEBench presents significantly greater challenges than existing benchmarks; for instance, a strong model like OpenAI o1 achieved only a 69.07% overall pass rate. TRUEBench offers a demanding and realistic assessment of LLMs in practical productivity settings, highlighting their capabilities and limitations.
IDEA-Bench: How Far are Generative Models from Professional Designing?
Real-world design tasks - such as picture book creation, film storyboard development using character sets, photo retouching, visual effects, and font transfer - are highly diverse and complex, requiring deep interpretation and extraction of various elements from instructions, descriptions, and reference images. The resulting images often implicitly capture key features from references or user inputs, making it challenging to develop models that can effectively address such varied tasks. While existing visual generative models can produce high-quality images based on prompts, they face significant limitations in professional design scenarios that involve varied forms and multiple inputs and outputs, even when enhanced with adapters like ControlNets and LoRAs. To address this, we introduce IDEA-Bench, a comprehensive benchmark encompassing 100 real-world design tasks, including rendering, visual effects, storyboarding, picture books, fonts, style-based, and identity-preserving generation, with 275 test cases to thoroughly evaluate a model's general-purpose generation capabilities. Notably, even the best-performing model only achieves 22.48 on IDEA-Bench, while the best general-purpose model only achieves 6.81. We provide a detailed analysis of these results, highlighting the inherent challenges and providing actionable directions for improvement. Additionally, we provide a subset of 18 representative tasks equipped with multimodal large language model (MLLM)-based auto-evaluation techniques to facilitate rapid model development and comparison. We releases the benchmark data, evaluation toolkits, and an online leaderboard at https://github.com/ali-vilab/IDEA-Bench, aiming to drive the advancement of generative models toward more versatile and applicable intelligent design systems.
FD-Bench: A Modular and Fair Benchmark for Data-driven Fluid Simulation
Data-driven modeling of fluid dynamics has advanced rapidly with neural PDE solvers, yet a fair and strong benchmark remains fragmented due to the absence of unified PDE datasets and standardized evaluation protocols. Although architectural innovations are abundant, fair assessment is further impeded by the lack of clear disentanglement between spatial, temporal and loss modules. In this paper, we introduce FD-Bench, the first fair, modular, comprehensive and reproducible benchmark for data-driven fluid simulation. FD-Bench systematically evaluates 85 baseline models across 10 representative flow scenarios under a unified experimental setup. It provides four key contributions: (1) a modular design enabling fair comparisons across spatial, temporal, and loss function modules; (2) the first systematic framework for direct comparison with traditional numerical solvers; (3) fine-grained generalization analysis across resolutions, initial conditions, and temporal windows; and (4) a user-friendly, extensible codebase to support future research. Through rigorous empirical studies, FD-Bench establishes the most comprehensive leaderboard to date, resolving long-standing issues in reproducibility and comparability, and laying a foundation for robust evaluation of future data-driven fluid models. The code is open-sourced at https://anonymous.4open.science/r/FD-Bench-15BC.
A Large-scale Class-level Benchmark Dataset for Code Generation with LLMs
Recent advancements in large language models (LLMs) have demonstrated promising capabilities in code generation tasks. However, most existing benchmarks focus on isolated functions and fail to capture the complexity of real-world, class-level software structures. To address this gap, we introduce a large-scale, Python class-level dataset curated from 13{,}174 real-world open-source projects. The dataset contains over 842,000 class skeletons, each including class and method signatures, along with associated docstrings when available. We preserve structural and contextual dependencies critical to realistic software development scenarios and enrich the dataset with static code metrics to support downstream analysis. To evaluate the usefulness of this dataset, we use extracted class skeletons as prompts for GPT-4 to generate full class implementations. Results show that the LLM-generated classes exhibit strong lexical and structural similarity to human-written counterparts, with average ROUGE@L, BLEU, and TSED scores of 0.80, 0.59, and 0.73, respectively. These findings confirm that well-structured prompts derived from real-world class skeletons significantly enhance LLM performance in class-level code generation. This dataset offers a valuable resource for benchmarking, training, and improving LLMs in realistic software engineering contexts.
Web-Bench: A LLM Code Benchmark Based on Web Standards and Frameworks
The application of large language models (LLMs) in the field of coding is evolving rapidly: from code assistants, to autonomous coding agents, and then to generating complete projects through natural language. Early LLM code benchmarks primarily focused on code generation accuracy, but these benchmarks have gradually become saturated. Benchmark saturation weakens their guiding role for LLMs. For example, HumanEval Pass@1 has reached 99.4% and MBPP 94.2%. Among various attempts to address benchmark saturation, approaches based on software engineering have stood out, but the saturation of existing software engineering benchmarks is rapidly increasing. To address this, we propose a new benchmark, Web-Bench, which contains 50 projects, each consisting of 20 tasks with sequential dependencies. The tasks implement project features in sequence, simulating real-world human development workflows. When designing Web-Bench, we aim to cover the foundational elements of Web development: Web Standards and Web Frameworks. Given the scale and complexity of these projects, which were designed by engineers with 5 to 10 years of experience, each presents a significant challenge. On average, a single project takes 4 to 8 hours for a senior engineer to complete. On our given benchmark agent (Web-Agent), SOTA (Claude 3.7 Sonnet) achieves only 25.1% Pass@1, significantly lower (better) than SWE-Bench's Verified (65.4%) and Full (33.8%) scores. Finally, we discuss that in any development field, Standards and Frameworks represent foundational knowledge and efficiency tools, respectively, and LLMs require optimization tailored to them.
VisJudge-Bench: Aesthetics and Quality Assessment of Visualizations
Visualization, a domain-specific yet widely used form of imagery, is an effective way to turn complex datasets into intuitive insights, and its value depends on whether data are faithfully represented, clearly communicated, and aesthetically designed. However, evaluating visualization quality is challenging: unlike natural images, it requires simultaneous judgment across data encoding accuracy, information expressiveness, and visual aesthetics. Although multimodal large language models (MLLMs) have shown promising performance in aesthetic assessment of natural images, no systematic benchmark exists for measuring their capabilities in evaluating visualizations. To address this, we propose VisJudge-Bench, the first comprehensive benchmark for evaluating MLLMs' performance in assessing visualization aesthetics and quality. It contains 3,090 expert-annotated samples from real-world scenarios, covering single visualizations, multiple visualizations, and dashboards across 32 chart types. Systematic testing on this benchmark reveals that even the most advanced MLLMs (such as GPT-5) still exhibit significant gaps compared to human experts in judgment, with a Mean Absolute Error (MAE) of 0.551 and a correlation with human ratings of only 0.429. To address this issue, we propose VisJudge, a model specifically designed for visualization aesthetics and quality assessment. Experimental results demonstrate that VisJudge significantly narrows the gap with human judgment, reducing the MAE to 0.442 (a 19.8% reduction) and increasing the consistency with human experts to 0.681 (a 58.7% improvement) compared to GPT-5. The benchmark is available at https://github.com/HKUSTDial/VisJudgeBench.
DevBench: A Comprehensive Benchmark for Software Development
Recent advancements in large language models (LLMs) have significantly enhanced their coding capabilities. However, existing benchmarks predominantly focused on simplified or isolated aspects of programming, such as single-file code generation or repository issue debugging, falling short of measuring the full spectrum of challenges raised by real-world programming activities. To this end, we propose DevBench, a comprehensive benchmark that evaluates LLMs across various stages of the software development lifecycle, including software design, environment setup, implementation, acceptance testing, and unit testing. DevBench features a wide range of programming languages and domains, high-quality data collection, and carefully designed and verified metrics for each task. Empirical studies show that current LLMs, including GPT-4-Turbo, fail to solve the challenges presented within DevBench. Analyses reveal that models struggle with understanding the complex structures in the repository, managing the compilation process, and grasping advanced programming concepts. Our findings offer actionable insights for the future development of LLMs toward real-world programming applications. Our benchmark is available at https://github.com/open-compass/DevBench
Top Leaderboard Ranking = Top Coding Proficiency, Always? EvoEval: Evolving Coding Benchmarks via LLM
LLMs have become the go-to choice for code generation tasks, with an exponential increase in the training, development, and usage of LLMs specifically for code generation. To evaluate the ability of LLMs on code, both academic and industry practitioners rely on popular handcrafted benchmarks. However, prior benchmarks contain only a very limited set of problems, both in quantity and variety. Further, due to popularity and age, many benchmarks are prone to data leakage where example solutions can be readily found on the web and thus potentially in training data. Such limitations inevitably lead us to inquire: Is the leaderboard performance on existing benchmarks reliable and comprehensive enough to measure the program synthesis ability of LLMs? To address this, we introduce EvoEval -- a program synthesis benchmark suite created by evolving existing benchmarks into different targeted domains for a comprehensive evaluation of LLM coding abilities. Our study on 51 LLMs shows that compared to the high performance obtained on standard benchmarks like HumanEval, there is a significant drop in performance (on average 39.4%) when using EvoEval. Additionally, the decrease in performance can range from 19.6% to 47.7%, leading to drastic ranking changes amongst LLMs and showing potential overfitting of existing benchmarks. Furthermore, we showcase various insights, including the brittleness of instruction-following models when encountering rewording or subtle changes as well as the importance of learning problem composition and decomposition. EvoEval not only provides comprehensive benchmarks, but can be used to further evolve arbitrary problems to keep up with advances and the ever-changing landscape of LLMs for code. We have open-sourced our benchmarks, tools, and complete LLM generations at https://github.com/evo-eval/evoeval
Align and Distill: Unifying and Improving Domain Adaptive Object Detection
Object detectors often perform poorly on data that differs from their training set. Domain adaptive object detection (DAOD) methods have recently demonstrated strong results on addressing this challenge. Unfortunately, we identify systemic benchmarking pitfalls that call past results into question and hamper further progress: (a) Overestimation of performance due to underpowered baselines, (b) Inconsistent implementation practices preventing transparent comparisons of methods, and (c) Lack of generality due to outdated backbones and lack of diversity in benchmarks. We address these problems by introducing: (1) A unified benchmarking and implementation framework, Align and Distill (ALDI), enabling comparison of DAOD methods and supporting future development, (2) A fair and modern training and evaluation protocol for DAOD that addresses benchmarking pitfalls, (3) A new DAOD benchmark dataset, CFC-DAOD, enabling evaluation on diverse real-world data, and (4) A new method, ALDI++, that achieves state-of-the-art results by a large margin. ALDI++ outperforms the previous state-of-the-art by +3.5 AP50 on Cityscapes to Foggy Cityscapes, +5.7 AP50 on Sim10k to Cityscapes (where ours is the only method to outperform a fair baseline), and +0.6 AP50 on CFC Kenai to Channel. ALDI and ALDI++ are architecture-agnostic, setting a new state-of-the-art for YOLO and DETR-based DAOD as well without additional hyperparameter tuning. Our framework, dataset, and state-of-the-art method offer a critical reset for DAOD and provide a strong foundation for future research. Code and data are available: https://github.com/justinkay/aldi and https://github.com/visipedia/caltech-fish-counting.
CFDLLMBench: A Benchmark Suite for Evaluating Large Language Models in Computational Fluid Dynamics
Large Language Models (LLMs) have demonstrated strong performance across general NLP tasks, but their utility in automating numerical experiments of complex physical system -- a critical and labor-intensive component -- remains underexplored. As the major workhorse of computational science over the past decades, Computational Fluid Dynamics (CFD) offers a uniquely challenging testbed for evaluating the scientific capabilities of LLMs. We introduce CFDLLMBench, a benchmark suite comprising three complementary components -- CFDQuery, CFDCodeBench, and FoamBench -- designed to holistically evaluate LLM performance across three key competencies: graduate-level CFD knowledge, numerical and physical reasoning of CFD, and context-dependent implementation of CFD workflows. Grounded in real-world CFD practices, our benchmark combines a detailed task taxonomy with a rigorous evaluation framework to deliver reproducible results and quantify LLM performance across code executability, solution accuracy, and numerical convergence behavior. CFDLLMBench establishes a solid foundation for the development and evaluation of LLM-driven automation of numerical experiments for complex physical systems. Code and data are available at https://github.com/NREL-Theseus/cfdllmbench/.
MultiCorrupt: A Multi-Modal Robustness Dataset and Benchmark of LiDAR-Camera Fusion for 3D Object Detection
Multi-modal 3D object detection models for automated driving have demonstrated exceptional performance on computer vision benchmarks like nuScenes. However, their reliance on densely sampled LiDAR point clouds and meticulously calibrated sensor arrays poses challenges for real-world applications. Issues such as sensor misalignment, miscalibration, and disparate sampling frequencies lead to spatial and temporal misalignment in data from LiDAR and cameras. Additionally, the integrity of LiDAR and camera data is often compromised by adverse environmental conditions such as inclement weather, leading to occlusions and noise interference. To address this challenge, we introduce MultiCorrupt, a comprehensive benchmark designed to evaluate the robustness of multi-modal 3D object detectors against ten distinct types of corruptions. We evaluate five state-of-the-art multi-modal detectors on MultiCorrupt and analyze their performance in terms of their resistance ability. Our results show that existing methods exhibit varying degrees of robustness depending on the type of corruption and their fusion strategy. We provide insights into which multi-modal design choices make such models robust against certain perturbations. The dataset generation code and benchmark are open-sourced at https://github.com/ika-rwth-aachen/MultiCorrupt.
SWE-fficiency: Can Language Models Optimize Real-World Repositories on Real Workloads?
Optimizing the performance of large-scale software repositories demands expertise in code reasoning and software engineering (SWE) to reduce runtime while preserving program correctness. However, most benchmarks emphasize what to fix rather than how to fix code. We introduce SWE-fficiency, a benchmark for evaluating repository-level performance optimization on real workloads. Our suite contains 498 tasks across nine widely used data-science, machine-learning, and HPC repositories (e.g., numpy, pandas, scipy): given a complete codebase and a slow workload, an agent must investigate code semantics, localize bottlenecks and relevant tests, and produce a patch that matches or exceeds expert speedup while passing the same unit tests. To enable this how-to-fix evaluation, our automated pipeline scrapes GitHub pull requests for performance-improving edits, combining keyword filtering, static analysis, coverage tooling, and execution validation to both confirm expert speedup baselines and identify relevant repository unit tests. Empirical evaluation of state-of-the-art agents reveals significant underperformance. On average, agents achieve less than 0.15x the expert speedup: agents struggle in localizing optimization opportunities, reasoning about execution across functions, and maintaining correctness in proposed edits. We release the benchmark and accompanying data pipeline to facilitate research on automated performance engineering and long-horizon software reasoning.
Towards Fine-Grained Text-to-3D Quality Assessment: A Benchmark and A Two-Stage Rank-Learning Metric
Recent advances in Text-to-3D (T23D) generative models have enabled the synthesis of diverse, high-fidelity 3D assets from textual prompts. However, existing challenges restrict the development of reliable T23D quality assessment (T23DQA). First, existing benchmarks are outdated, fragmented, and coarse-grained, making fine-grained metric training infeasible. Moreover, current objective metrics exhibit inherent design limitations, resulting in non-representative feature extraction and diminished metric robustness. To address these limitations, we introduce T23D-CompBench, a comprehensive benchmark for compositional T23D generation. We define five components with twelve sub-components for compositional prompts, which are used to generate 3,600 textured meshes from ten state-of-the-art generative models. A large-scale subjective experiment is conducted to collect 129,600 reliable human ratings across different perspectives. Based on T23D-CompBench, we further propose Rank2Score, an effective evaluator with two-stage training for T23DQA. Rank2Score enhances pairwise training via supervised contrastive regression and curriculum learning in the first stage, and subsequently refines predictions using mean opinion scores to achieve closer alignment with human judgments in the second stage. Extensive experiments and downstream applications demonstrate that Rank2Score consistently outperforms existing metrics across multiple dimensions and can additionally serve as a reward function to optimize generative models. The project is available at https://cbysjtu.github.io/Rank2Score/.
7Bench: a Comprehensive Benchmark for Layout-guided Text-to-image Models
Layout-guided text-to-image models offer greater control over the generation process by explicitly conditioning image synthesis on the spatial arrangement of elements. As a result, their adoption has increased in many computer vision applications, ranging from content creation to synthetic data generation. A critical challenge is achieving precise alignment between the image, textual prompt, and layout, ensuring semantic fidelity and spatial accuracy. Although recent benchmarks assess text alignment, layout alignment remains overlooked, and no existing benchmark jointly evaluates both. This gap limits the ability to evaluate a model's spatial fidelity, which is crucial when using layout-guided generation for synthetic data, as errors can introduce noise and degrade data quality. In this work, we introduce 7Bench, the first benchmark to assess both semantic and spatial alignment in layout-guided text-to-image generation. It features text-and-layout pairs spanning seven challenging scenarios, investigating object generation, color fidelity, attribute recognition, inter-object relationships, and spatial control. We propose an evaluation protocol that builds on existing frameworks by incorporating the layout alignment score to assess spatial accuracy. Using 7Bench, we evaluate several state-of-the-art diffusion models, uncovering their respective strengths and limitations across diverse alignment tasks. The benchmark is available at https://github.com/Elizzo/7Bench.
SWE-Sharp-Bench: A Reproducible Benchmark for C# Software Engineering Tasks
AI coding agents have shown great progress on Python software engineering benchmarks like SWE-Bench, and for other languages like Java and C in benchmarks like Multi-SWE-Bench. However, C# -- a prominent enterprise language ranking #5 in the TIOBE index -- remains absent from such benchmarks. We introduce SWE-Sharp-Bench, a reproducible software engineering benchmark for C# featuring 150 instances from 17 repositories. Evaluating identical model-agent configurations across languages reveals a significant performance gap: while 70% of Python tasks in SWE-Bench Verified are solved, only 40% of our C# tasks are resolved. We open-source SWE-Sharp-Bench and our entire curation pipeline.
FFB: A Fair Fairness Benchmark for In-Processing Group Fairness Methods
This paper introduces the Fair Fairness Benchmark (FFB), a benchmarking framework for in-processing group fairness methods. Ensuring fairness in machine learning is critical for ethical and legal compliance. However, there exist challenges in comparing and developing of fairness methods due to inconsistencies in experimental settings, lack of accessible algorithmic implementations, and limited extensibility of current fairness packages and tools. To address these issues, we introduce an open-source, standardized benchmark for evaluating in-processing group fairness methods and provide a comprehensive analysis of state-of-the-art methods to ensure different notions of group fairness. This work offers the following key contributions: the provision of flexible, extensible, minimalistic, and research-oriented open-source code; the establishment of unified fairness method benchmarking pipelines; and extensive benchmarking, which yields key insights from 45,079 experiments. We believe our work will significantly facilitate the growth and development of the fairness research community. The benchmark, including code and running logs, is available at https://github.com/ahxt/fair_fairness_benchmark
A Benchmark and Evaluation for Real-World Out-of-Distribution Detection Using Vision-Language Models
Out-of-distribution (OOD) detection is a task that detects OOD samples during inference to ensure the safety of deployed models. However, conventional benchmarks have reached performance saturation, making it difficult to compare recent OOD detection methods. To address this challenge, we introduce three novel OOD detection benchmarks that enable a deeper understanding of method characteristics and reflect real-world conditions. First, we present ImageNet-X, designed to evaluate performance under challenging semantic shifts. Second, we propose ImageNet-FS-X for full-spectrum OOD detection, assessing robustness to covariate shifts (feature distribution shifts). Finally, we propose Wilds-FS-X, which extends these evaluations to real-world datasets, offering a more comprehensive testbed. Our experiments reveal that recent CLIP-based OOD detection methods struggle to varying degrees across the three proposed benchmarks, and none of them consistently outperforms the others. We hope the community goes beyond specific benchmarks and includes more challenging conditions reflecting real-world scenarios. The code is https://github.com/hoshi23/OOD-X-Benchmarks.
OpenOccupancy: A Large Scale Benchmark for Surrounding Semantic Occupancy Perception
Semantic occupancy perception is essential for autonomous driving, as automated vehicles require a fine-grained perception of the 3D urban structures. However, existing relevant benchmarks lack diversity in urban scenes, and they only evaluate front-view predictions. Towards a comprehensive benchmarking of surrounding perception algorithms, we propose OpenOccupancy, which is the first surrounding semantic occupancy perception benchmark. In the OpenOccupancy benchmark, we extend the large-scale nuScenes dataset with dense semantic occupancy annotations. Previous annotations rely on LiDAR points superimposition, where some occupancy labels are missed due to sparse LiDAR channels. To mitigate the problem, we introduce the Augmenting And Purifying (AAP) pipeline to ~2x densify the annotations, where ~4000 human hours are involved in the labeling process. Besides, camera-based, LiDAR-based and multi-modal baselines are established for the OpenOccupancy benchmark. Furthermore, considering the complexity of surrounding occupancy perception lies in the computational burden of high-resolution 3D predictions, we propose the Cascade Occupancy Network (CONet) to refine the coarse prediction, which relatively enhances the performance by ~30% than the baseline. We hope the OpenOccupancy benchmark will boost the development of surrounding occupancy perception algorithms.
SWE-bench Goes Live!
The issue-resolving task, where a model generates patches to fix real-world bugs, has emerged as a critical benchmark for evaluating the capabilities of large language models (LLMs). While SWE-bench and its variants have become standard in this domain, they suffer from key limitations: they have not been updated since their initial releases, cover a narrow set of repositories, and depend heavily on manual effort for instance construction and environment setup. These factors hinder scalability and introduce risks of overfitting and data contamination. In this work, we present SWE-bench-Live, a live-updatable benchmark designed to overcome these challenges. Our initial release consists of 1,319 tasks derived from real GitHub issues created since 2024, spanning 93 repositories. Each task is accompanied by a dedicated Docker image to ensure reproducible execution. Central to our benchmark is \method, an automated curation pipeline that streamlines the entire process from instance creation to environment setup, removing manual bottlenecks and enabling scalability and continuous updates. We evaluate a range of state-of-the-art agent frameworks and LLMs on SWE-bench-Live, revealing a substantial performance gap compared to static benchmarks like SWE-bench, even under controlled evaluation conditions. To better understand this discrepancy, we perform detailed analyses across repository origin, issue recency, and task difficulty. By providing a fresh, diverse, and executable benchmark grounded in live repository activity, SWE-bench-Live facilitates rigorous, contamination-resistant evaluation of LLMs and agents in dynamic, real-world software development settings.
Ocularone-Bench: Benchmarking DNN Models on GPUs to Assist the Visually Impaired
VIP navigation requires multiple DNN models for identification, posture analysis, and depth estimation to ensure safe mobility. Using a hazard vest as a unique identifier enhances visibility while selecting the right DNN model and computing device balances accuracy and real-time performance. We present Ocularone-Bench, which is a benchmark suite designed to address the lack of curated datasets for uniquely identifying individuals in crowded environments and the need for benchmarking DNN inference times on resource-constrained edge devices. The suite evaluates the accuracy-latency trade-offs of YOLO models retrained on this dataset and benchmarks inference times of situation awareness models across edge accelerators and high-end GPU workstations. Our study on NVIDIA Jetson devices and RTX 4090 workstation demonstrates significant improvements in detection accuracy, achieving up to 99.4% precision, while also providing insights into real-time feasibility for mobile deployment. Beyond VIP navigation, Ocularone-Bench is applicable to senior citizens, children and worker safety monitoring, and other vision-based applications.
Lifelong Benchmarks: Efficient Model Evaluation in an Era of Rapid Progress
Standardized benchmarks drive progress in machine learning. However, with repeated testing, the risk of overfitting grows as algorithms over-exploit benchmark idiosyncrasies. In our work, we seek to mitigate this challenge by compiling ever-expanding large-scale benchmarks called Lifelong Benchmarks. As exemplars of our approach, we create Lifelong-CIFAR10 and Lifelong-ImageNet, containing (for now) 1.69M and 1.98M test samples, respectively. While reducing overfitting, lifelong benchmarks introduce a key challenge: the high cost of evaluating a growing number of models across an ever-expanding sample set. To address this challenge, we also introduce an efficient evaluation framework: Sort \& Search (S&S), which reuses previously evaluated models by leveraging dynamic programming algorithms to selectively rank and sub-select test samples, enabling cost-effective lifelong benchmarking. Extensive empirical evaluations across 31,000 models demonstrate that S&S achieves highly-efficient approximate accuracy measurement, reducing compute cost from 180 GPU days to 5 GPU hours (1000x reduction) on a single A100 GPU, with low approximation error. As such, lifelong benchmarks offer a robust, practical solution to the "benchmark exhaustion" problem.
Hardware Acceleration of Neural Graphics
Rendering and inverse-rendering algorithms that drive conventional computer graphics have recently been superseded by neural representations (NR). NRs have recently been used to learn the geometric and the material properties of the scenes and use the information to synthesize photorealistic imagery, thereby promising a replacement for traditional rendering algorithms with scalable quality and predictable performance. In this work we ask the question: Does neural graphics (NG) need hardware support? We studied representative NG applications showing that, if we want to render 4k res. at 60FPS there is a gap of 1.5X-55X in the desired performance on current GPUs. For AR/VR applications, there is an even larger gap of 2-4 OOM between the desired performance and the required system power. We identify that the input encoding and the MLP kernels are the performance bottlenecks, consuming 72%,60% and 59% of application time for multi res. hashgrid, multi res. densegrid and low res. densegrid encodings, respectively. We propose a NG processing cluster, a scalable and flexible hardware architecture that directly accelerates the input encoding and MLP kernels through dedicated engines and supports a wide range of NG applications. We also accelerate the rest of the kernels by fusing them together in Vulkan, which leads to 9.94X kernel-level performance improvement compared to un-fused implementation of the pre-processing and the post-processing kernels. Our results show that, NGPC gives up to 58X end-to-end application-level performance improvement, for multi res. hashgrid encoding on average across the four NG applications, the performance benefits are 12X,20X,33X and 39X for the scaling factor of 8,16,32 and 64, respectively. Our results show that with multi res. hashgrid encoding, NGPC enables the rendering of 4k res. at 30FPS for NeRF and 8k res. at 120FPS for all our other NG applications.
OMNI-DC: Highly Robust Depth Completion with Multiresolution Depth Integration
Depth completion (DC) aims to predict a dense depth map from an RGB image and sparse depth observations. Existing methods for DC generalize poorly on new datasets or unseen sparse depth patterns, limiting their practical applications. We propose OMNI-DC, a highly robust DC model that generalizes well across various scenarios. Our method incorporates a novel multi-resolution depth integration layer and a probability-based loss, enabling it to deal with sparse depth maps of varying densities. Moreover, we train OMNI-DC on a mixture of synthetic datasets with a scale normalization technique. To evaluate our model, we establish a new evaluation protocol named Robust-DC for zero-shot testing under various sparse depth patterns. Experimental results on Robust-DC and conventional benchmarks show that OMNI-DC significantly outperforms the previous state of the art. The checkpoints, training code, and evaluations are available at https://github.com/princeton-vl/OMNI-DC.
StructEval: Benchmarking LLMs' Capabilities to Generate Structural Outputs
As Large Language Models (LLMs) become integral to software development workflows, their ability to generate structured outputs has become critically important. We introduce StructEval, a comprehensive benchmark for evaluating LLMs' capabilities in producing both non-renderable (JSON, YAML, CSV) and renderable (HTML, React, SVG) structured formats. Unlike prior benchmarks, StructEval systematically evaluates structural fidelity across diverse formats through two paradigms: 1) generation tasks, producing structured output from natural language prompts, and 2) conversion tasks, translating between structured formats. Our benchmark encompasses 18 formats and 44 types of task, with novel metrics for format adherence and structural correctness. Results reveal significant performance gaps, even state-of-the-art models like o1-mini achieve only 75.58 average score, with open-source alternatives lagging approximately 10 points behind. We find generation tasks more challenging than conversion tasks, and producing correct visual content more difficult than generating text-only structures.
OLATverse: A Large-scale Real-world Object Dataset with Precise Lighting Control
We introduce OLATverse, a large-scale dataset comprising around 9M images of 765 real-world objects, captured from multiple viewpoints under a diverse set of precisely controlled lighting conditions. While recent advances in object-centric inverse rendering, novel view synthesis and relighting have shown promising results, most techniques still heavily rely on the synthetic datasets for training and small-scale real-world datasets for benchmarking, which limits their realism and generalization. To address this gap, OLATverse offers two key advantages over existing datasets: large-scale coverage of real objects and high-fidelity appearance under precisely controlled illuminations. Specifically, OLATverse contains 765 common and uncommon real-world objects, spanning a wide range of material categories. Each object is captured using 35 DSLR cameras and 331 individually controlled light sources, enabling the simulation of diverse illumination conditions. In addition, for each object, we provide well-calibrated camera parameters, accurate object masks, photometric surface normals, and diffuse albedo as auxiliary resources. We also construct an extensive evaluation set, establishing the first comprehensive real-world object-centric benchmark for inverse rendering and normal estimation. We believe that OLATverse represents a pivotal step toward integrating the next generation of inverse rendering and relighting methods with real-world data. The full dataset, along with all post-processing workflows, will be publicly released at https://vcai.mpi-inf.mpg.de/projects/OLATverse/.
Invisible Stitch: Generating Smooth 3D Scenes with Depth Inpainting
3D scene generation has quickly become a challenging new research direction, fueled by consistent improvements of 2D generative diffusion models. Most prior work in this area generates scenes by iteratively stitching newly generated frames with existing geometry. These works often depend on pre-trained monocular depth estimators to lift the generated images into 3D, fusing them with the existing scene representation. These approaches are then often evaluated via a text metric, measuring the similarity between the generated images and a given text prompt. In this work, we make two fundamental contributions to the field of 3D scene generation. First, we note that lifting images to 3D with a monocular depth estimation model is suboptimal as it ignores the geometry of the existing scene. We thus introduce a novel depth completion model, trained via teacher distillation and self-training to learn the 3D fusion process, resulting in improved geometric coherence of the scene. Second, we introduce a new benchmarking scheme for scene generation methods that is based on ground truth geometry, and thus measures the quality of the structure of the scene.
V2P-Bench: Evaluating Video-Language Understanding with Visual Prompts for Better Human-Model Interaction
Large Vision-Language Models (LVLMs) have made significant progress in the field of video understanding recently. However, current benchmarks uniformly lean on text prompts for evaluation, which often necessitate complex referential language and fail to provide precise spatial and temporal references. This limitation diminishes the experience and efficiency of human-model interaction. To address this limitation, we propose the Video Visual Prompt Benchmark(V2P-Bench), a comprehensive benchmark specifically designed to evaluate LVLMs' video understanding capabilities in multimodal human-model interaction scenarios. V2P-Bench includes 980 unique videos and 1,172 QA pairs, covering 5 main tasks and 12 dimensions, facilitating instance-level fine-grained understanding aligned with human cognition. Benchmarking results reveal that even the most powerful models perform poorly on V2P-Bench (65.4% for GPT-4o and 67.9% for Gemini-1.5-Pro), significantly lower than the human experts' 88.3%, highlighting the current shortcomings of LVLMs in understanding video visual prompts. We hope V2P-Bench will serve as a foundation for advancing multimodal human-model interaction and video understanding evaluation. Project page: https://github.com/gaotiexinqu/V2P-Bench.
3D-LFM: Lifting Foundation Model
The lifting of 3D structure and camera from 2D landmarks is at the cornerstone of the entire discipline of computer vision. Traditional methods have been confined to specific rigid objects, such as those in Perspective-n-Point (PnP) problems, but deep learning has expanded our capability to reconstruct a wide range of object classes (e.g. C3PDO and PAUL) with resilience to noise, occlusions, and perspective distortions. All these techniques, however, have been limited by the fundamental need to establish correspondences across the 3D training data -- significantly limiting their utility to applications where one has an abundance of "in-correspondence" 3D data. Our approach harnesses the inherent permutation equivariance of transformers to manage varying number of points per 3D data instance, withstands occlusions, and generalizes to unseen categories. We demonstrate state of the art performance across 2D-3D lifting task benchmarks. Since our approach can be trained across such a broad class of structures we refer to it simply as a 3D Lifting Foundation Model (3D-LFM) -- the first of its kind.
Make Your ViT-based Multi-view 3D Detectors Faster via Token Compression
Slow inference speed is one of the most crucial concerns for deploying multi-view 3D detectors to tasks with high real-time requirements like autonomous driving. Although many sparse query-based methods have already attempted to improve the efficiency of 3D detectors, they neglect to consider the backbone, especially when using Vision Transformers (ViT) for better performance. To tackle this problem, we explore the efficient ViT backbones for multi-view 3D detection via token compression and propose a simple yet effective method called TokenCompression3D (ToC3D). By leveraging history object queries as foreground priors of high quality, modeling 3D motion information in them, and interacting them with image tokens through the attention mechanism, ToC3D can effectively determine the magnitude of information densities of image tokens and segment the salient foreground tokens. With the introduced dynamic router design, ToC3D can weigh more computing resources to important foreground tokens while compressing the information loss, leading to a more efficient ViT-based multi-view 3D detector. Extensive results on the large-scale nuScenes dataset show that our method can nearly maintain the performance of recent SOTA with up to 30% inference speedup, and the improvements are consistent after scaling up the ViT and input resolution. The code will be made at https://github.com/DYZhang09/ToC3D.
CPP-UT-Bench: Can LLMs Write Complex Unit Tests in C++?
We introduce CPP-UT-Bench, a benchmark dataset to measure C++ unit test generation capability of a large language model (LLM). CPP-UT-Bench aims to reflect a broad and diverse set of C++ codebases found in the real world. The dataset includes 2,653 {code, unit test} pairs drawn from 14 different opensource C++ codebases spanned across nine diverse domains including machine learning, software testing, parsing, standard input-output, data engineering, logging, complete expression evaluation, key value storage, and server protocols. We demonstrated the effectiveness of CPP-UT-Bench as a benchmark dataset through extensive experiments in in-context learning, parameter-efficient fine-tuning (PEFT), and full-parameter fine-tuning. We also discussed the challenges of the dataset compilation and insights we learned from in-context learning and fine-tuning experiments. Besides the CPP-UT-Bench dataset and data compilation code, we are also offering the fine-tuned model weights for further research. For nine out of ten experiments, our fine-tuned LLMs outperformed the corresponding base models by an average of more than 70%.
RBench-V: A Primary Assessment for Visual Reasoning Models with Multi-modal Outputs
The rapid advancement of native multi-modal models and omni-models, exemplified by GPT-4o, Gemini, and o3, with their capability to process and generate content across modalities such as text and images, marks a significant milestone in the evolution of intelligence. Systematic evaluation of their multi-modal output capabilities in visual thinking processes (also known as multi-modal chain of thought, M-CoT) becomes critically important. However, existing benchmarks for evaluating multi-modal models primarily focus on assessing multi-modal inputs and text-only reasoning while neglecting the importance of reasoning through multi-modal outputs. In this paper, we present a benchmark, dubbed RBench-V, designed to assess models' vision-indispensable reasoning abilities. To construct RBench-V, we carefully hand-pick 803 questions covering math, physics, counting, and games. Unlike previous benchmarks that typically specify certain input modalities, RBench-V presents problems centered on multi-modal outputs, which require image manipulation such as generating novel images and constructing auxiliary lines to support the reasoning process. We evaluate numerous open- and closed-source models on RBench-V, including o3, Gemini 2.5 Pro, Qwen2.5-VL, etc. Even the best-performing model, o3, achieves only 25.8% accuracy on RBench-V, far below the human score of 82.3%, highlighting that current models struggle to leverage multi-modal reasoning. Data and code are available at https://evalmodels.github.io/rbenchv
LiveBench: A Challenging, Contamination-Free LLM Benchmark
Test set contamination, wherein test data from a benchmark ends up in a newer model's training set, is a well-documented obstacle for fair LLM evaluation and can quickly render benchmarks obsolete. To mitigate this, many recent benchmarks crowdsource new prompts and evaluations from human or LLM judges; however, these can introduce significant biases, and break down when scoring hard questions. In this work, we introduce a new benchmark for LLMs designed to be immune to both test set contamination and the pitfalls of LLM judging and human crowdsourcing. We release LiveBench, the first benchmark that (1) contains frequently-updated questions from recent information sources, (2) scores answers automatically according to objective ground-truth values, and (3) contains a wide variety of challenging tasks, spanning math, coding, reasoning, language, instruction following, and data analysis. To achieve this, LiveBench contains questions that are based on recently-released math competitions, arXiv papers, news articles, and datasets, and it contains harder, contamination-free versions of tasks from previous benchmarks such as Big-Bench Hard, AMPS, and IFEval. We evaluate many prominent closed-source models, as well as dozens of open-source models ranging from 0.5B to 110B in size. LiveBench is difficult, with top models achieving below 65% accuracy. We release all questions, code, and model answers. Questions will be added and updated on a monthly basis, and we will release new tasks and harder versions of tasks over time so that LiveBench can distinguish between the capabilities of LLMs as they improve in the future. We welcome community engagement and collaboration for expanding the benchmark tasks and models.
DesignBench: A Comprehensive Benchmark for MLLM-based Front-end Code Generation
Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities in automated front-end engineering, e.g., generating UI code from visual designs. However, existing front-end UI code generation benchmarks have the following limitations: (1) While framework-based development becomes predominant in modern front-end programming, current benchmarks fail to incorporate mainstream development frameworks. (2) Existing evaluations focus solely on the UI code generation task, whereas practical UI development involves several iterations, including refining editing, and repairing issues. (3) Current benchmarks employ unidimensional evaluation, lacking investigation into influencing factors like task difficulty, input context variations, and in-depth code-level analysis. To bridge these gaps, we introduce DesignBench, a multi-framework, multi-task evaluation benchmark for assessing MLLMs' capabilities in automated front-end engineering. DesignBench encompasses three widely-used UI frameworks (React, Vue, and Angular) alongside vanilla HTML/CSS, and evaluates on three essential front-end tasks (generation, edit, and repair) in real-world development workflows. DesignBench contains 900 webpage samples spanning over 11 topics, 9 edit types, and 6 issue categories, enabling detailed analysis of MLLM performance across multiple dimensions. Our systematic evaluation reveals critical insights into MLLMs' framework-specific limitations, task-related bottlenecks, and performance variations under different conditions, providing guidance for future research in automated front-end development. Our code and data are available at https://github.com/WebPAI/DesignBench.
Scaling Vision Pre-Training to 4K Resolution
High-resolution perception of visual details is crucial for daily tasks. Current vision pre-training, however, is still limited to low resolutions (e.g., 378 x 378 pixels) due to the quadratic cost of processing larger images. We introduce PS3 that scales CLIP-style vision pre-training to 4K resolution with a near-constant cost. Instead of contrastive learning on global image representation, PS3 is pre-trained by selectively processing local regions and contrasting them with local detailed captions, enabling high-resolution representation learning with greatly reduced computational overhead. The pre-trained PS3 is able to both encode the global image at low resolution and selectively process local high-resolution regions based on their saliency or relevance to a text prompt. When applying PS3 to multi-modal LLM (MLLM), the resulting model, named VILA-HD, significantly improves high-resolution visual perception compared to baselines without high-resolution vision pre-training such as AnyRes and S^2 while using up to 4.3x fewer tokens. PS3 also unlocks appealing scaling properties of VILA-HD, including scaling up resolution for free and scaling up test-time compute for better performance. Compared to state of the arts, VILA-HD outperforms previous MLLMs such as NVILA and Qwen2-VL across multiple benchmarks and achieves better efficiency than latest token pruning approaches. Finally, we find current benchmarks do not require 4K-resolution perception, which motivates us to propose 4KPro, a new benchmark of image QA at 4K resolution, on which VILA-HD outperforms all previous MLLMs, including a 14.5% improvement over GPT-4o, and a 3.2% improvement and 2.96x speedup over Qwen2-VL.
RealHiTBench: A Comprehensive Realistic Hierarchical Table Benchmark for Evaluating LLM-Based Table Analysis
With the rapid advancement of Large Language Models (LLMs), there is an increasing need for challenging benchmarks to evaluate their capabilities in handling complex tabular data. However, existing benchmarks are either based on outdated data setups or focus solely on simple, flat table structures. In this paper, we introduce RealHiTBench, a comprehensive benchmark designed to evaluate the performance of both LLMs and Multimodal LLMs (MLLMs) across a variety of input formats for complex tabular data, including LaTeX, HTML, and PNG. RealHiTBench also includes a diverse collection of tables with intricate structures, spanning a wide range of task types. Our experimental results, using 25 state-of-the-art LLMs, demonstrate that RealHiTBench is indeed a challenging benchmark. Moreover, we also develop TreeThinker, a tree-based pipeline that organizes hierarchical headers into a tree structure for enhanced tabular reasoning, validating the importance of improving LLMs' perception of table hierarchies. We hope that our work will inspire further research on tabular data reasoning and the development of more robust models. The code and data are available at https://github.com/cspzyy/RealHiTBench.
CAMEL-Bench: A Comprehensive Arabic LMM Benchmark
Recent years have witnessed a significant interest in developing large multimodal models (LMMs) capable of performing various visual reasoning and understanding tasks. This has led to the introduction of multiple LMM benchmarks to evaluate LMMs on different tasks. However, most existing LMM evaluation benchmarks are predominantly English-centric. In this work, we develop a comprehensive LMM evaluation benchmark for the Arabic language to represent a large population of over 400 million speakers. The proposed benchmark, named CAMEL-Bench, comprises eight diverse domains and 38 sub-domains including, multi-image understanding, complex visual perception, handwritten document understanding, video understanding, medical imaging, plant diseases, and remote sensing-based land use understanding to evaluate broad scenario generalizability. Our CAMEL-Bench comprises around 29,036 questions that are filtered from a larger pool of samples, where the quality is manually verified by native speakers to ensure reliable model assessment. We conduct evaluations of both closed-source, including GPT-4 series, and open-source LMMs. Our analysis reveals the need for substantial improvement, especially among the best open-source models, with even the closed-source GPT-4o achieving an overall score of 62%. Our benchmark and evaluation scripts are open-sourced.
Beyond Correctness: Benchmarking Multi-dimensional Code Generation for Large Language Models
In recent years, researchers have proposed numerous benchmarks to evaluate the impressive coding capabilities of large language models (LLMs). However, existing benchmarks primarily focus on assessing the correctness of code generated by LLMs, while neglecting other critical dimensions that also significantly impact code quality. Therefore, this paper proposes the RACE benchmark, which comprehensively evaluates the quality of code generated by LLMs across 4 dimensions: Readability, mAintainability, Correctness, and Efficiency. Specifically, considering the demand-dependent nature of dimensions beyond correctness, we design various types of user requirements for each dimension to assess the model's ability to generate correct code that also meets user demands. We evaluate 18 representative LLMs on RACE and find that: 1) the current LLMs' ability to generate high-quality code on demand does not yet meet the requirements of software development; 2) readability serves as a critical indicator of the overall quality of generated code; 3) most LLMs exhibit an inherent preference for specific coding style. These findings can help researchers gain a deeper understanding of the coding capabilities of current LLMs and shed light on future directions for model improvement.
Open3DVQA: A Benchmark for Comprehensive Spatial Reasoning with Multimodal Large Language Model in Open Space
Spatial reasoning is a fundamental capability of embodied agents and has garnered widespread attention in the field of multimodal large language models (MLLMs). In this work, we propose a novel benchmark, Open3DVQA, to comprehensively evaluate the spatial reasoning capacities of current state-of-the-art (SOTA) foundation models in open 3D space. Open3DVQA consists of 9k VQA samples, collected using an efficient semi-automated tool in a high-fidelity urban simulator. We evaluate several SOTA MLLMs across various aspects of spatial reasoning, such as relative and absolute spatial relationships, situational reasoning, and object-centric spatial attributes. Our results reveal that: 1) MLLMs perform better at answering questions regarding relative spatial relationships than absolute spatial relationships, 2) MLLMs demonstrate similar spatial reasoning abilities for both egocentric and allocentric perspectives, and 3) Fine-tuning large models significantly improves their performance across different spatial reasoning tasks. We believe that our open-source data collection tools and in-depth analyses will inspire further research on MLLM spatial reasoning capabilities. The benchmark is available at https://github.com/WeichenZh/Open3DVQA.
OmniWorld: A Multi-Domain and Multi-Modal Dataset for 4D World Modeling
The field of 4D world modeling - aiming to jointly capture spatial geometry and temporal dynamics - has witnessed remarkable progress in recent years, driven by advances in large-scale generative models and multimodal learning. However, the development of truly general 4D world models remains fundamentally constrained by the availability of high-quality data. Existing datasets and benchmarks often lack the dynamic complexity, multi-domain diversity, and spatial-temporal annotations required to support key tasks such as 4D geometric reconstruction, future prediction, and camera-control video generation. To address this gap, we introduce OmniWorld, a large-scale, multi-domain, multi-modal dataset specifically designed for 4D world modeling. OmniWorld consists of a newly collected OmniWorld-Game dataset and several curated public datasets spanning diverse domains. Compared with existing synthetic datasets, OmniWorld-Game provides richer modality coverage, larger scale, and more realistic dynamic interactions. Based on this dataset, we establish a challenging benchmark that exposes the limitations of current state-of-the-art (SOTA) approaches in modeling complex 4D environments. Moreover, fine-tuning existing SOTA methods on OmniWorld leads to significant performance gains across 4D reconstruction and video generation tasks, strongly validating OmniWorld as a powerful resource for training and evaluation. We envision OmniWorld as a catalyst for accelerating the development of general-purpose 4D world models, ultimately advancing machines' holistic understanding of the physical world.
Monocular Quasi-Dense 3D Object Tracking
A reliable and accurate 3D tracking framework is essential for predicting future locations of surrounding objects and planning the observer's actions in numerous applications such as autonomous driving. We propose a framework that can effectively associate moving objects over time and estimate their full 3D bounding box information from a sequence of 2D images captured on a moving platform. The object association leverages quasi-dense similarity learning to identify objects in various poses and viewpoints with appearance cues only. After initial 2D association, we further utilize 3D bounding boxes depth-ordering heuristics for robust instance association and motion-based 3D trajectory prediction for re-identification of occluded vehicles. In the end, an LSTM-based object velocity learning module aggregates the long-term trajectory information for more accurate motion extrapolation. Experiments on our proposed simulation data and real-world benchmarks, including KITTI, nuScenes, and Waymo datasets, show that our tracking framework offers robust object association and tracking on urban-driving scenarios. On the Waymo Open benchmark, we establish the first camera-only baseline in the 3D tracking and 3D detection challenges. Our quasi-dense 3D tracking pipeline achieves impressive improvements on the nuScenes 3D tracking benchmark with near five times tracking accuracy of the best vision-only submission among all published methods. Our code, data and trained models are available at https://github.com/SysCV/qd-3dt.
WebGames: Challenging General-Purpose Web-Browsing AI Agents
We introduce WebGames, a comprehensive benchmark suite designed to evaluate general-purpose web-browsing AI agents through a collection of 50+ interactive challenges. These challenges are specifically crafted to be straightforward for humans while systematically testing the limitations of current AI systems across fundamental browser interactions, advanced input processing, cognitive tasks, workflow automation, and interactive entertainment. Our framework eliminates external dependencies through a hermetic testing environment, ensuring reproducible evaluation with verifiable ground-truth solutions. We evaluate leading vision-language models including GPT-4o, Claude Computer-Use, Gemini-1.5-Pro, and Qwen2-VL against human performance. Results reveal a substantial capability gap, with the best AI system achieving only 43.1% success rate compared to human performance of 95.7%, highlighting fundamental limitations in current AI systems' ability to handle common web interaction patterns that humans find intuitive. The benchmark is publicly available at webgames.convergence.ai, offering a lightweight, client-side implementation that facilitates rapid evaluation cycles. Through its modular architecture and standardized challenge specifications, WebGames provides a robust foundation for measuring progress in development of more capable web-browsing agents.
Rendering Humans from Object-Occluded Monocular Videos
3D understanding and rendering of moving humans from monocular videos is a challenging task. Despite recent progress, the task remains difficult in real-world scenarios, where obstacles may block the camera view and cause partial occlusions in the captured videos. Existing methods cannot handle such defects due to two reasons. First, the standard rendering strategy relies on point-point mapping, which could lead to dramatic disparities between the visible and occluded areas of the body. Second, the naive direct regression approach does not consider any feasibility criteria (ie, prior information) for rendering under occlusions. To tackle the above drawbacks, we present OccNeRF, a neural rendering method that achieves better rendering of humans in severely occluded scenes. As direct solutions to the two drawbacks, we propose surface-based rendering by integrating geometry and visibility priors. We validate our method on both simulated and real-world occlusions and demonstrate our method's superiority.
HackerRank-ASTRA: Evaluating Correctness & Consistency of Large Language Models on cross-domain multi-file project problems
Evaluating the real-world applicability of large language models (LLMs) provides valuable insights for their development and use in software development tasks. Existing benchmarks often focus on standalone coding problems or specific libraries, overlooking multi-file, project-based scenarios and lacking a rigorous evaluation of consistency. The HackerRank-ASTRA Benchmark introduces project-based coding problems that mirror real-world scenarios. It evaluates model consistency through 32 runs (k = 32) and median standard deviation while incorporating taxonomy-level analysis to assess sub-skill capabilities. Initial evaluations on 65 problems show that the top three models -- o1, o1-preview, and Claude-3.5-Sonnet-1022 -- achieved comparable average scores of 75%, with no statistically significant differences in performance. Notably, Claude-3.5-Sonnet-1022 demonstrated the highest consistency across problems, with low variability (SD = 0.0497), which was statistically significant compared to other models, highlighting its reliability for real-world software development tasks.
Measuring The Impact Of Programming Language Distribution
Current benchmarks for evaluating neural code models focus on only a small subset of programming languages, excluding many popular languages such as Go or Rust. To ameliorate this issue, we present the BabelCode framework for execution-based evaluation of any benchmark in any language. BabelCode enables new investigations into the qualitative performance of models' memory, runtime, and individual test case results. Additionally, we present a new code translation dataset called Translating Python Programming Puzzles (TP3) from the Python Programming Puzzles (Schuster et al. 2021) benchmark that involves translating expert-level python functions to any language. With both BabelCode and the TP3 benchmark, we investigate if balancing the distributions of 14 languages in a training dataset improves a large language model's performance on low-resource languages. Training a model on a balanced corpus results in, on average, 12.34% higher pass@k across all tasks and languages compared to the baseline. We find that this strategy achieves 66.48% better pass@k on low-resource languages at the cost of only a 12.94% decrease to high-resource languages. In our three translation tasks, this strategy yields, on average, 30.77% better low-resource pass@k while having 19.58% worse high-resource pass@k.
PartNeXt: A Next-Generation Dataset for Fine-Grained and Hierarchical 3D Part Understanding
Understanding objects at the level of their constituent parts is fundamental to advancing computer vision, graphics, and robotics. While datasets like PartNet have driven progress in 3D part understanding, their reliance on untextured geometries and expert-dependent annotation limits scalability and usability. We introduce PartNeXt, a next-generation dataset addressing these gaps with over 23,000 high-quality, textured 3D models annotated with fine-grained, hierarchical part labels across 50 categories. We benchmark PartNeXt on two tasks: (1) class-agnostic part segmentation, where state-of-the-art methods (e.g., PartField, SAMPart3D) struggle with fine-grained and leaf-level parts, and (2) 3D part-centric question answering, a new benchmark for 3D-LLMs that reveals significant gaps in open-vocabulary part grounding. Additionally, training Point-SAM on PartNeXt yields substantial gains over PartNet, underscoring the dataset's superior quality and diversity. By combining scalable annotation, texture-aware labels, and multi-task evaluation, PartNeXt opens new avenues for research in structured 3D understanding.
Automatic Legal Writing Evaluation of LLMs
Despite the recent advances in Large Language Models, benchmarks for evaluating legal writing remain scarce due to the inherent complexity of assessing open-ended responses in this domain. One of the key challenges in evaluating language models on domain-specific tasks is finding test datasets that are public, frequently updated, and contain comprehensive evaluation guidelines. The Brazilian Bar Examination meets these requirements. We introduce oab-bench, a benchmark comprising 105 questions across seven areas of law from recent editions of the exam. The benchmark includes comprehensive evaluation guidelines and reference materials used by human examiners to ensure consistent grading. We evaluate the performance of four LLMs on oab-bench, finding that Claude-3.5 Sonnet achieves the best results with an average score of 7.93 out of 10, passing all 21 exams. We also investigated whether LLMs can serve as reliable automated judges for evaluating legal writing. Our experiments show that frontier models like OpenAI's o1 achieve a strong correlation with human scores when evaluating approved exams, suggesting their potential as reliable automated evaluators despite the inherently subjective nature of legal writing assessment. The source code and the benchmark -- containing questions, evaluation guidelines, model-generated responses, and their respective automated evaluations -- are publicly available.
UniOcc: A Unified Benchmark for Occupancy Forecasting and Prediction in Autonomous Driving
We introduce UniOcc, a comprehensive, unified benchmark for occupancy forecasting (i.e., predicting future occupancies based on historical information) and current-frame occupancy prediction from camera images. UniOcc unifies data from multiple real-world datasets (i.e., nuScenes, Waymo) and high-fidelity driving simulators (i.e., CARLA, OpenCOOD), which provides 2D/3D occupancy labels with per-voxel flow annotations and support for cooperative autonomous driving. In terms of evaluation, unlike existing studies that rely on suboptimal pseudo labels for evaluation, UniOcc incorporates novel metrics that do not depend on ground-truth occupancy, enabling robust assessment of additional aspects of occupancy quality. Through extensive experiments on state-of-the-art models, we demonstrate that large-scale, diverse training data and explicit flow information significantly enhance occupancy prediction and forecasting performance.
CRUXEval-X: A Benchmark for Multilingual Code Reasoning, Understanding and Execution
Code benchmarks such as HumanEval are widely adopted to evaluate Large Language Models' (LLMs) coding capabilities. However, there is an unignorable programming language bias in existing code benchmarks -- over 95% code generation benchmarks are dominated by Python, leaving the LLMs' capabilities in other programming languages such as Java and C/C++ unknown. Moreover, coding task bias is also crucial. Most benchmarks focus on code generation capability, while benchmarks for code reasoning (given input, reasoning output; and given output, reasoning input), an essential coding capability, are insufficient. Yet, constructing multi-lingual benchmarks can be expensive and labor-intensive, and codes in contest websites such as Leetcode suffer from data contamination during training. To fill this gap, we propose CRUXEVAL-X, a multi-lingual code reasoning benchmark that contains 19 programming languages. It comprises at least 600 subjects for each language, along with 19K content-consistent tests in total. In particular, the construction pipeline of CRUXEVAL-X works in a fully automated and test-guided manner, which iteratively generates and repairs based on execution feedback. Also, to cross language barriers (e.g., dynamic/static type systems in Python/C++), we formulated various transition rules between language pairs to facilitate translation. Our intensive evaluation of 24 representative LLMs reveals the correlation between language pairs. For example, TypeScript and JavaScript show a significant positive correlation, while Racket has less correlation with other languages. More interestingly, even a model trained solely on Python can achieve at most 34.4% Pass@1 in other languages, revealing the cross-language generalization of LLMs.
ORLM: Training Large Language Models for Optimization Modeling
Large Language Models (LLMs) have emerged as powerful tools for complex Operations Research (OR) in automating optimization modeling. However, current methodologies heavily rely on prompt engineering (e.g., multi-agent cooperation) with proprietary LLMs, raising data privacy concerns that could be prohibitive in industry applications. To tackle this issue, we propose training open-source LLMs for optimization modeling. We identify four critical requirements for the training dataset of OR LLMs, design and implement OR-Instruct, a semi-automated process for creating synthetic data tailored to specific requirements. We also introduce the IndustryOR benchmark, the first industrial benchmark for testing LLMs on solving real-world OR problems. We apply the data from OR-Instruct to various open-source LLMs of 7b size (termed as ORLMs), resulting in a significantly improved capability for optimization modeling. Our best-performing ORLM achieves state-of-the-art performance on the NL4OPT, MAMO, and IndustryOR benchmarks. Our code and data will be available at https://github.com/Cardinal-Operations/ORLM.
ECCO: Can We Improve Model-Generated Code Efficiency Without Sacrificing Functional Correctness?
Although large language models (LLMs) have been largely successful in generating functionally correct programs, conditioning models to produce efficient solutions while ensuring correctness remains a challenge. Further, unreliability in benchmarking code efficiency is a hurdle across varying hardware specifications for popular interpreted languages such as Python. In this paper, we present ECCO, a reproducible benchmark for evaluating program efficiency via two paradigms: natural language (NL) based code generation and history-based code editing. On ECCO, we adapt and thoroughly investigate the three most promising existing LLM-based approaches: in-context learning, iterative refinement with execution or NL feedback, and fine-tuning conditioned on execution and editing history. While most methods degrade functional correctness and moderately increase program efficiency, we find that adding execution information often helps maintain functional correctness, and NL feedback enhances more on efficiency. We release our benchmark to support future work on LLM-based generation of efficient code.
T2I-CompBench: A Comprehensive Benchmark for Open-world Compositional Text-to-image Generation
Despite the stunning ability to generate high-quality images by recent text-to-image models, current approaches often struggle to effectively compose objects with different attributes and relationships into a complex and coherent scene. We propose T2I-CompBench, a comprehensive benchmark for open-world compositional text-to-image generation, consisting of 6,000 compositional text prompts from 3 categories (attribute binding, object relationships, and complex compositions) and 6 sub-categories (color binding, shape binding, texture binding, spatial relationships, non-spatial relationships, and complex compositions). We further propose several evaluation metrics specifically designed to evaluate compositional text-to-image generation. We introduce a new approach, Generative mOdel fine-tuning with Reward-driven Sample selection (GORS), to boost the compositional text-to-image generation abilities of pretrained text-to-image models. Extensive experiments and evaluations are conducted to benchmark previous methods on T2I-CompBench, and to validate the effectiveness of our proposed evaluation metrics and GORS approach. Project page is available at https://karine-h.github.io/T2I-CompBench/.
Compact3D: Compressing Gaussian Splat Radiance Field Models with Vector Quantization
3D Gaussian Splatting is a new method for modeling and rendering 3D radiance fields that achieves much faster learning and rendering time compared to SOTA NeRF methods. However, it comes with a drawback in the much larger storage demand compared to NeRF methods since it needs to store the parameters for several 3D Gaussians. We notice that many Gaussians may share similar parameters, so we introduce a simple vector quantization method based on \kmeans algorithm to quantize the Gaussian parameters. Then, we store the small codebook along with the index of the code for each Gaussian. Moreover, we compress the indices further by sorting them and using a method similar to run-length encoding. We do extensive experiments on standard benchmarks as well as a new benchmark which is an order of magnitude larger than the standard benchmarks. We show that our simple yet effective method can reduce the storage cost for the original 3D Gaussian Splatting method by a factor of almost 20times with a very small drop in the quality of rendered images.
Real-time Transformer-based Open-Vocabulary Detection with Efficient Fusion Head
End-to-end transformer-based detectors (DETRs) have shown exceptional performance in both closed-set and open-vocabulary object detection (OVD) tasks through the integration of language modalities. However, their demanding computational requirements have hindered their practical application in real-time object detection (OD) scenarios. In this paper, we scrutinize the limitations of two leading models in the OVDEval benchmark, OmDet and Grounding-DINO, and introduce OmDet-Turbo. This novel transformer-based real-time OVD model features an innovative Efficient Fusion Head (EFH) module designed to alleviate the bottlenecks observed in OmDet and Grounding-DINO. Notably, OmDet-Turbo-Base achieves a 100.2 frames per second (FPS) with TensorRT and language cache techniques applied. Notably, in zero-shot scenarios on COCO and LVIS datasets, OmDet-Turbo achieves performance levels nearly on par with current state-of-the-art supervised models. Furthermore, it establishes new state-of-the-art benchmarks on ODinW and OVDEval, boasting an AP of 30.1 and an NMS-AP of 26.86, respectively. The practicality of OmDet-Turbo in industrial applications is underscored by its exceptional performance on benchmark datasets and superior inference speed, positioning it as a compelling choice for real-time object detection tasks. Code: https://github.com/om-ai-lab/OmDet
How Well Does GPT-4o Understand Vision? Evaluating Multimodal Foundation Models on Standard Computer Vision Tasks
Multimodal foundation models, such as GPT-4o, have recently made remarkable progress, but it is not clear where exactly these models stand in terms of understanding vision. In this paper, we benchmark the performance of popular multimodal foundation models (GPT-4o, o4-mini, Gemini 1.5 Pro and Gemini 2.0 Flash, Claude 3.5 Sonnet, Qwen2-VL, Llama 3.2) on standard computer vision tasks (semantic segmentation, object detection, image classification, depth and surface normal prediction) using established datasets (e.g., COCO, ImageNet and its variants, etc). The main challenges to performing this are: 1) most models are trained to output text and cannot natively express versatile domains, such as segments or 3D geometry, and 2) many leading models are proprietary and accessible only at an API level, i.e., there is no weight access to adapt them. We address these challenges by translating standard vision tasks into equivalent text-promptable and API-compatible tasks via prompt chaining to create a standardized benchmarking framework. We observe that 1) the models are not close to the state-of-the-art specialist models at any task. However, 2) they are respectable generalists; this is remarkable as they are presumably trained on primarily image-text-based tasks. 3) They perform semantic tasks notably better than geometric ones. 4) While the prompt-chaining techniques affect performance, better models exhibit less sensitivity to prompt variations. 5) GPT-4o performs the best among non-reasoning models, securing the top position in 4 out of 6 tasks, 6) reasoning models, e.g. o3, show improvements in geometric tasks, and 7) a preliminary analysis of models with native image generation, like the latest GPT-4o, shows they exhibit quirks like hallucinations and spatial misalignments.
HOT3D: Hand and Object Tracking in 3D from Egocentric Multi-View Videos
We introduce HOT3D, a publicly available dataset for egocentric hand and object tracking in 3D. The dataset offers over 833 minutes (more than 3.7M images) of multi-view RGB/monochrome image streams showing 19 subjects interacting with 33 diverse rigid objects, multi-modal signals such as eye gaze or scene point clouds, as well as comprehensive ground-truth annotations including 3D poses of objects, hands, and cameras, and 3D models of hands and objects. In addition to simple pick-up/observe/put-down actions, HOT3D contains scenarios resembling typical actions in a kitchen, office, and living room environment. The dataset is recorded by two head-mounted devices from Meta: Project Aria, a research prototype of light-weight AR/AI glasses, and Quest 3, a production VR headset sold in millions of units. Ground-truth poses were obtained by a professional motion-capture system using small optical markers attached to hands and objects. Hand annotations are provided in the UmeTrack and MANO formats and objects are represented by 3D meshes with PBR materials obtained by an in-house scanner. In our experiments, we demonstrate the effectiveness of multi-view egocentric data for three popular tasks: 3D hand tracking, 6DoF object pose estimation, and 3D lifting of unknown in-hand objects. The evaluated multi-view methods, whose benchmarking is uniquely enabled by HOT3D, significantly outperform their single-view counterparts.
NerfBaselines: Consistent and Reproducible Evaluation of Novel View Synthesis Methods
Novel view synthesis is an important problem with many applications, including AR/VR, gaming, and simulations for robotics. With the recent rapid development of Neural Radiance Fields (NeRFs) and 3D Gaussian Splatting (3DGS) methods, it is becoming difficult to keep track of the current state of the art (SoTA) due to methods using different evaluation protocols, codebases being difficult to install and use, and methods not generalizing well to novel 3D scenes. Our experiments support this claim by showing that tiny differences in evaluation protocols of various methods can lead to inconsistent reported metrics. To address these issues, we propose a framework called NerfBaselines, which simplifies the installation of various methods, provides consistent benchmarking tools, and ensures reproducibility. We validate our implementation experimentally by reproducing numbers reported in the original papers. To further improve the accessibility, we release a web platform where commonly used methods are compared on standard benchmarks. Web: https://jkulhanek.com/nerfbaselines
Tabular Benchmarks for Joint Architecture and Hyperparameter Optimization
Due to the high computational demands executing a rigorous comparison between hyperparameter optimization (HPO) methods is often cumbersome. The goal of this paper is to facilitate a better empirical evaluation of HPO methods by providing benchmarks that are cheap to evaluate, but still represent realistic use cases. We believe these benchmarks provide an easy and efficient way to conduct reproducible experiments for neural hyperparameter search. Our benchmarks consist of a large grid of configurations of a feed forward neural network on four different regression datasets including architectural hyperparameters and hyperparameters concerning the training pipeline. Based on this data, we performed an in-depth analysis to gain a better understanding of the properties of the optimization problem, as well as of the importance of different types of hyperparameters. Second, we exhaustively compared various different state-of-the-art methods from the hyperparameter optimization literature on these benchmarks in terms of performance and robustness.
NU-MCC: Multiview Compressive Coding with Neighborhood Decoder and Repulsive UDF
Remarkable progress has been made in 3D reconstruction from single-view RGB-D inputs. MCC is the current state-of-the-art method in this field, which achieves unprecedented success by combining vision Transformers with large-scale training. However, we identified two key limitations of MCC: 1) The Transformer decoder is inefficient in handling large number of query points; 2) The 3D representation struggles to recover high-fidelity details. In this paper, we propose a new approach called NU-MCC that addresses these limitations. NU-MCC includes two key innovations: a Neighborhood decoder and a Repulsive Unsigned Distance Function (Repulsive UDF). First, our Neighborhood decoder introduces center points as an efficient proxy of input visual features, allowing each query point to only attend to a small neighborhood. This design not only results in much faster inference speed but also enables the exploitation of finer-scale visual features for improved recovery of 3D textures. Second, our Repulsive UDF is a novel alternative to the occupancy field used in MCC, significantly improving the quality of 3D object reconstruction. Compared to standard UDFs that suffer from holes in results, our proposed Repulsive UDF can achieve more complete surface reconstruction. Experimental results demonstrate that NU-MCC is able to learn a strong 3D representation, significantly advancing the state of the art in single-view 3D reconstruction. Particularly, it outperforms MCC by 9.7% in terms of the F1-score on the CO3D-v2 dataset with more than 5x faster running speed.
Optimized Minimal 3D Gaussian Splatting
3D Gaussian Splatting (3DGS) has emerged as a powerful representation for real-time, high-performance rendering, enabling a wide range of applications. However, representing 3D scenes with numerous explicit Gaussian primitives imposes significant storage and memory overhead. Recent studies have shown that high-quality rendering can be achieved with a substantially reduced number of Gaussians when represented with high-precision attributes. Nevertheless, existing 3DGS compression methods still rely on a relatively large number of Gaussians, focusing primarily on attribute compression. This is because a smaller set of Gaussians becomes increasingly sensitive to lossy attribute compression, leading to severe quality degradation. Since the number of Gaussians is directly tied to computational costs, it is essential to reduce the number of Gaussians effectively rather than only optimizing storage. In this paper, we propose Optimized Minimal Gaussians representation (OMG), which significantly reduces storage while using a minimal number of primitives. First, we determine the distinct Gaussian from the near ones, minimizing redundancy without sacrificing quality. Second, we propose a compact and precise attribute representation that efficiently captures both continuity and irregularity among primitives. Additionally, we propose a sub-vector quantization technique for improved irregularity representation, maintaining fast training with a negligible codebook size. Extensive experiments demonstrate that OMG reduces storage requirements by nearly 50% compared to the previous state-of-the-art and enables 600+ FPS rendering while maintaining high rendering quality. Our source code is available at https://maincold2.github.io/omg/.
BenchmarkCards: Standardized Documentation for Large Language Model Benchmarks
Large language models (LLMs) are powerful tools capable of handling diverse tasks. Comparing and selecting appropriate LLMs for specific tasks requires systematic evaluation methods, as models exhibit varying capabilities across different domains. However, finding suitable benchmarks is difficult given the many available options. This complexity not only increases the risk of benchmark misuse and misinterpretation but also demands substantial effort from LLM users, seeking the most suitable benchmarks for their specific needs. To address these issues, we introduce BenchmarkCards, an intuitive and validated documentation framework that standardizes critical benchmark attributes such as objectives, methodologies, data sources, and limitations. Through user studies involving benchmark creators and users, we show that BenchmarkCards can simplify benchmark selection and enhance transparency, facilitating informed decision-making in evaluating LLMs. Data & Code: https://github.com/SokolAnn/BenchmarkCards
CNS-Bench: Benchmarking Image Classifier Robustness Under Continuous Nuisance Shifts
An important challenge when using computer vision models in the real world is to evaluate their performance in potential out-of-distribution (OOD) scenarios. While simple synthetic corruptions are commonly applied to test OOD robustness, they often fail to capture nuisance shifts that occur in the real world. Recently, diffusion models have been applied to generate realistic images for benchmarking, but they are restricted to binary nuisance shifts. In this work, we introduce CNS-Bench, a Continuous Nuisance Shift Benchmark to quantify OOD robustness of image classifiers for continuous and realistic generative nuisance shifts. CNS-Bench allows generating a wide range of individual nuisance shifts in continuous severities by applying LoRA adapters to diffusion models. To address failure cases, we propose a filtering mechanism that outperforms previous methods, thereby enabling reliable benchmarking with generative models. With the proposed benchmark, we perform a large-scale study to evaluate the robustness of more than 40 classifiers under various nuisance shifts. Through carefully designed comparisons and analyses, we find that model rankings can change for varying shifts and shift scales, which cannot be captured when applying common binary shifts. Additionally, we show that evaluating the model performance on a continuous scale allows the identification of model failure points, providing a more nuanced understanding of model robustness. Project page including code and data: https://genintel.github.io/CNS.
RepoMasterEval: Evaluating Code Completion via Real-World Repositories
With the growing reliance on automated code completion tools in software development, the need for robust evaluation benchmarks has become critical. However, existing benchmarks focus more on code generation tasks in function and class level and provide rich text description to prompt the model. By contrast, such descriptive prompt is commonly unavailable in real development and code completion can occur in wider range of situations such as in the middle of a function or a code block. These limitations makes the evaluation poorly align with the practical scenarios of code completion tools. In this paper, we propose RepoMasterEval, a novel benchmark for evaluating code completion models constructed from real-world Python and TypeScript repositories. Each benchmark datum is generated by masking a code snippet (ground truth) from one source code file with existing test suites. To improve test accuracy of model generated code, we employ mutation testing to measure the effectiveness of the test cases and we manually crafted new test cases for those test suites with low mutation score. Our empirical evaluation on 6 state-of-the-art models shows that test argumentation is critical in improving the accuracy of the benchmark and RepoMasterEval is able to report difference in model performance in real-world scenarios. The deployment of RepoMasterEval in a collaborated company for one month also revealed that the benchmark is useful to give accurate feedback during model training and the score is in high correlation with the model's performance in practice. Based on our findings, we call for the software engineering community to build more LLM benchmarks tailored for code generation tools taking the practical and complex development environment into consideration.
RealCritic: Towards Effectiveness-Driven Evaluation of Language Model Critiques
Critiques are important for enhancing the performance of Large Language Models (LLMs), enabling both self-improvement and constructive feedback for others by identifying flaws and suggesting improvements. However, evaluating the critique capabilities of LLMs presents a significant challenge due to the open-ended nature of the task. In this work, we introduce a new benchmark designed to assess the critique capabilities of LLMs. Unlike existing benchmarks, which typically function in an open-loop fashion, our approach employs a closed-loop methodology that evaluates the quality of corrections generated from critiques. Moreover, the benchmark incorporates features such as self-critique, cross-critique, and iterative critique, which are crucial for distinguishing the abilities of advanced reasoning models from more classical ones. We implement this benchmark using eight challenging reasoning tasks. We have several interesting findings. First, despite demonstrating comparable performance in direct chain-of-thought generation, classical LLMs significantly lag behind the advanced reasoning-based model o1-mini across all critique scenarios. Second, in self-critique and iterative critique settings, classical LLMs may even underperform relative to their baseline capabilities. We hope that this benchmark will serve as a valuable resource to guide future advancements. The code and data are available at https://github.com/tangzhy/RealCritic.
DA^2: Depth Anything in Any Direction
Panorama has a full FoV (360^circtimes180^circ), offering a more complete visual description than perspective images. Thanks to this characteristic, panoramic depth estimation is gaining increasing traction in 3D vision. However, due to the scarcity of panoramic data, previous methods are often restricted to in-domain settings, leading to poor zero-shot generalization. Furthermore, due to the spherical distortions inherent in panoramas, many approaches rely on perspective splitting (e.g., cubemaps), which leads to suboptimal efficiency. To address these challenges, we propose DA^{2}: Depth Anything in Any Direction, an accurate, zero-shot generalizable, and fully end-to-end panoramic depth estimator. Specifically, for scaling up panoramic data, we introduce a data curation engine for generating high-quality panoramic depth data from perspective, and create sim543K panoramic RGB-depth pairs, bringing the total to sim607K. To further mitigate the spherical distortions, we present SphereViT, which explicitly leverages spherical coordinates to enforce the spherical geometric consistency in panoramic image features, yielding improved performance. A comprehensive benchmark on multiple datasets clearly demonstrates DA^{2}'s SoTA performance, with an average 38% improvement on AbsRel over the strongest zero-shot baseline. Surprisingly, DA^{2} even outperforms prior in-domain methods, highlighting its superior zero-shot generalization. Moreover, as an end-to-end solution, DA^{2} exhibits much higher efficiency over fusion-based approaches. Both the code and the curated panoramic data will be released. Project page: https://depth-any-in-any-dir.github.io/.
Objaverse: A Universe of Annotated 3D Objects
Massive data corpora like WebText, Wikipedia, Conceptual Captions, WebImageText, and LAION have propelled recent dramatic progress in AI. Large neural models trained on such datasets produce impressive results and top many of today's benchmarks. A notable omission within this family of large-scale datasets is 3D data. Despite considerable interest and potential applications in 3D vision, datasets of high-fidelity 3D models continue to be mid-sized with limited diversity of object categories. Addressing this gap, we present Objaverse 1.0, a large dataset of objects with 800K+ (and growing) 3D models with descriptive captions, tags, and animations. Objaverse improves upon present day 3D repositories in terms of scale, number of categories, and in the visual diversity of instances within a category. We demonstrate the large potential of Objaverse via four diverse applications: training generative 3D models, improving tail category segmentation on the LVIS benchmark, training open-vocabulary object-navigation models for Embodied AI, and creating a new benchmark for robustness analysis of vision models. Objaverse can open new directions for research and enable new applications across the field of AI.
OmniPaint: Mastering Object-Oriented Editing via Disentangled Insertion-Removal Inpainting
Diffusion-based generative models have revolutionized object-oriented image editing, yet their deployment in realistic object removal and insertion remains hampered by challenges such as the intricate interplay of physical effects and insufficient paired training data. In this work, we introduce OmniPaint, a unified framework that re-conceptualizes object removal and insertion as interdependent processes rather than isolated tasks. Leveraging a pre-trained diffusion prior along with a progressive training pipeline comprising initial paired sample optimization and subsequent large-scale unpaired refinement via CycleFlow, OmniPaint achieves precise foreground elimination and seamless object insertion while faithfully preserving scene geometry and intrinsic properties. Furthermore, our novel CFD metric offers a robust, reference-free evaluation of context consistency and object hallucination, establishing a new benchmark for high-fidelity image editing. Project page: https://yeates.github.io/OmniPaint-Page/
Learning Controllable 3D Diffusion Models from Single-view Images
Diffusion models have recently become the de-facto approach for generative modeling in the 2D domain. However, extending diffusion models to 3D is challenging due to the difficulties in acquiring 3D ground truth data for training. On the other hand, 3D GANs that integrate implicit 3D representations into GANs have shown remarkable 3D-aware generation when trained only on single-view image datasets. However, 3D GANs do not provide straightforward ways to precisely control image synthesis. To address these challenges, We present Control3Diff, a 3D diffusion model that combines the strengths of diffusion models and 3D GANs for versatile, controllable 3D-aware image synthesis for single-view datasets. Control3Diff explicitly models the underlying latent distribution (optionally conditioned on external inputs), thus enabling direct control during the diffusion process. Moreover, our approach is general and applicable to any type of controlling input, allowing us to train it with the same diffusion objective without any auxiliary supervision. We validate the efficacy of Control3Diff on standard image generation benchmarks, including FFHQ, AFHQ, and ShapeNet, using various conditioning inputs such as images, sketches, and text prompts. Please see the project website (https://jiataogu.me/control3diff) for video comparisons.
ZeroBench: An Impossible Visual Benchmark for Contemporary Large Multimodal Models
Large Multimodal Models (LMMs) exhibit major shortfalls when interpreting images and, by some measures, have poorer spatial cognition than small children or animals. Despite this, they attain high scores on many popular visual benchmarks, with headroom rapidly eroded by an ongoing surge of model progress. To address this, there is a pressing need for difficult benchmarks that remain relevant for longer. We take this idea to its limit by introducing ZeroBench-a lightweight visual reasoning benchmark that is entirely impossible for contemporary frontier LMMs. Our benchmark consists of 100 manually curated questions and 334 less difficult subquestions. We evaluate 20 LMMs on ZeroBench, all of which score 0.0%, and rigorously analyse the errors. To encourage progress in visual understanding, we publicly release ZeroBench.
"PhyWorldBench": A Comprehensive Evaluation of Physical Realism in Text-to-Video Models
Video generation models have achieved remarkable progress in creating high-quality, photorealistic content. However, their ability to accurately simulate physical phenomena remains a critical and unresolved challenge. This paper presents PhyWorldBench, a comprehensive benchmark designed to evaluate video generation models based on their adherence to the laws of physics. The benchmark covers multiple levels of physical phenomena, ranging from fundamental principles like object motion and energy conservation to more complex scenarios involving rigid body interactions and human or animal motion. Additionally, we introduce a novel ""Anti-Physics"" category, where prompts intentionally violate real-world physics, enabling the assessment of whether models can follow such instructions while maintaining logical consistency. Besides large-scale human evaluation, we also design a simple yet effective method that could utilize current MLLM to evaluate the physics realism in a zero-shot fashion. We evaluate 12 state-of-the-art text-to-video generation models, including five open-source and five proprietary models, with a detailed comparison and analysis. we identify pivotal challenges models face in adhering to real-world physics. Through systematic testing of their outputs across 1,050 curated prompts-spanning fundamental, composite, and anti-physics scenarios-we identify pivotal challenges these models face in adhering to real-world physics. We then rigorously examine their performance on diverse physical phenomena with varying prompt types, deriving targeted recommendations for crafting prompts that enhance fidelity to physical principles.
COCO-O: A Benchmark for Object Detectors under Natural Distribution Shifts
Practical object detection application can lose its effectiveness on image inputs with natural distribution shifts. This problem leads the research community to pay more attention on the robustness of detectors under Out-Of-Distribution (OOD) inputs. Existing works construct datasets to benchmark the detector's OOD robustness for a specific application scenario, e.g., Autonomous Driving. However, these datasets lack universality and are hard to benchmark general detectors built on common tasks such as COCO. To give a more comprehensive robustness assessment, we introduce COCO-O(ut-of-distribution), a test dataset based on COCO with 6 types of natural distribution shifts. COCO-O has a large distribution gap with training data and results in a significant 55.7% relative performance drop on a Faster R-CNN detector. We leverage COCO-O to conduct experiments on more than 100 modern object detectors to investigate if their improvements are credible or just over-fitting to the COCO test set. Unfortunately, most classic detectors in early years do not exhibit strong OOD generalization. We further study the robustness effect on recent breakthroughs of detector's architecture design, augmentation and pre-training techniques. Some empirical findings are revealed: 1) Compared with detection head or neck, backbone is the most important part for robustness; 2) An end-to-end detection transformer design brings no enhancement, and may even reduce robustness; 3) Large-scale foundation models have made a great leap on robust object detection. We hope our COCO-O could provide a rich testbed for robustness study of object detection. The dataset will be available at https://github.com/alibaba/easyrobust/tree/main/benchmarks/coco_o.
OpenM3D: Open Vocabulary Multi-view Indoor 3D Object Detection without Human Annotations
Open-vocabulary (OV) 3D object detection is an emerging field, yet its exploration through image-based methods remains limited compared to 3D point cloud-based methods. We introduce OpenM3D, a novel open-vocabulary multi-view indoor 3D object detector trained without human annotations. In particular, OpenM3D is a single-stage detector adapting the 2D-induced voxel features from the ImGeoNet model. To support OV, it is jointly trained with a class-agnostic 3D localization loss requiring high-quality 3D pseudo boxes and a voxel-semantic alignment loss requiring diverse pre-trained CLIP features. We follow the training setting of OV-3DET where posed RGB-D images are given but no human annotations of 3D boxes or classes are available. We propose a 3D Pseudo Box Generation method using a graph embedding technique that combines 2D segments into coherent 3D structures. Our pseudo-boxes achieve higher precision and recall than other methods, including the method proposed in OV-3DET. We further sample diverse CLIP features from 2D segments associated with each coherent 3D structure to align with the corresponding voxel feature. The key to training a highly accurate single-stage detector requires both losses to be learned toward high-quality targets. At inference, OpenM3D, a highly efficient detector, requires only multi-view images for input and demonstrates superior accuracy and speed (0.3 sec. per scene) on ScanNet200 and ARKitScenes indoor benchmarks compared to existing methods. We outperform a strong two-stage method that leverages our class-agnostic detector with a ViT CLIP-based OV classifier and a baseline incorporating multi-view depth estimator on both accuracy and speed.
Benchmark Designers Should "Train on the Test Set" to Expose Exploitable Non-Visual Shortcuts
Robust benchmarks are crucial for evaluating Multimodal Large Language Models (MLLMs). Yet we find that models can ace many multimodal benchmarks without strong visual understanding, instead exploiting biases, linguistic priors, and superficial patterns. This is especially problematic for vision-centric benchmarks that are meant to require visual inputs. We adopt a diagnostic principle for benchmark design: if a benchmark can be gamed, it will be. Designers should therefore try to ``game'' their own benchmarks first, using diagnostic and debiasing procedures to systematically identify and mitigate non-visual biases. Effective diagnosis requires directly ``training on the test set'' -- probing the released test set for its intrinsic, exploitable patterns. We operationalize this standard with two components. First, we diagnose benchmark susceptibility using a ``Test-set Stress-Test'' (TsT) methodology. Our primary diagnostic tool involves fine-tuning a powerful Large Language Model via k-fold cross-validation on exclusively the non-visual, textual inputs of the test set to reveal shortcut performance and assign each sample a bias score s(x). We complement this with a lightweight Random Forest-based diagnostic operating on hand-crafted features for fast, interpretable auditing. Second, we debias benchmarks by filtering high-bias samples using an ``Iterative Bias Pruning'' (IBP) procedure. Applying this framework to four benchmarks -- VSI-Bench, CV-Bench, MMMU, and VideoMME -- we uncover pervasive non-visual biases. As a case study, we apply our full framework to create VSI-Bench-Debiased, demonstrating reduced non-visual solvability and a wider vision-blind performance gap than the original.
Constantly Improving Image Models Need Constantly Improving Benchmarks
Recent advances in image generation, often driven by proprietary systems like GPT-4o Image Gen, regularly introduce new capabilities that reshape how users interact with these models. Existing benchmarks often lag behind and fail to capture these emerging use cases, leaving a gap between community perceptions of progress and formal evaluation. To address this, we present ECHO, a framework for constructing benchmarks directly from real-world evidence of model use: social media posts that showcase novel prompts and qualitative user judgments. Applying this framework to GPT-4o Image Gen, we construct a dataset of over 31,000 prompts curated from such posts. Our analysis shows that ECHO (1) discovers creative and complex tasks absent from existing benchmarks, such as re-rendering product labels across languages or generating receipts with specified totals, (2) more clearly distinguishes state-of-the-art models from alternatives, and (3) surfaces community feedback that we use to inform the design of metrics for model quality (e.g., measuring observed shifts in color, identity, and structure). Our website is at https://echo-bench.github.io.
Can Multi-turn Self-refined Single Agent LMs with Retrieval Solve Hard Coding Problems?
Among the hardest tasks for humans are those found in competitive programming where problems require sophisticated algorithmic thinking, puzzle solving, and the creation of effective code. As a domain to assess language models (LMs), it has not received enough attention, though. This study presents the ICPC benchmark, which consists of 254 international collegiate programming contest (ICPC) tasks. Each problem includes official analysis, reference code, and sample, high-quality unit, and hidden tests. We are able to develop and evaluate a variety of LM inference techniques for competitive programming with these resources. With zero-shot chain-of-thought prompting, we find that o1 only achieves a 19.1\% pass@1 solve rate. With our best inference technique, which combines multi-turn self-judge with reflection and retrieval over episodic information, raises this to 42.2\%. Furthermore, we conduct a new human-in-the-loop investigation to gain a deeper understanding of the remaining difficulties. Surprisingly, we discover that o1 can solve 17 out of 18 problems that were previously unsolvable by any model or technique with just a few specific instructions. A footstep toward LMs with grounded, imaginative, and algorithmic thinking is provided by our quantitative findings and qualitative research. We open-source our code and data at https://github.com/kraritt/zolve.
TabStruct: Measuring Structural Fidelity of Tabular Data
Evaluating tabular generators remains a challenging problem, as the unique causal structural prior of heterogeneous tabular data does not lend itself to intuitive human inspection. Recent work has introduced structural fidelity as a tabular-specific evaluation dimension to assess whether synthetic data complies with the causal structures of real data. However, existing benchmarks often neglect the interplay between structural fidelity and conventional evaluation dimensions, thus failing to provide a holistic understanding of model performance. Moreover, they are typically limited to toy datasets, as quantifying existing structural fidelity metrics requires access to ground-truth causal structures, which are rarely available for real-world datasets. In this paper, we propose a novel evaluation framework that jointly considers structural fidelity and conventional evaluation dimensions. We introduce a new evaluation metric, global utility, which enables the assessment of structural fidelity even in the absence of ground-truth causal structures. In addition, we present TabStruct, a comprehensive evaluation benchmark offering large-scale quantitative analysis on 13 tabular generators from nine distinct categories, across 29 datasets. Our results demonstrate that global utility provides a task-independent, domain-agnostic lens for tabular generator performance. We release the TabStruct benchmark suite, including all datasets, evaluation pipelines, and raw results. Code is available at https://github.com/SilenceX12138/TabStruct.
$100K or 100 Days: Trade-offs when Pre-Training with Academic Resources
Pre-training is notoriously compute-intensive and academic researchers are notoriously under-resourced. It is, therefore, commonly assumed that academics can't pre-train models. In this paper, we seek to clarify this assumption. We first survey academic researchers to learn about their available compute and then empirically measure the time to replicate models on such resources. We introduce a benchmark to measure the time to pre-train models on given GPUs and also identify ideal settings for maximizing training speed. We run our benchmark on a range of models and academic GPUs, spending 2,000 GPU-hours on our experiments. Our results reveal a brighter picture for academic pre-training: for example, although Pythia-1B was originally trained on 64 GPUs for 3 days, we find it is also possible to replicate this model (with the same hyper-parameters) in 3x fewer GPU-days: i.e. on 4 GPUs in 18 days. We conclude with a cost-benefit analysis to help clarify the trade-offs between price and pre-training time. We believe our benchmark will help academic researchers conduct experiments that require training larger models on more data. We fully release our codebase at: https://github.com/apoorvkh/academic-pretraining.
How Well Do LLMs Generate Code for Different Application Domains? Benchmark and Evaluation
Recently, an increasing number of AI-driven programming assistants powered by code LLMs have been integrated into various real-world software development environments, significantly boosting developer productivity. However, existing code generation benchmarks primarily focus on general-purpose scenarios, leaving the code generation performance of LLMs for specific application domains largely unknown. In this paper, we introduce a new benchmark, MultiCodeBench, to fill this gap. MultiCodeBench comprises 2,400 programming tasks, covering 12 popular software development domains and 15 programming languages. Specifically, we perform in-depth research to identify these 12 application domains. Given that each domain may involve multiple technical frameworks, and that different frameworks present distinct challenges in the coding process, we categorize the commonly used frameworks and platforms within each domain. We then sample programming problems from GitHub repositories related to these subdomains. To ensure the quality of the tasks and mitigate data leakage issues, we invite annotators to rewrite the docstrings for each task in MultiCodeBench. Additionally, we build a static analysis-based dependency parsing tool to extract the dependencies in the ground truth for each task, enabling deeper performance analysis. Through extensive experiments on MultiCodeBench with eleven representative mainstream LLMs, we reveal the code generation performance of the LLMs across different application domains, providing practical insights for developers in downstream fields when selecting LLMs. Furthermore, we analyze the reasons behind the models' failures in completing software application development tasks, offering guidance for model developers to enhance domain-specific code generation capabilities.
Controllable Shadow Generation with Single-Step Diffusion Models from Synthetic Data
Realistic shadow generation is a critical component for high-quality image compositing and visual effects, yet existing methods suffer from certain limitations: Physics-based approaches require a 3D scene geometry, which is often unavailable, while learning-based techniques struggle with control and visual artifacts. We introduce a novel method for fast, controllable, and background-free shadow generation for 2D object images. We create a large synthetic dataset using a 3D rendering engine to train a diffusion model for controllable shadow generation, generating shadow maps for diverse light source parameters. Through extensive ablation studies, we find that rectified flow objective achieves high-quality results with just a single sampling step enabling real-time applications. Furthermore, our experiments demonstrate that the model generalizes well to real-world images. To facilitate further research in evaluating quality and controllability in shadow generation, we release a new public benchmark containing a diverse set of object images and shadow maps in various settings. The project page is available at https://gojasper.github.io/controllable-shadow-generation-project/
A Review and Efficient Implementation of Scene Graph Generation Metrics
Scene graph generation has emerged as a prominent research field in computer vision, witnessing significant advancements in the recent years. However, despite these strides, precise and thorough definitions for the metrics used to evaluate scene graph generation models are lacking. In this paper, we address this gap in the literature by providing a review and precise definition of commonly used metrics in scene graph generation. Our comprehensive examination clarifies the underlying principles of these metrics and can serve as a reference or introduction to scene graph metrics. Furthermore, to facilitate the usage of these metrics, we introduce a standalone Python package called SGBench that efficiently implements all defined metrics, ensuring their accessibility to the research community. Additionally, we present a scene graph benchmarking web service, that enables researchers to compare scene graph generation methods and increase visibility of new methods in a central place. All of our code can be found at https://lorjul.github.io/sgbench/.
Seeing and Seeing Through the Glass: Real and Synthetic Data for Multi-Layer Depth Estimation
Transparent objects are common in daily life, and understanding their multi-layer depth information -- perceiving both the transparent surface and the objects behind it -- is crucial for real-world applications that interact with transparent materials. In this paper, we introduce LayeredDepth, the first dataset with multi-layer depth annotations, including a real-world benchmark and a synthetic data generator, to support the task of multi-layer depth estimation. Our real-world benchmark consists of 1,500 images from diverse scenes, and evaluating state-of-the-art depth estimation methods on it reveals that they struggle with transparent objects. The synthetic data generator is fully procedural and capable of providing training data for this task with an unlimited variety of objects and scene compositions. Using this generator, we create a synthetic dataset with 15,300 images. Baseline models training solely on this synthetic dataset produce good cross-domain multi-layer depth estimation. Fine-tuning state-of-the-art single-layer depth models on it substantially improves their performance on transparent objects, with quadruplet accuracy on our benchmark increased from 55.14% to 75.20%. All images and validation annotations are available under CC0 at https://layereddepth.cs.princeton.edu.
At the Locus of Performance: A Case Study in Enhancing CPUs with Copious 3D-Stacked Cache
Over the last three decades, innovations in the memory subsystem were primarily targeted at overcoming the data movement bottleneck. In this paper, we focus on a specific market trend in memory technology: 3D-stacked memory and caches. We investigate the impact of extending the on-chip memory capabilities in future HPC-focused processors, particularly by 3D-stacked SRAM. First, we propose a method oblivious to the memory subsystem to gauge the upper-bound in performance improvements when data movement costs are eliminated. Then, using the gem5 simulator, we model two variants of LARC, a processor fabricated in 1.5 nm and enriched with high-capacity 3D-stacked cache. With a volume of experiments involving a board set of proxy-applications and benchmarks, we aim to reveal where HPC CPU performance could be circa 2028, and conclude an average boost of 9.77x for cache-sensitive HPC applications, on a per-chip basis. Additionally, we exhaustively document our methodological exploration to motivate HPC centers to drive their own technological agenda through enhanced co-design.
UniREditBench: A Unified Reasoning-based Image Editing Benchmark
Recent advances in multi-modal generative models have driven substantial improvements in image editing. However, current generative models still struggle with handling diverse and complex image editing tasks that require implicit reasoning, underscoring the need for a comprehensive benchmark to systematically assess their performance across various reasoning scenarios. Existing benchmarks primarily focus on single-object attribute transformation in realistic scenarios, which, while effective, encounter two key challenges: (1) they largely overlook multi-object interactions as well as game-world scenarios that involve human-defined rules, which are common in real-life applications; (2) they only rely on textual references to evaluate the generated images, potentially leading to systematic misjudgments, especially in complex reasoning scenarios. To this end, this work proposes UniREditBench, a unified benchmark for reasoning-based image editing evaluation. It comprises 2,700 meticulously curated samples, covering both real- and game-world scenarios across 8 primary dimensions and 18 sub-dimensions. To improve evaluation reliability, we introduce multimodal dual-reference evaluation, providing both textual and ground-truth image references for each sample assessment. Furthermore, we design an automated multi-scenario data synthesis pipeline and construct UniREdit-Data-100K, a large-scale synthetic dataset with high-quality chain-of-thought (CoT) reasoning annotations. We fine-tune Bagel on this dataset and develop UniREdit-Bagel, demonstrating substantial improvements in both in-domain and out-of-distribution settings. Through thorough benchmarking of both open-source and closed-source image editing models, we reveal their strengths and weaknesses across various aspects.
StableToolBench: Towards Stable Large-Scale Benchmarking on Tool Learning of Large Language Models
Large Language Models (LLMs) have witnessed remarkable advancements in recent years, prompting the exploration of tool learning, which integrates LLMs with external tools to address diverse real-world challenges. Assessing the capability of LLMs to utilise tools necessitates large-scale and stable benchmarks. However, previous works relied on either hand-crafted online tools with limited scale, or large-scale real online APIs suffering from instability of API status. To address this problem, we introduce StableToolBench, a benchmark evolving from ToolBench, proposing a virtual API server and stable evaluation system. The virtual API server contains a caching system and API simulators which are complementary to alleviate the change in API status. Meanwhile, the stable evaluation system designs solvable pass and win rates using GPT-4 as the automatic evaluator to eliminate the randomness during evaluation. Experimental results demonstrate the stability of StableToolBench, and further discuss the effectiveness of API simulators, the caching system, and the evaluator system.
T2R-bench: A Benchmark for Generating Article-Level Reports from Real World Industrial Tables
Extensive research has been conducted to explore the capabilities of large language models (LLMs) in table reasoning. However, the essential task of transforming tables information into reports remains a significant challenge for industrial applications. This task is plagued by two critical issues: 1) the complexity and diversity of tables lead to suboptimal reasoning outcomes; and 2) existing table benchmarks lack the capacity to adequately assess the practical application of this task. To fill this gap, we propose the table-to-report task and construct a bilingual benchmark named T2R-bench, where the key information flow from the tables to the reports for this task. The benchmark comprises 457 industrial tables, all derived from real-world scenarios and encompassing 19 industry domains as well as 4 types of industrial tables. Furthermore, we propose an evaluation criteria to fairly measure the quality of report generation. The experiments on 25 widely-used LLMs reveal that even state-of-the-art models like Deepseek-R1 only achieves performance with 62.71 overall score, indicating that LLMs still have room for improvement on T2R-bench. Source code and data will be available after acceptance.
How Efficient is LLM-Generated Code? A Rigorous & High-Standard Benchmark
The emergence of large language models (LLMs) has significantly pushed the frontiers of program synthesis. Advancement of LLM-based program synthesis calls for a thorough evaluation of LLM-generated code. Most evaluation frameworks focus on the (functional) correctness of generated code; efficiency, as an important measure of code quality, has been overlooked in existing evaluations. In this work, we develop ENAMEL (EfficeNcy AutoMatic EvaLuator), a rigorous and high-standard benchmark for evaluating the capability of LLMs in generating efficient code. Firstly, we propose a new efficiency metric called eff@k, which generalizes the pass@k metric from correctness to efficiency and appropriately handles right-censored execution time. Furthermore, we derive an unbiased and variance-reduced estimator of eff@k via Rao--Blackwellization; we also provide a numerically stable implementation for the new estimator. Secondly, to set a high-standard for efficiency evaluation, we employ a human expert to design best algorithms and implementations as our reference solutions of efficiency, many of which are much more efficient than existing canonical solutions in HumanEval and HumanEval+. Moreover, to ensure a rigorous evaluation, we employ a human expert to curate strong test case generators to filter out wrong code and differentiate suboptimal algorithms. An extensive study across 30 popular LLMs using our benchmark ENAMEL shows that LLMs still fall short of generating expert-level efficient code. Using two subsets of our problem set, we demonstrate that such deficiency is because current LLMs struggle in designing advanced algorithms and are barely aware of implementation optimization. Our benchmark is publicly available at https://github.com/q-rz/enamel .
VisNumBench: Evaluating Number Sense of Multimodal Large Language Models
Can Multimodal Large Language Models (MLLMs) develop an intuitive number sense similar to humans? Targeting this problem, we introduce Visual Number Benchmark (VisNumBench) to evaluate the number sense abilities of MLLMs across a wide range of visual numerical tasks. VisNumBench consists of about 1,900 multiple-choice question-answer pairs derived from both synthetic and real-world visual data, covering seven visual numerical attributes and four types of visual numerical estimation tasks. Our experiments on VisNumBench led to the following key findings: (i) The 17 MLLMs we tested, including open-source models such as Qwen2.5-VL and InternVL2.5, as well as proprietary models like GPT-4o and Gemini 2.0 Flash, perform significantly below human levels in number sense-related tasks. (ii) Multimodal mathematical models and multimodal chain-of-thought (CoT) models did not exhibit significant improvements in number sense abilities. (iii) Stronger MLLMs with larger parameter sizes and broader general abilities demonstrate modest gains in number sense abilities. We believe VisNumBench will serve as a valuable resource for the research community, encouraging further advancements in enhancing MLLMs' number sense abilities. All benchmark resources, including code and datasets, will be publicly available at https://wwwtttjjj.github.io/VisNumBench/.
Signal and Noise: A Framework for Reducing Uncertainty in Language Model Evaluation
Developing large language models is expensive and involves making decisions with small experiments, typically by evaluating on large, multi-task evaluation suites. In this work, we analyze specific properties which make a benchmark more reliable for such decisions, and interventions to design higher-quality evaluation benchmarks. We introduce two key metrics that show differences in current benchmarks: signal, a benchmark's ability to separate better models from worse models, and noise, a benchmark's sensitivity to random variability between training steps. We demonstrate that benchmarks with a better signal-to-noise ratio are more reliable when making decisions at small scale, and those with less noise have lower scaling law prediction error. These results suggest that improving signal or noise will lead to more useful benchmarks, so we introduce three interventions designed to directly affect signal or noise. For example, we propose that switching to a metric that has better signal and noise (e.g., perplexity rather than accuracy) leads to better reliability and improved scaling law error. We also find that filtering noisy subtasks, to improve an aggregate signal-to-noise ratio, leads to more reliable multi-task evaluations. We also find that averaging the output of a model's intermediate checkpoints to reduce noise leads to consistent improvements. We conclude by recommending that those creating new benchmarks, or selecting which existing benchmarks to use, aim for high signal and low noise. We use 30 benchmarks for these experiments, and 375 open-weight language models from 60M to 32B parameters, resulting in a new, publicly available dataset of 900K evaluation benchmark results, totaling 200M instances.
M3DBench: Let's Instruct Large Models with Multi-modal 3D Prompts
Recently, 3D understanding has become popular to facilitate autonomous agents to perform further decisionmaking. However, existing 3D datasets and methods are often limited to specific tasks. On the other hand, recent progress in Large Language Models (LLMs) and Multimodal Language Models (MLMs) have demonstrated exceptional general language and imagery tasking performance. Therefore, it is interesting to unlock MLM's potential to be 3D generalist for wider tasks. However, current MLMs' research has been less focused on 3D tasks due to a lack of large-scale 3D instruction-following datasets. In this work, we introduce a comprehensive 3D instructionfollowing dataset called M3DBench, which possesses the following characteristics: 1) It supports general multimodal instructions interleaved with text, images, 3D objects, and other visual prompts. 2) It unifies diverse 3D tasks at both region and scene levels, covering a variety of fundamental abilities in real-world 3D environments. 3) It is a large-scale 3D instruction-following dataset with over 320k instruction-response pairs. Furthermore, we establish a new benchmark for assessing the performance of large models in understanding multi-modal 3D prompts. Extensive experiments demonstrate the effectiveness of our dataset and baseline, supporting general 3D-centric tasks, which can inspire future research.
OmniFusion Technical Report
Last year, multimodal architectures served up a revolution in AI-based approaches and solutions, extending the capabilities of large language models (LLM). We propose an OmniFusion model based on a pretrained LLM and adapters for visual modality. We evaluated and compared several architecture design principles for better text and visual data coupling: MLP and transformer adapters, various CLIP ViT-based encoders (SigLIP, InternVIT, etc.), and their fusing approach, image encoding method (whole image or tiles encoding) and two 7B LLMs (the proprietary one and open-source Mistral). Experiments on 8 visual-language benchmarks show the top score for the best OmniFusion setup in terms of different VQA tasks in comparison with open-source LLaVA-like solutions: VizWiz, Pope, MM-Vet, ScienceQA, MMBench, TextVQA, VQAv2, MMMU. We also propose a variety of situations, where OmniFusion provides highly-detailed answers in different domains: housekeeping, sightseeing, culture, medicine, handwritten and scanned equations recognition, etc. Mistral-based OmniFusion model is an open-source solution with weights, training and inference scripts available at https://github.com/AIRI-Institute/OmniFusion.
ICE-Bench: A Unified and Comprehensive Benchmark for Image Creating and Editing
Image generation has witnessed significant advancements in the past few years. However, evaluating the performance of image generation models remains a formidable challenge. In this paper, we propose ICE-Bench, a unified and comprehensive benchmark designed to rigorously assess image generation models. Its comprehensiveness could be summarized in the following key features: (1) Coarse-to-Fine Tasks: We systematically deconstruct image generation into four task categories: No-ref/Ref Image Creating/Editing, based on the presence or absence of source images and reference images. And further decompose them into 31 fine-grained tasks covering a broad spectrum of image generation requirements, culminating in a comprehensive benchmark. (2) Multi-dimensional Metrics: The evaluation framework assesses image generation capabilities across 6 dimensions: aesthetic quality, imaging quality, prompt following, source consistency, reference consistency, and controllability. 11 metrics are introduced to support the multi-dimensional evaluation. Notably, we introduce VLLM-QA, an innovative metric designed to assess the success of image editing by leveraging large models. (3) Hybrid Data: The data comes from real scenes and virtual generation, which effectively improves data diversity and alleviates the bias problem in model evaluation. Through ICE-Bench, we conduct a thorough analysis of existing generation models, revealing both the challenging nature of our benchmark and the gap between current model capabilities and real-world generation requirements. To foster further advancements in the field, we will open-source ICE-Bench, including its dataset, evaluation code, and models, thereby providing a valuable resource for the research community.
KITAB-Bench: A Comprehensive Multi-Domain Benchmark for Arabic OCR and Document Understanding
With the growing adoption of Retrieval-Augmented Generation (RAG) in document processing, robust text recognition has become increasingly critical for knowledge extraction. While OCR (Optical Character Recognition) for English and other languages benefits from large datasets and well-established benchmarks, Arabic OCR faces unique challenges due to its cursive script, right-to-left text flow, and complex typographic and calligraphic features. We present KITAB-Bench, a comprehensive Arabic OCR benchmark that fills the gaps in current evaluation systems. Our benchmark comprises 8,809 samples across 9 major domains and 36 sub-domains, encompassing diverse document types including handwritten text, structured tables, and specialized coverage of 21 chart types for business intelligence. Our findings show that modern vision-language models (such as GPT-4, Gemini, and Qwen) outperform traditional OCR approaches (like EasyOCR, PaddleOCR, and Surya) by an average of 60% in Character Error Rate (CER). Furthermore, we highlight significant limitations of current Arabic OCR models, particularly in PDF-to-Markdown conversion, where the best model Gemini-2.0-Flash achieves only 65% accuracy. This underscores the challenges in accurately recognizing Arabic text, including issues with complex fonts, numeral recognition errors, word elongation, and table structure detection. This work establishes a rigorous evaluation framework that can drive improvements in Arabic document analysis methods and bridge the performance gap with English OCR technologies.
SplatFlow: Learning Multi-frame Optical Flow via Splatting
The occlusion problem remains a crucial challenge in optical flow estimation (OFE). Despite the recent significant progress brought about by deep learning, most existing deep learning OFE methods still struggle to handle occlusions; in particular, those based on two frames cannot correctly handle occlusions because occluded regions have no visual correspondences. However, there is still hope in multi-frame settings, which can potentially mitigate the occlusion issue in OFE. Unfortunately, multi-frame OFE (MOFE) remains underexplored, and the limited studies on it are mainly specially designed for pyramid backbones or else obtain the aligned previous frame's features, such as correlation volume and optical flow, through time-consuming backward flow calculation or non-differentiable forward warping transformation. This study proposes an efficient MOFE framework named SplatFlow to address these shortcomings. SplatFlow introduces the differentiable splatting transformation to align the previous frame's motion feature and designs a Final-to-All embedding method to input the aligned motion feature into the current frame's estimation, thus remodeling the existing two-frame backbones. The proposed SplatFlow is efficient yet more accurate, as it can handle occlusions properly. Extensive experimental evaluations show that SplatFlow substantially outperforms all published methods on the KITTI2015 and Sintel benchmarks. Especially on the Sintel benchmark, SplatFlow achieves errors of 1.12 (clean pass) and 2.07 (final pass), with surprisingly significant 19.4% and 16.2% error reductions, respectively, from the previous best results submitted. The code for SplatFlow is available at https://github.com/wwsource/SplatFlow.
ZeroShape: Regression-based Zero-shot Shape Reconstruction
We study the problem of single-image zero-shot 3D shape reconstruction. Recent works learn zero-shot shape reconstruction through generative modeling of 3D assets, but these models are computationally expensive at train and inference time. In contrast, the traditional approach to this problem is regression-based, where deterministic models are trained to directly regress the object shape. Such regression methods possess much higher computational efficiency than generative methods. This raises a natural question: is generative modeling necessary for high performance, or conversely, are regression-based approaches still competitive? To answer this, we design a strong regression-based model, called ZeroShape, based on the converging findings in this field and a novel insight. We also curate a large real-world evaluation benchmark, with objects from three different real-world 3D datasets. This evaluation benchmark is more diverse and an order of magnitude larger than what prior works use to quantitatively evaluate their models, aiming at reducing the evaluation variance in our field. We show that ZeroShape not only achieves superior performance over state-of-the-art methods, but also demonstrates significantly higher computational and data efficiency.
Comprehensive Verilog Design Problems: A Next-Generation Benchmark Dataset for Evaluating Large Language Models and Agents on RTL Design and Verification
We present the Comprehensive Verilog Design Problems (CVDP) benchmark, a new dataset and infrastructure to advance LLM and agent research in hardware design and verification. CVDP includes 783 problems across 13 task categories, covering RTL generation, verification, debugging, specification alignment, and technical Q&A authored by experienced hardware engineers. Problems are offered in both non-agentic and agentic formats. The benchmark introduces more realistic and challenging contexts than prior work, with state-of-the-art models achieving no more than 34% pass@1 on code generation. Agentic tasksx2013especially those involving RTL reuse and verificationx2013are particularly difficult. Evaluation uses open-source tools and model scoring infrastructure, with comprehension tasks assessed via BLEU and LLM-based judging. CVDP reveals substantial gaps in current model capabilities, underscoring the need for continued research toward robust, real-world hardware design automation.
An MLCommons Scientific Benchmarks Ontology
Scientific machine learning research spans diverse domains and data modalities, yet existing benchmark efforts remain siloed and lack standardization. This makes novel and transformative applications of machine learning to critical scientific use-cases more fragmented and less clear in pathways to impact. This paper introduces an ontology for scientific benchmarking developed through a unified, community-driven effort that extends the MLCommons ecosystem to cover physics, chemistry, materials science, biology, climate science, and more. Building on prior initiatives such as XAI-BENCH, FastML Science Benchmarks, PDEBench, and the SciMLBench framework, our effort consolidates a large set of disparate benchmarks and frameworks into a single taxonomy of scientific, application, and system-level benchmarks. New benchmarks can be added through an open submission workflow coordinated by the MLCommons Science Working Group and evaluated against a six-category rating rubric that promotes and identifies high-quality benchmarks, enabling stakeholders to select benchmarks that meet their specific needs. The architecture is extensible, supporting future scientific and AI/ML motifs, and we discuss methods for identifying emerging computing patterns for unique scientific workloads. The MLCommons Science Benchmarks Ontology provides a standardized, scalable foundation for reproducible, cross-domain benchmarking in scientific machine learning. A companion webpage for this work has also been developed as the effort evolves: https://mlcommons-science.github.io/benchmark/
Pseudo-Simulation for Autonomous Driving
Existing evaluation paradigms for Autonomous Vehicles (AVs) face critical limitations. Real-world evaluation is often challenging due to safety concerns and a lack of reproducibility, whereas closed-loop simulation can face insufficient realism or high computational costs. Open-loop evaluation, while being efficient and data-driven, relies on metrics that generally overlook compounding errors. In this paper, we propose pseudo-simulation, a novel paradigm that addresses these limitations. Pseudo-simulation operates on real datasets, similar to open-loop evaluation, but augments them with synthetic observations generated prior to evaluation using 3D Gaussian Splatting. Our key idea is to approximate potential future states the AV might encounter by generating a diverse set of observations that vary in position, heading, and speed. Our method then assigns a higher importance to synthetic observations that best match the AV's likely behavior using a novel proximity-based weighting scheme. This enables evaluating error recovery and the mitigation of causal confusion, as in closed-loop benchmarks, without requiring sequential interactive simulation. We show that pseudo-simulation is better correlated with closed-loop simulations (R^2=0.8) than the best existing open-loop approach (R^2=0.7). We also establish a public leaderboard for the community to benchmark new methodologies with pseudo-simulation. Our code is available at https://github.com/autonomousvision/navsim.
PhD Knowledge Not Required: A Reasoning Challenge for Large Language Models
Existing benchmarks for frontier models often test specialized, ``PhD-level'' knowledge that is difficult for non-experts to grasp. In contrast, we present a benchmark based on the NPR Sunday Puzzle Challenge that requires only general knowledge. Our benchmark is challenging for both humans and models, however correct solutions are easy to verify, and models' mistakes are easy to spot. Our work reveals capability gaps that are not evident in existing benchmarks: OpenAI o1 significantly outperforms other reasoning models that are on par on benchmarks that test specialized knowledge. Furthermore, our analysis of reasoning outputs uncovers new kinds of failures. DeepSeek R1, for instance, often concedes with ``I give up'' before providing an answer that it knows is wrong. R1 can also be remarkably ``uncertain'' in its output and in rare cases, it does not ``finish thinking,'' which suggests the need for an inference-time technique to ``wrap up'' before the context window limit is reached. We also quantify the effectiveness of reasoning longer with R1 and Gemini Thinking to identify the point beyond which more reasoning is unlikely to improve accuracy on our benchmark.
FastTracker: Real-Time and Accurate Visual Tracking
Conventional multi-object tracking (MOT) systems are predominantly designed for pedestrian tracking and often exhibit limited generalization to other object categories. This paper presents a generalized tracking framework capable of handling multiple object types, with a particular emphasis on vehicle tracking in complex traffic scenes. The proposed method incorporates two key components: (1) an occlusion-aware re-identification mechanism that enhances identity preservation for heavily occluded objects, and (2) a road-structure-aware tracklet refinement strategy that utilizes semantic scene priors such as lane directions, crosswalks, and road boundaries to improve trajectory continuity and accuracy. In addition, we introduce a new benchmark dataset comprising diverse vehicle classes with frame-level tracking annotations, specifically curated to support evaluation of vehicle-focused tracking methods. Extensive experimental results demonstrate that the proposed approach achieves robust performance on both the newly introduced dataset and several public benchmarks, highlighting its effectiveness in general-purpose object tracking. While our framework is designed for generalized multi-class tracking, it also achieves strong performance on conventional benchmarks, with HOTA scores of 66.4 on MOT17 and 65.7 on MOT20 test sets. Code and Benchmark are available: github.com/Hamidreza-Hashempoor/FastTracker, huggingface.co/datasets/Hamidreza-Hashemp/FastTracker-Benchmark.
3DRealCar: An In-the-wild RGB-D Car Dataset with 360-degree Views
3D cars are commonly used in self-driving systems, virtual/augmented reality, and games. However, existing 3D car datasets are either synthetic or low-quality, presenting a significant gap toward the high-quality real-world 3D car datasets and limiting their applications in practical scenarios. In this paper, we propose the first large-scale 3D real car dataset, termed 3DRealCar, offering three distinctive features. (1) High-Volume: 2,500 cars are meticulously scanned by 3D scanners, obtaining car images and point clouds with real-world dimensions; (2) High-Quality: Each car is captured in an average of 200 dense, high-resolution 360-degree RGB-D views, enabling high-fidelity 3D reconstruction; (3) High-Diversity: The dataset contains various cars from over 100 brands, collected under three distinct lighting conditions, including reflective, standard, and dark. Additionally, we offer detailed car parsing maps for each instance to promote research in car parsing tasks. Moreover, we remove background point clouds and standardize the car orientation to a unified axis for the reconstruction only on cars without background and controllable rendering. We benchmark 3D reconstruction results with state-of-the-art methods across each lighting condition in 3DRealCar. Extensive experiments demonstrate that the standard lighting condition part of 3DRealCar can be used to produce a large number of high-quality 3D cars, improving various 2D and 3D tasks related to cars. Notably, our dataset brings insight into the fact that recent 3D reconstruction methods face challenges in reconstructing high-quality 3D cars under reflective and dark lighting conditions. red{https://xiaobiaodu.github.io/3drealcar/{Our dataset is available here.}}
FungiTastic: A multi-modal dataset and benchmark for image categorization
We introduce a new, highly challenging benchmark and a dataset -- FungiTastic -- based on data continuously collected over a twenty-year span. The dataset originates in fungal records labeled and curated by experts. It consists of about 350k multi-modal observations that include more than 650k photographs from 5k fine-grained categories and diverse accompanying information, e.g., acquisition metadata, satellite images, and body part segmentation. FungiTastic is the only benchmark that includes a test set with partially DNA-sequenced ground truth of unprecedented label reliability. The benchmark is designed to support (i) standard close-set classification, (ii) open-set classification, (iii) multi-modal classification, (iv) few-shot learning, (v) domain shift, and many more. We provide baseline methods tailored for almost all the use-cases. We provide a multitude of ready-to-use pre-trained models on HuggingFace and a framework for model training. A comprehensive documentation describing the dataset features and the baselines are available at https://bohemianvra.github.io/FungiTastic/ and https://www.kaggle.com/datasets/picekl/fungitastic.
ALOcc: Adaptive Lifting-based 3D Semantic Occupancy and Cost Volume-based Flow Prediction
Vision-based semantic occupancy and flow prediction plays a crucial role in providing spatiotemporal cues for real-world tasks, such as autonomous driving. Existing methods prioritize higher accuracy to cater to the demands of these tasks. In this work, we strive to improve performance by introducing a series of targeted improvements for 3D semantic occupancy prediction and flow estimation. First, we introduce an occlusion-aware adaptive lifting mechanism with a depth denoising technique to improve the robustness of 2D-to-3D feature transformation and reduce the reliance on depth priors. Second, we strengthen the semantic consistency between 3D features and their original 2D modalities by utilizing shared semantic prototypes to jointly constrain both 2D and 3D features. This is complemented by confidence- and category-based sampling strategies to tackle long-tail challenges in 3D space. To alleviate the feature encoding burden in the joint prediction of semantics and flow, we propose a BEV cost volume-based prediction method that links flow and semantic features through a cost volume and employs a classification-regression supervision scheme to address the varying flow scales in dynamic scenes. Our purely convolutional architecture framework, named ALOcc, achieves an optimal tradeoff between speed and accuracy achieving state-of-the-art results on multiple benchmarks. On Occ3D and training without the camera visible mask, our ALOcc achieves an absolute gain of 2.5\% in terms of RayIoU while operating at a comparable speed compared to the state-of-the-art, using the same input size (256times704) and ResNet-50 backbone. Our method also achieves 2nd place in the CVPR24 Occupancy and Flow Prediction Competition.
On Occlusions in Video Action Detection: Benchmark Datasets And Training Recipes
This paper explores the impact of occlusions in video action detection. We facilitate this study by introducing five new benchmark datasets namely O-UCF and O-JHMDB consisting of synthetically controlled static/dynamic occlusions, OVIS-UCF and OVIS-JHMDB consisting of occlusions with realistic motions and Real-OUCF for occlusions in realistic-world scenarios. We formally confirm an intuitive expectation: existing models suffer a lot as occlusion severity is increased and exhibit different behaviours when occluders are static vs when they are moving. We discover several intriguing phenomenon emerging in neural nets: 1) transformers can naturally outperform CNN models which might have even used occlusion as a form of data augmentation during training 2) incorporating symbolic-components like capsules to such backbones allows them to bind to occluders never even seen during training and 3) Islands of agreement can emerge in realistic images/videos without instance-level supervision, distillation or contrastive-based objectives2(eg. video-textual training). Such emergent properties allow us to derive simple yet effective training recipes which lead to robust occlusion models inductively satisfying the first two stages of the binding mechanism (grouping/segregation). Models leveraging these recipes outperform existing video action-detectors under occlusion by 32.3% on O-UCF, 32.7% on O-JHMDB & 2.6% on Real-OUCF in terms of the vMAP metric. The code for this work has been released at https://github.com/rajatmodi62/OccludedActionBenchmark.
LiDAR-CS Dataset: LiDAR Point Cloud Dataset with Cross-Sensors for 3D Object Detection
Over the past few years, there has been remarkable progress in research on 3D point clouds and their use in autonomous driving scenarios has become widespread. However, deep learning methods heavily rely on annotated data and often face domain generalization issues. Unlike 2D images whose domains usually pertain to the texture information present in them, the features derived from a 3D point cloud are affected by the distribution of the points. The lack of a 3D domain adaptation benchmark leads to the common practice of training a model on one benchmark (e.g. Waymo) and then assessing it on another dataset (e.g. KITTI). This setting results in two distinct domain gaps: scenarios and sensors, making it difficult to analyze and evaluate the method accurately. To tackle this problem, this paper presents LiDAR Dataset with Cross Sensors (LiDAR-CS Dataset), which contains large-scale annotated LiDAR point cloud under six groups of different sensors but with the same corresponding scenarios, captured from hybrid realistic LiDAR simulator. To our knowledge, LiDAR-CS Dataset is the first dataset that addresses the sensor-related gaps in the domain of 3D object detection in real traffic. Furthermore, we evaluate and analyze the performance using various baseline detectors and demonstrated its potential applications. Project page: https://opendriving.github.io/lidar-cs.
Rethinking LLM Evaluation: Can We Evaluate LLMs with 200x Less Data?
As the demand for comprehensive evaluations of diverse model capabilities steadily increases, benchmark suites have correspondingly grown significantly in scale. Despite notable advances in redundancy reduction and subset-level performance prediction, a systematic framework that effectively integrates these methods to ensure both prediction accuracy and ranking consistency is still largely elusive. In this paper, we first perform a sample-level analysis of benchmark redundancy and identify several highly similar samples that can be eliminated. Besides, we frame benchmark compression as an optimization problem with the aim of score reconstruction. Building on these, we then propose EssenceBench, a coarse-to-fine framework utilizing an iterative Genetic Algorithm (GA), which takes the advantages of fitness-based subset search and attribution-based sample search. Compared to previous methods, our approach yields superior compression results with lower reconstruction error and markedly higher efficiency. In particular, on the HellaSwag benchmark (10K samples), our method preserves the ranking of all models shifting within 5% using 25x fewer samples, and achieves 95% ranking preservation shifting within 5% using only 200x fewer samples.
Dynamic Benchmarking of Reasoning Capabilities in Code Large Language Models Under Data Contamination
The rapid evolution of code largelanguage models underscores the need for effective and transparent benchmarking of their reasoning capabilities. However, the current benchmarking approach heavily depends on publicly available, human-created datasets. The widespread use of these fixed benchmark datasets makes the benchmarking process to be static and thus particularly susceptible to data contamination, an unavoidable consequence of the extensive data collection processes used to train Code LLMs. Existing approaches that address data contamination often suffer from human effort limitations and imbalanced problem complexity. To tackle these challenges, we propose \tool, a novel benchmarking suite for evaluating Code LLMs under potential data contamination. Given a seed programming problem, \tool employs multiple agents to extract and modify the context without altering the core logic, generating semantically equivalent variations. We introduce a dynamic data generation methods and conduct empirical studies on two seed datasets across 21 Code LLMs. Results show that \tool effectively benchmarks reasoning capabilities under contamination risks while generating diverse problem sets to ensure consistent and reliable evaluations.
R-Bench: Graduate-level Multi-disciplinary Benchmarks for LLM & MLLM Complex Reasoning Evaluation
Reasoning stands as a cornerstone of intelligence, enabling the synthesis of existing knowledge to solve complex problems. Despite remarkable progress, existing reasoning benchmarks often fail to rigorously evaluate the nuanced reasoning capabilities required for complex, real-world problemsolving, particularly in multi-disciplinary and multimodal contexts. In this paper, we introduce a graduate-level, multi-disciplinary, EnglishChinese benchmark, dubbed as Reasoning Bench (R-Bench), for assessing the reasoning capability of both language and multimodal models. RBench spans 1,094 questions across 108 subjects for language model evaluation and 665 questions across 83 subjects for multimodal model testing in both English and Chinese. These questions are meticulously curated to ensure rigorous difficulty calibration, subject balance, and crosslinguistic alignment, enabling the assessment to be an Olympiad-level multi-disciplinary benchmark. We evaluate widely used models, including OpenAI o1, GPT-4o, DeepSeek-R1, etc. Experimental results indicate that advanced models perform poorly on complex reasoning, especially multimodal reasoning. Even the top-performing model OpenAI o1 achieves only 53.2% accuracy on our multimodal evaluation. Data and code are made publicly available at here.
OmnixR: Evaluating Omni-modality Language Models on Reasoning across Modalities
We introduce OmnixR, an evaluation suite designed to benchmark SoTA Omni-modality Language Models, such as GPT-4o and Gemini. Evaluating OLMs, which integrate multiple modalities such as text, vision, and audio, presents unique challenges. Particularly, the user message might often consist of multiple modalities, such that OLMs have to establish holistic understanding and reasoning across modalities to accomplish the task. Existing benchmarks are limited to single modality or dual-modality tasks, overlooking comprehensive multi-modal assessments of model reasoning. To address this, OmnixR offers two evaluation variants: (1)synthetic subset: a synthetic dataset generated automatically by translating text into multiple modalities--audio, images, video, and hybrids (Omnify). (2)realistic subset: a real-world dataset, manually curated and annotated by experts, for evaluating cross-modal reasoning in natural settings. OmnixR presents a unique evaluation towards assessing OLMs over a diverse mix of modalities, such as a question that involves video, audio, and text, providing a rigorous cross-modal reasoning testbed unlike any existing benchmarks. Our experiments find that all state-of-the-art OLMs struggle with OmnixR questions that require integrating information from multiple modalities to answer. Further analysis highlights differences in reasoning behavior, underscoring the challenges of omni-modal AI alignment.
M^3VIR: A Large-Scale Multi-Modality Multi-View Synthesized Benchmark Dataset for Image Restoration and Content Creation
The gaming and entertainment industry is rapidly evolving, driven by immersive experiences and the integration of generative AI (GAI) technologies. Training such models effectively requires large-scale datasets that capture the diversity and context of gaming environments. However, existing datasets are often limited to specific domains or rely on artificial degradations, which do not accurately capture the unique characteristics of gaming content. Moreover, benchmarks for controllable video generation remain absent. To address these limitations, we introduce M^3VIR, a large-scale, multi-modal, multi-view dataset specifically designed to overcome the shortcomings of current resources. Unlike existing datasets, M^3VIR provides diverse, high-fidelity gaming content rendered with Unreal Engine 5, offering authentic ground-truth LR-HR paired and multi-view frames across 80 scenes in 8 categories. It includes M^3VIR_MR for super-resolution (SR), novel view synthesis (NVS), and combined NVS+SR tasks, and M^3VIR_{MS}, the first multi-style, object-level ground-truth set enabling research on controlled video generation. Additionally, we benchmark several state-of-the-art SR and NVS methods to establish performance baselines. While no existing approaches directly handle controlled video generation, M^3VIR provides a benchmark for advancing this area. By releasing the dataset, we aim to facilitate research in AI-powered restoration, compression, and controllable content generation for next-generation cloud gaming and entertainment.
MS-Occ: Multi-Stage LiDAR-Camera Fusion for 3D Semantic Occupancy Prediction
Accurate 3D semantic occupancy perception is essential for autonomous driving in complex environments with diverse and irregular objects. While vision-centric methods suffer from geometric inaccuracies, LiDAR-based approaches often lack rich semantic information. To address these limitations, MS-Occ, a novel multi-stage LiDAR-camera fusion framework which includes middle-stage fusion and late-stage fusion, is proposed, integrating LiDAR's geometric fidelity with camera-based semantic richness via hierarchical cross-modal fusion. The framework introduces innovations at two critical stages: (1) In the middle-stage feature fusion, the Gaussian-Geo module leverages Gaussian kernel rendering on sparse LiDAR depth maps to enhance 2D image features with dense geometric priors, and the Semantic-Aware module enriches LiDAR voxels with semantic context via deformable cross-attention; (2) In the late-stage voxel fusion, the Adaptive Fusion (AF) module dynamically balances voxel features across modalities, while the High Classification Confidence Voxel Fusion (HCCVF) module resolves semantic inconsistencies using self-attention-based refinement. Experiments on the nuScenes-OpenOccupancy benchmark show that MS-Occ achieves an Intersection over Union (IoU) of 32.1% and a mean IoU (mIoU) of 25.3%, surpassing the state-of-the-art by +0.7% IoU and +2.4% mIoU. Ablation studies further validate the contribution of each module, with substantial improvements in small-object perception, demonstrating the practical value of MS-Occ for safety-critical autonomous driving scenarios.
A Bayesian Approach to OOD Robustness in Image Classification
An important and unsolved problem in computer vision is to ensure that the algorithms are robust to changes in image domains. We address this problem in the scenario where we have access to images from the target domains but no annotations. Motivated by the challenges of the OOD-CV benchmark where we encounter real world Out-of-Domain (OOD) nuisances and occlusion, we introduce a novel Bayesian approach to OOD robustness for object classification. Our work extends Compositional Neural Networks (CompNets), which have been shown to be robust to occlusion but degrade badly when tested on OOD data. We exploit the fact that CompNets contain a generative head defined over feature vectors represented by von Mises-Fisher (vMF) kernels, which correspond roughly to object parts, and can be learned without supervision. We obverse that some vMF kernels are similar between different domains, while others are not. This enables us to learn a transitional dictionary of vMF kernels that are intermediate between the source and target domains and train the generative model on this dictionary using the annotations on the source domain, followed by iterative refinement. This approach, termed Unsupervised Generative Transition (UGT), performs very well in OOD scenarios even when occlusion is present. UGT is evaluated on different OOD benchmarks including the OOD-CV dataset, several popular datasets (e.g., ImageNet-C [9]), artificial image corruptions (including adding occluders), and synthetic-to-real domain transfer, and does well in all scenarios outperforming SOTA alternatives (e.g. up to 10% top-1 accuracy on Occluded OOD-CV dataset).
GraphFM: A Comprehensive Benchmark for Graph Foundation Model
Foundation Models (FMs) serve as a general class for the development of artificial intelligence systems, offering broad potential for generalization across a spectrum of downstream tasks. Despite extensive research into self-supervised learning as the cornerstone of FMs, several outstanding issues persist in Graph Foundation Models that rely on graph self-supervised learning, namely: 1) Homogenization. The extent of generalization capability on downstream tasks remains unclear. 2) Scalability. It is unknown how effectively these models can scale to large datasets. 3) Efficiency. The training time and memory usage of these models require evaluation. 4) Training Stop Criteria. Determining the optimal stopping strategy for pre-training across multiple tasks to maximize performance on downstream tasks. To address these questions, we have constructed a rigorous benchmark that thoroughly analyzes and studies the generalization and scalability of self-supervised Graph Neural Network (GNN) models. Regarding generalization, we have implemented and compared the performance of various self-supervised GNN models, trained to generate node representations, across tasks such as node classification, link prediction, and node clustering. For scalability, we have compared the performance of various models after training using full-batch and mini-batch strategies. Additionally, we have assessed the training efficiency of these models by conducting experiments to test their GPU memory usage and throughput. Through these experiments, we aim to provide insights to motivate future research. The code for this benchmark is publicly available at https://github.com/NYUSHCS/GraphFM.
LoCoBench: A Benchmark for Long-Context Large Language Models in Complex Software Engineering
The emergence of long-context language models with context windows extending to millions of tokens has created new opportunities for sophisticated code understanding and software development evaluation. We propose LoCoBench, a comprehensive benchmark specifically designed to evaluate long-context LLMs in realistic, complex software development scenarios. Unlike existing code evaluation benchmarks that focus on single-function completion or short-context tasks, LoCoBench addresses the critical evaluation gap for long-context capabilities that require understanding entire codebases, reasoning across multiple files, and maintaining architectural consistency across large-scale software systems. Our benchmark provides 8,000 evaluation scenarios systematically generated across 10 programming languages, with context lengths spanning 10K to 1M tokens, a 100x variation that enables precise assessment of long-context performance degradation in realistic software development settings. LoCoBench introduces 8 task categories that capture essential long-context capabilities: architectural understanding, cross-file refactoring, multi-session development, bug investigation, feature implementation, code comprehension, integration testing, and security analysis. Through a 5-phase pipeline, we create diverse, high-quality scenarios that challenge LLMs to reason about complex codebases at unprecedented scale. We introduce a comprehensive evaluation framework with 17 metrics across 4 dimensions, including 8 new evaluation metrics, combined in a LoCoBench Score (LCBS). Our evaluation of state-of-the-art long-context models reveals substantial performance gaps, demonstrating that long-context understanding in complex software development represents a significant unsolved challenge that demands more attention. LoCoBench is released at: https://github.com/SalesforceAIResearch/LoCoBench.
Bayesian Hierarchical Models for Quantitative Estimates for Performance metrics applied to Saddle Search Algorithms
Rigorous performance evaluation is essential for developing robust algorithms for high-throughput computational chemistry. Traditional benchmarking, however, often struggles to account for system-specific variability, making it difficult to form actionable conclusions. We present a Bayesian hierarchical modeling framework that rigorously quantifies performance metrics and their uncertainty, enabling a nuanced comparison of algorithmic strategies. We apply this framework to analyze the Dimer method, comparing Conjugate Gradient (CG) and L-BFGS rotation optimizers, with and without the removal of external rotations, across a benchmark of 500 molecular systems. Our analysis confirms that CG offers higher overall robustness than L-BFGS in this context. While the theoretically-motivated removal of external rotations led to higher computational cost (>40% more energy and force calls) for most systems in this set, our models also reveal a subtle interplay, hinting that this feature may improve the reliability of the L-BFGS optimizer. Rather than identifying a single superior method, our findings support the design of adaptive "chain of methods" workflows. This work showcases how a robust statistical paradigm can move beyond simple performance rankings to inform the intelligent, context-dependent application of computational chemistry methods.
DreamPropeller: Supercharge Text-to-3D Generation with Parallel Sampling
Recent methods such as Score Distillation Sampling (SDS) and Variational Score Distillation (VSD) using 2D diffusion models for text-to-3D generation have demonstrated impressive generation quality. However, the long generation time of such algorithms significantly degrades the user experience. To tackle this problem, we propose DreamPropeller, a drop-in acceleration algorithm that can be wrapped around any existing text-to-3D generation pipeline based on score distillation. Our framework generalizes Picard iterations, a classical algorithm for parallel sampling an ODE path, and can account for non-ODE paths such as momentum-based gradient updates and changes in dimensions during the optimization process as in many cases of 3D generation. We show that our algorithm trades parallel compute for wallclock time and empirically achieves up to 4.7x speedup with a negligible drop in generation quality for all tested frameworks.
A Coarse-to-Fine Approach to Multi-Modality 3D Occupancy Grounding
Visual grounding aims to identify objects or regions in a scene based on natural language descriptions, essential for spatially aware perception in autonomous driving. However, existing visual grounding tasks typically depend on bounding boxes that often fail to capture fine-grained details. Not all voxels within a bounding box are occupied, resulting in inaccurate object representations. To address this, we introduce a benchmark for 3D occupancy grounding in challenging outdoor scenes. Built on the nuScenes dataset, it integrates natural language with voxel-level occupancy annotations, offering more precise object perception compared to the traditional grounding task. Moreover, we propose GroundingOcc, an end-to-end model designed for 3D occupancy grounding through multi-modal learning. It combines visual, textual, and point cloud features to predict object location and occupancy information from coarse to fine. Specifically, GroundingOcc comprises a multimodal encoder for feature extraction, an occupancy head for voxel-wise predictions, and a grounding head to refine localization. Additionally, a 2D grounding module and a depth estimation module enhance geometric understanding, thereby boosting model performance. Extensive experiments on the benchmark demonstrate that our method outperforms existing baselines on 3D occupancy grounding. The dataset is available at https://github.com/RONINGOD/GroundingOcc.
