new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 18

BERT4Rec: Sequential Recommendation with Bidirectional Encoder Representations from Transformer

Modeling users' dynamic and evolving preferences from their historical behaviors is challenging and crucial for recommendation systems. Previous methods employ sequential neural networks (e.g., Recurrent Neural Network) to encode users' historical interactions from left to right into hidden representations for making recommendations. Although these methods achieve satisfactory results, they often assume a rigidly ordered sequence which is not always practical. We argue that such left-to-right unidirectional architectures restrict the power of the historical sequence representations. For this purpose, we introduce a Bidirectional Encoder Representations from Transformers for sequential Recommendation (BERT4Rec). However, jointly conditioning on both left and right context in deep bidirectional model would make the training become trivial since each item can indirectly "see the target item". To address this problem, we train the bidirectional model using the Cloze task, predicting the masked items in the sequence by jointly conditioning on their left and right context. Comparing with predicting the next item at each position in a sequence, the Cloze task can produce more samples to train a more powerful bidirectional model. Extensive experiments on four benchmark datasets show that our model outperforms various state-of-the-art sequential models consistently.

  • 7 authors
·
Apr 14, 2019

A Critical Review of Recurrent Neural Networks for Sequence Learning

Countless learning tasks require dealing with sequential data. Image captioning, speech synthesis, and music generation all require that a model produce outputs that are sequences. In other domains, such as time series prediction, video analysis, and musical information retrieval, a model must learn from inputs that are sequences. Interactive tasks, such as translating natural language, engaging in dialogue, and controlling a robot, often demand both capabilities. Recurrent neural networks (RNNs) are connectionist models that capture the dynamics of sequences via cycles in the network of nodes. Unlike standard feedforward neural networks, recurrent networks retain a state that can represent information from an arbitrarily long context window. Although recurrent neural networks have traditionally been difficult to train, and often contain millions of parameters, recent advances in network architectures, optimization techniques, and parallel computation have enabled successful large-scale learning with them. In recent years, systems based on long short-term memory (LSTM) and bidirectional (BRNN) architectures have demonstrated ground-breaking performance on tasks as varied as image captioning, language translation, and handwriting recognition. In this survey, we review and synthesize the research that over the past three decades first yielded and then made practical these powerful learning models. When appropriate, we reconcile conflicting notation and nomenclature. Our goal is to provide a self-contained explication of the state of the art together with a historical perspective and references to primary research.

  • 3 authors
·
May 29, 2015

Bidirectional Language Models Are Also Few-shot Learners

Large language models such as GPT-3 (Brown et al., 2020) can perform arbitrary tasks without undergoing fine-tuning after being prompted with only a few labeled examples. An arbitrary task can be reformulated as a natural language prompt, and a language model can be asked to generate the completion, indirectly performing the task in a paradigm known as prompt-based learning. To date, emergent prompt-based learning capabilities have mainly been demonstrated for unidirectional language models. However, bidirectional language models pre-trained on denoising objectives such as masked language modeling produce stronger learned representations for transfer learning. This motivates the possibility of prompting bidirectional models, but their pre-training objectives have made them largely incompatible with the existing prompting paradigm. We present SAP (Sequential Autoregressive Prompting), a technique that enables the prompting of bidirectional models. Utilizing the machine translation task as a case study, we prompt the bidirectional mT5 model (Xue et al., 2021) with SAP and demonstrate its few-shot and zero-shot translations outperform the few-shot translations of unidirectional models like GPT-3 and XGLM (Lin et al., 2021), despite mT5's approximately 50% fewer parameters. We further show SAP is effective on question answering and summarization. For the first time, our results demonstrate prompt-based learning is an emergent property of a broader class of language models, rather than only unidirectional models.

  • 6 authors
·
Sep 28, 2022

A Global Context Mechanism for Sequence Labeling

Global sentence information is crucial for sequence labeling tasks, where each word in a sentence must be assigned a label. While BiLSTM models are widely used, they often fail to capture sufficient global context for inner words. Previous work has proposed various RNN variants to integrate global sentence information into word representations. However, these approaches suffer from three key limitations: (1) they are slower in both inference and training compared to the original BiLSTM, (2) they cannot effectively supplement global information for transformer-based models, and (3) the high time cost associated with reimplementing and integrating these customized RNNs into existing architectures. In this study, we introduce a simple yet effective mechanism that addresses these limitations. Our approach efficiently supplements global sentence information for both BiLSTM and transformer-based models, with minimal degradation in inference and training speed, and is easily pluggable into current architectures. We demonstrate significant improvements in F1 scores across seven popular benchmarks, including Named Entity Recognition (NER) tasks such as Conll2003, Wnut2017 , and the Chinese named-entity recognition task Weibo, as well as End-to-End Aspect-Based Sentiment Analysis (E2E-ABSA) benchmarks such as Laptop14, Restaurant14, Restaurant15, and Restaurant16. With out any extra strategy, we achieve third highest score on weibo NER benchmark. Compared to CRF, one of the most popular frameworks for sequence labeling, our mechanism achieves competitive F1 scores while offering superior inference and training speed. Code is available at: https://github.com/conglei2XU/Global-Context-Mechanism

  • 4 authors
·
May 31, 2023

ParaRNN: Unlocking Parallel Training of Nonlinear RNNs for Large Language Models

Recurrent Neural Networks (RNNs) laid the foundation for sequence modeling, but their intrinsic sequential nature restricts parallel computation, creating a fundamental barrier to scaling. This has led to the dominance of parallelizable architectures like Transformers and, more recently, State Space Models (SSMs). While SSMs achieve efficient parallelization through structured linear recurrences, this linearity constraint limits their expressive power and precludes modeling complex, nonlinear sequence-wise dependencies. To address this, we present ParaRNN, a framework that breaks the sequence-parallelization barrier for nonlinear RNNs. Building on prior work, we cast the sequence of nonlinear recurrence relationships as a single system of equations, which we solve in parallel using Newton's iterations combined with custom parallel reductions. Our implementation achieves speedups of up to 665x over naive sequential application, allowing training nonlinear RNNs at unprecedented scales. To showcase this, we apply ParaRNN to adaptations of LSTM and GRU architectures, successfully training models of 7B parameters that attain perplexity comparable to similarly-sized Transformers and Mamba2 architectures. To accelerate research in efficient sequence modeling, we release the ParaRNN codebase as an open-source framework for automatic training-parallelization of nonlinear RNNs, enabling researchers and practitioners to explore new nonlinear RNN models at scale.

  • 5 authors
·
Oct 24

Are We Falling in a Middle-Intelligence Trap? An Analysis and Mitigation of the Reversal Curse

Recent studies have highlighted a phenomenon in large language models (LLMs) known as "the reversal curse," in which the order of knowledge entities in the training data biases the models' comprehension. For example, if a model is trained on sentences where entity A consistently appears before entity B, it can respond to queries about A by providing B as the answer. However, it may encounter confusion when presented with questions concerning B. We contend that the reversal curse is partially a result of specific model training objectives, particularly evident in the prevalent use of the next-token prediction within most causal language models. For the next-token prediction, models solely focus on a token's preceding context, resulting in a restricted comprehension of the input. In contrast, we illustrate that the GLM, trained using the autoregressive blank infilling objective where tokens to be predicted have access to the entire context, exhibits better resilience against the reversal curse. We propose a novel training method, BIdirectional Casual language modeling Optimization (BICO), designed to mitigate the reversal curse when fine-tuning pretrained causal language models on new data. BICO modifies the causal attention mechanism to function bidirectionally and employs a mask denoising optimization. In the task designed to assess the reversal curse, our approach improves Llama's accuracy from the original 0% to around 70%. We hope that more attention can be focused on exploring and addressing these inherent weaknesses of the current LLMs, in order to achieve a higher level of intelligence.

  • 7 authors
·
Nov 13, 2023

Bidirectional Trained Tree-Structured Decoder for Handwritten Mathematical Expression Recognition

The Handwritten Mathematical Expression Recognition (HMER) task is a critical branch in the field of OCR. Recent studies have demonstrated that incorporating bidirectional context information significantly improves the performance of HMER models. However, existing methods fail to effectively utilize bidirectional context information during the inference stage. Furthermore, current bidirectional training methods are primarily designed for string decoders and cannot adequately generalize to tree decoders, which offer superior generalization capabilities and structural analysis capacity. In order to overcome these limitations, we propose the Mirror-Flipped Symbol Layout Tree (MF-SLT) and Bidirectional Asynchronous Training (BAT) structure. Our method extends the bidirectional training strategy to the tree decoder, allowing for more effective training by leveraging bidirectional information. Additionally, we analyze the impact of the visual and linguistic perception of the HMER model separately and introduce the Shared Language Modeling (SLM) mechanism. Through the SLM, we enhance the model's robustness and generalization when dealing with visual ambiguity, particularly in scenarios with abundant training data. Our approach has been validated through extensive experiments, demonstrating its ability to achieve new state-of-the-art results on the CROHME 2014, 2016, and 2019 datasets, as well as the HME100K dataset. The code used in our experiments will be publicly available.

  • 6 authors
·
Dec 31, 2023

Bidirectional Representations Augmented Autoregressive Biological Sequence Generation:Application in De Novo Peptide Sequencing

Autoregressive (AR) models, common in sequence generation, are limited in many biological tasks such as de novo peptide sequencing and protein modeling by their unidirectional nature, failing to capture crucial global bidirectional token dependencies. Non-Autoregressive (NAR) models offer holistic, bidirectional representations but face challenges with generative coherence and scalability. To transcend this, we propose a hybrid framework enhancing AR generation by dynamically integrating rich contextual information from non-autoregressive mechanisms. Our approach couples a shared input encoder with two decoders: a non-autoregressive one learning latent bidirectional biological features, and an AR decoder synthesizing the biological sequence by leveraging these bidirectional features. A novel cross-decoder attention module enables the AR decoder to iteratively query and integrate these bidirectional features, enriching its predictions. This synergy is cultivated via a tailored training strategy with importance annealing for balanced objectives and cross-decoder gradient blocking for stable, focused learning. Evaluations on a demanding nine-species benchmark of de novo peptide sequencing show that our model substantially surpasses AR and NAR baselines. It uniquely harmonizes AR stability with NAR contextual awareness, delivering robust, superior performance on diverse downstream data. This research advances biological sequence modeling techniques and contributes a novel architectural paradigm for augmenting AR models with enhanced bidirectional understanding for complex sequence generation. Code is available at https://github.com/BEAM-Labs/denovo.

  • 8 authors
·
Oct 9

Just read twice: closing the recall gap for recurrent language models

Recurrent large language models that compete with Transformers in language modeling perplexity are emerging at a rapid rate (e.g., Mamba, RWKV). Excitingly, these architectures use a constant amount of memory during inference. However, due to the limited memory, recurrent LMs cannot recall and use all the information in long contexts leading to brittle in-context learning (ICL) quality. A key challenge for efficient LMs is selecting what information to store versus discard. In this work, we observe the order in which information is shown to the LM impacts the selection difficulty. To formalize this, we show that the hardness of information recall reduces to the hardness of a problem called set disjointness (SD), a quintessential problem in communication complexity that requires a streaming algorithm (e.g., recurrent model) to decide whether inputted sets are disjoint. We empirically and theoretically show that the recurrent memory required to solve SD changes with set order, i.e., whether the smaller set appears first in-context. Our analysis suggests, to mitigate the reliance on data order, we can put information in the right order in-context or process prompts non-causally. Towards that end, we propose: (1) JRT-Prompt, where context gets repeated multiple times in the prompt, effectively showing the model all data orders. This gives 11.0 pm 1.3 points of improvement, averaged across 16 recurrent LMs and the 6 ICL tasks, with 11.9times higher throughput than FlashAttention-2 for generation prefill (length 32k, batch size 16, NVidia H100). We then propose (2) JRT-RNN, which uses non-causal prefix-linear-attention to process prompts and provides 99% of Transformer quality at 360M params., 30B tokens and 96% at 1.3B params., 50B tokens on average across the tasks, with 19.2times higher throughput for prefill than FA2.

  • 9 authors
·
Jul 7, 2024

Birdie: Advancing State Space Models with Reward-Driven Objectives and Curricula

Efficient state space models (SSMs), such as linear recurrent neural networks and linear attention variants, offer computational advantages over Transformers but struggle with tasks requiring long-range in-context retrieval-like text copying, associative recall, and question answering over long contexts. Previous efforts to address these challenges have focused on architectural modifications, often reintroducing computational inefficiencies. In this paper, we propose a novel training procedure, Birdie, that significantly enhances the in-context retrieval capabilities of SSMs without altering their architecture. Our approach combines bidirectional input processing with dynamic mixtures of specialized pre-training objectives, optimized via reinforcement learning. We introduce a new bidirectional SSM architecture that seamlessly transitions from bidirectional context processing to causal generation. Experimental evaluations demonstrate that Birdie markedly improves performance on retrieval-intensive tasks such as multi-number phone book lookup, long paragraph question-answering, and infilling. This narrows the performance gap with Transformers, while retaining computational efficiency. Our findings highlight the importance of training procedures in leveraging the fixed-state capacity of SSMs, offering a new direction to advance their capabilities. All code and pre-trained models are available at https://www.github.com/samblouir/birdie, with support for JAX and PyTorch.

  • 4 authors
·
Nov 1, 2024

Combiner: Full Attention Transformer with Sparse Computation Cost

Transformers provide a class of expressive architectures that are extremely effective for sequence modeling. However, the key limitation of transformers is their quadratic memory and time complexity O(L^2) with respect to the sequence length in attention layers, which restricts application in extremely long sequences. Most existing approaches leverage sparsity or low-rank assumptions in the attention matrix to reduce cost, but sacrifice expressiveness. Instead, we propose Combiner, which provides full attention capability in each attention head while maintaining low computation and memory complexity. The key idea is to treat the self-attention mechanism as a conditional expectation over embeddings at each location, and approximate the conditional distribution with a structured factorization. Each location can attend to all other locations, either via direct attention, or through indirect attention to abstractions, which are again conditional expectations of embeddings from corresponding local regions. We show that most sparse attention patterns used in existing sparse transformers are able to inspire the design of such factorization for full attention, resulting in the same sub-quadratic cost (O(Llog(L)) or O(LL)). Combiner is a drop-in replacement for attention layers in existing transformers and can be easily implemented in common frameworks. An experimental evaluation on both autoregressive and bidirectional sequence tasks demonstrates the effectiveness of this approach, yielding state-of-the-art results on several image and text modeling tasks.

  • 7 authors
·
Jul 12, 2021

Attention as an RNN

The advent of Transformers marked a significant breakthrough in sequence modelling, providing a highly performant architecture capable of leveraging GPU parallelism. However, Transformers are computationally expensive at inference time, limiting their applications, particularly in low-resource settings (e.g., mobile and embedded devices). Addressing this, we (1) begin by showing that attention can be viewed as a special Recurrent Neural Network (RNN) with the ability to compute its many-to-one RNN output efficiently. We then (2) show that popular attention-based models such as Transformers can be viewed as RNN variants. However, unlike traditional RNNs (e.g., LSTMs), these models cannot be updated efficiently with new tokens, an important property in sequence modelling. Tackling this, we (3) introduce a new efficient method of computing attention's many-to-many RNN output based on the parallel prefix scan algorithm. Building on the new attention formulation, we (4) introduce Aaren, an attention-based module that can not only (i) be trained in parallel (like Transformers) but also (ii) be updated efficiently with new tokens, requiring only constant memory for inferences (like traditional RNNs). Empirically, we show Aarens achieve comparable performance to Transformers on 38 datasets spread across four popular sequential problem settings: reinforcement learning, event forecasting, time series classification, and time series forecasting tasks while being more time and memory-efficient.

  • 6 authors
·
May 22, 2024 1

Long-term Recurrent Convolutional Networks for Visual Recognition and Description

Models based on deep convolutional networks have dominated recent image interpretation tasks; we investigate whether models which are also recurrent, or "temporally deep", are effective for tasks involving sequences, visual and otherwise. We develop a novel recurrent convolutional architecture suitable for large-scale visual learning which is end-to-end trainable, and demonstrate the value of these models on benchmark video recognition tasks, image description and retrieval problems, and video narration challenges. In contrast to current models which assume a fixed spatio-temporal receptive field or simple temporal averaging for sequential processing, recurrent convolutional models are "doubly deep"' in that they can be compositional in spatial and temporal "layers". Such models may have advantages when target concepts are complex and/or training data are limited. Learning long-term dependencies is possible when nonlinearities are incorporated into the network state updates. Long-term RNN models are appealing in that they directly can map variable-length inputs (e.g., video frames) to variable length outputs (e.g., natural language text) and can model complex temporal dynamics; yet they can be optimized with backpropagation. Our recurrent long-term models are directly connected to modern visual convnet models and can be jointly trained to simultaneously learn temporal dynamics and convolutional perceptual representations. Our results show such models have distinct advantages over state-of-the-art models for recognition or generation which are separately defined and/or optimized.

  • 7 authors
·
Nov 17, 2014

Stuffed Mamba: State Collapse and State Capacity of RNN-Based Long-Context Modeling

One essential advantage of recurrent neural networks (RNNs) over transformer-based language models is their linear computational complexity concerning the sequence length, which makes them much faster in handling long sequences during inference. However, most publicly available RNNs (e.g., Mamba and RWKV) are trained on sequences with less than 10K tokens, and their effectiveness in longer contexts remains largely unsatisfying so far. In this paper, we study the cause of the inability to process long context for RNNs and suggest critical mitigations. We examine two practical concerns when applying state-of-the-art RNNs to long contexts: (1) the inability to extrapolate to inputs longer than the training length and (2) the upper bound of memory capacity. Addressing the first concern, we first investigate *state collapse* (SC), a phenomenon that causes severe performance degradation on sequence lengths not encountered during training. With controlled experiments, we attribute this to overfitting due to the recurrent state being overparameterized for the training length. For the second concern, we train a series of Mamba-2 models on long documents to empirically estimate the recurrent state capacity in language modeling and passkey retrieval. Then, three SC mitigation methods are proposed to improve Mamba-2's length generalizability, allowing the model to process more than 1M tokens without SC. We also find that the recurrent state capacity in passkey retrieval scales exponentially to the state size, and we empirically train a Mamba-2 370M with near-perfect passkey retrieval accuracy on 256K context length. This suggests a promising future for RNN-based long-context modeling.

  • 6 authors
·
Oct 9, 2024 3

Investigating Sparsity in Recurrent Neural Networks

In the past few years, neural networks have evolved from simple Feedforward Neural Networks to more complex neural networks, such as Convolutional Neural Networks and Recurrent Neural Networks. Where CNNs are a perfect fit for tasks where the sequence is not important such as image recognition, RNNs are useful when order is important such as machine translation. An increasing number of layers in a neural network is one way to improve its performance, but it also increases its complexity making it much more time and power-consuming to train. One way to tackle this problem is to introduce sparsity in the architecture of the neural network. Pruning is one of the many methods to make a neural network architecture sparse by clipping out weights below a certain threshold while keeping the performance near to the original. Another way is to generate arbitrary structures using random graphs and embed them between an input and output layer of an Artificial Neural Network. Many researchers in past years have focused on pruning mainly CNNs, while hardly any research is done for the same in RNNs. The same also holds in creating sparse architectures for RNNs by generating and embedding arbitrary structures. Therefore, this thesis focuses on investigating the effects of the before-mentioned two techniques on the performance of RNNs. We first describe the pruning of RNNs, its impact on the performance of RNNs, and the number of training epochs required to regain accuracy after the pruning is performed. Next, we continue with the creation and training of Sparse Recurrent Neural Networks and identify the relation between the performance and the graph properties of its underlying arbitrary structure. We perform these experiments on RNN with Tanh nonlinearity (RNN-Tanh), RNN with ReLU nonlinearity (RNN-ReLU), GRU, and LSTM. Finally, we analyze and discuss the results achieved from both the experiments.

  • 1 authors
·
Jul 30, 2024

Improving In-context Learning via Bidirectional Alignment

Large language models (LLMs) have shown impressive few-shot generalization on many tasks via in-context learning (ICL). Despite their success in showing such emergent abilities, the scale and complexity of larger models also lead to unprecedentedly high computational demands and deployment challenges. In reaction, researchers explore transferring the powerful capabilities of larger models to more efficient and compact models by typically aligning the output of smaller models with that of larger models. Existing methods either train smaller models on the generated outputs of larger models or to imitate their token-level probability distributions. However, these distillation methods pay little to no attention to the input part, which also plays a crucial role in ICL. Based on the finding that the performance of ICL is highly sensitive to the selection of demonstration examples, we propose Bidirectional Alignment (BiAlign) to fully leverage the models' preferences for ICL examples to improve the ICL abilities of smaller models. Specifically, we introduce the alignment of input preferences between smaller and larger models by incorporating a novel ranking loss, in addition to aligning the token-level output distribution. With extensive experiments and analysis, we demonstrate that BiAlign can consistently outperform existing baselines on a variety of tasks including language understanding, reasoning, and coding.

  • 4 authors
·
Dec 28, 2023

Universal Transformers

Recurrent neural networks (RNNs) sequentially process data by updating their state with each new data point, and have long been the de facto choice for sequence modeling tasks. However, their inherently sequential computation makes them slow to train. Feed-forward and convolutional architectures have recently been shown to achieve superior results on some sequence modeling tasks such as machine translation, with the added advantage that they concurrently process all inputs in the sequence, leading to easy parallelization and faster training times. Despite these successes, however, popular feed-forward sequence models like the Transformer fail to generalize in many simple tasks that recurrent models handle with ease, e.g. copying strings or even simple logical inference when the string or formula lengths exceed those observed at training time. We propose the Universal Transformer (UT), a parallel-in-time self-attentive recurrent sequence model which can be cast as a generalization of the Transformer model and which addresses these issues. UTs combine the parallelizability and global receptive field of feed-forward sequence models like the Transformer with the recurrent inductive bias of RNNs. We also add a dynamic per-position halting mechanism and find that it improves accuracy on several tasks. In contrast to the standard Transformer, under certain assumptions, UTs can be shown to be Turing-complete. Our experiments show that UTs outperform standard Transformers on a wide range of algorithmic and language understanding tasks, including the challenging LAMBADA language modeling task where UTs achieve a new state of the art, and machine translation where UTs achieve a 0.9 BLEU improvement over Transformers on the WMT14 En-De dataset.

  • 5 authors
·
Jul 10, 2018

Utilizing BERT for Information Retrieval: Survey, Applications, Resources, and Challenges

Recent years have witnessed a substantial increase in the use of deep learning to solve various natural language processing (NLP) problems. Early deep learning models were constrained by their sequential or unidirectional nature, such that they struggled to capture the contextual relationships across text inputs. The introduction of bidirectional encoder representations from transformers (BERT) leads to a robust encoder for the transformer model that can understand the broader context and deliver state-of-the-art performance across various NLP tasks. This has inspired researchers and practitioners to apply BERT to practical problems, such as information retrieval (IR). A survey that focuses on a comprehensive analysis of prevalent approaches that apply pretrained transformer encoders like BERT to IR can thus be useful for academia and the industry. In light of this, we revisit a variety of BERT-based methods in this survey, cover a wide range of techniques of IR, and group them into six high-level categories: (i) handling long documents, (ii) integrating semantic information, (iii) balancing effectiveness and efficiency, (iv) predicting the weights of terms, (v) query expansion, and (vi) document expansion. We also provide links to resources, including datasets and toolkits, for BERT-based IR systems. A key highlight of our survey is the comparison between BERT's encoder-based models and the latest generative Large Language Models (LLMs), such as ChatGPT, which rely on decoders. Despite the popularity of LLMs, we find that for specific tasks, finely tuned BERT encoders still outperform, and at a lower deployment cost. Finally, we summarize the comprehensive outcomes of the survey and suggest directions for future research in the area.

  • 7 authors
·
Feb 18, 2024

Small Language Model Makes an Effective Long Text Extractor

Named Entity Recognition (NER) is a fundamental problem in natural language processing (NLP). However, the task of extracting longer entity spans (e.g., awards) from extended texts (e.g., homepages) is barely explored. Current NER methods predominantly fall into two categories: span-based methods and generation-based methods. Span-based methods require the enumeration of all possible token-pair spans, followed by classification on each span, resulting in substantial redundant computations and excessive GPU memory usage. In contrast, generation-based methods involve prompting or fine-tuning large language models (LLMs) to adapt to downstream NER tasks. However, these methods struggle with the accurate generation of longer spans and often incur significant time costs for effective fine-tuning. To address these challenges, this paper introduces a lightweight span-based NER method called SeNER, which incorporates a bidirectional arrow attention mechanism coupled with LogN-Scaling on the [CLS] token to embed long texts effectively, and comprises a novel bidirectional sliding-window plus-shaped attention (BiSPA) mechanism to reduce redundant candidate token-pair spans significantly and model interactions between token-pair spans simultaneously. Extensive experiments demonstrate that our method achieves state-of-the-art extraction accuracy on three long NER datasets and is capable of extracting entities from long texts in a GPU-memory-friendly manner. Code: https://github.com/THUDM/scholar-profiling/tree/main/sener

  • 3 authors
·
Feb 11

RecurrentGPT: Interactive Generation of (Arbitrarily) Long Text

The fixed-size context of Transformer makes GPT models incapable of generating arbitrarily long text. In this paper, we introduce RecurrentGPT, a language-based simulacrum of the recurrence mechanism in RNNs. RecurrentGPT is built upon a large language model (LLM) such as ChatGPT and uses natural language to simulate the Long Short-Term Memory mechanism in an LSTM. At each timestep, RecurrentGPT generates a paragraph of text and updates its language-based long-short term memory stored on the hard drive and the prompt, respectively. This recurrence mechanism enables RecurrentGPT to generate texts of arbitrary length without forgetting. Since human users can easily observe and edit the natural language memories, RecurrentGPT is interpretable and enables interactive generation of long text. RecurrentGPT is an initial step towards next-generation computer-assisted writing systems beyond local editing suggestions. In addition to producing AI-generated content (AIGC), we also demonstrate the possibility of using RecurrentGPT as an interactive fiction that directly interacts with consumers. We call this usage of generative models by ``AI As Contents'' (AIAC), which we believe is the next form of conventional AIGC. We further demonstrate the possibility of using RecurrentGPT to create personalized interactive fiction that directly interacts with readers instead of interacting with writers. More broadly, RecurrentGPT demonstrates the utility of borrowing ideas from popular model designs in cognitive science and deep learning for prompting LLMs. Our code is available at https://github.com/aiwaves-cn/RecurrentGPT and an online demo is available at https://www.aiwaves.org/recurrentgpt.

  • 8 authors
·
May 22, 2023 2

Causal2Vec: Improving Decoder-only LLMs as Versatile Embedding Models

Decoder-only large language models (LLMs) are increasingly used to build embedding models that effectively encode the semantic information of natural language texts into dense vector representations for various embedding tasks. However, many existing methods primarily focus on removing the causal attention mask in LLMs to enable bidirectional attention, potentially undermining the model's ability to extract semantic information acquired during pretraining. Additionally, leading unidirectional approaches often rely on extra input text to overcome the inherent limitations of causal attention, inevitably increasing computational costs. In this work, we propose Causal2Vec, a general-purpose embedding model tailored to enhance the performance of decoder-only LLMs without altering their original architectures or introducing significant computational overhead. Specifically, we first employ a lightweight BERT-style model to pre-encode the input text into a single Contextual token, which is then prepended to the LLM's input sequence, allowing each token to capture contextualized information even without attending to future tokens. Furthermore, to mitigate the recency bias introduced by last-token pooling and help LLMs better leverage the semantic information encoded in the Contextual token, we concatenate the last hidden states of Contextual and EOS tokens as the final text embedding. In practice, Causal2Vec achieves state-of-the-art performance on the Massive Text Embeddings Benchmark (MTEB) among models trained solely on publicly available retrieval datasets, while reducing the required sequence length by up to 85% and inference time by up to 82% compared to best-performing methods.

  • 3 authors
·
Jul 31

A Novel Predictive-Coding-Inspired Variational RNN Model for Online Prediction and Recognition

This study introduces PV-RNN, a novel variational RNN inspired by the predictive-coding ideas. The model learns to extract the probabilistic structures hidden in fluctuating temporal patterns by dynamically changing the stochasticity of its latent states. Its architecture attempts to address two major concerns of variational Bayes RNNs: how can latent variables learn meaningful representations and how can the inference model transfer future observations to the latent variables. PV-RNN does both by introducing adaptive vectors mirroring the training data, whose values can then be adapted differently during evaluation. Moreover, prediction errors during backpropagation, rather than external inputs during the forward computation, are used to convey information to the network about the external data. For testing, we introduce error regression for predicting unseen sequences as inspired by predictive coding that leverages those mechanisms. The model introduces a weighting parameter, the meta-prior, to balance the optimization pressure placed on two terms of a lower bound on the marginal likelihood of the sequential data. We test the model on two datasets with probabilistic structures and show that with high values of the meta-prior the network develops deterministic chaos through which the data's randomness is imitated. For low values, the model behaves as a random process. The network performs best on intermediate values, and is able to capture the latent probabilistic structure with good generalization. Analyzing the meta-prior's impact on the network allows to precisely study the theoretical value and practical benefits of incorporating stochastic dynamics in our model. We demonstrate better prediction performance on a robot imitation task with our model using error regression compared to a standard variational Bayes model lacking such a procedure.

  • 2 authors
·
Nov 4, 2018

pLSTM: parallelizable Linear Source Transition Mark networks

Modern recurrent architectures, such as xLSTM and Mamba, have recently challenged the Transformer in language modeling. However, their structure constrains their applicability to sequences only or requires processing multi-dimensional data structures, such as images or molecular graphs, in a pre-defined sequential order. In contrast, Multi-Dimensional RNNs (MDRNNs) are well suited for data with a higher level structure, like 2D grids, trees, and directed acyclic graphs (DAGs). In this work, we extend the notion of multi-dimensionality to linear RNNs. We introduce parallelizable Linear Source Transition Mark networks (pLSTMs) using Source, Transition, and Mark gates that act on the line graph of a general DAG. This enables parallelization in analogy to parallel associative scans and the chunkwise-recurrent form of sequential linear RNNs, but for DAGs. For regular grids (1D and 2D), like images, this scheme can be efficiently implemented using einsum operations, concatenations, and padding in logarithmic time. pLSTMs tackle the vanishing/exploding activation/gradient problem for long distances in DAGs via two distinct modes: a directed propagation mode (P-mode) and a diffusive distribution mode (D-mode). To showcase the long-range capabilities of pLSTM, we introduce arrow-pointing extrapolation as a synthetic computer vision task that contains long-distance directional information. We demonstrate that pLSTMs generalize well to larger image sizes, whereas Transformers struggle to extrapolate. On established molecular graph and computer vision benchmarks, pLSTMs also show strong performance. Code and Datasets are available at: https://github.com/ml-jku/plstm_experiments.

  • 5 authors
·
Jun 13 2

MaTVLM: Hybrid Mamba-Transformer for Efficient Vision-Language Modeling

With the advancement of RNN models with linear complexity, the quadratic complexity challenge of transformers has the potential to be overcome. Notably, the emerging Mamba-2 has demonstrated competitive performance, bridging the gap between RNN models and transformers. However, due to sequential processing and vanishing gradients, RNN models struggle to capture long-range dependencies, limiting contextual understanding. This results in slow convergence, high resource demands, and poor performance on downstream understanding and complex reasoning tasks. In this work, we present a hybrid model MaTVLM by substituting a portion of the transformer decoder layers in a pre-trained VLM with Mamba-2 layers. Leveraging the inherent relationship between attention and Mamba-2, we initialize Mamba-2 with corresponding attention weights to accelerate convergence. Subsequently, we employ a single-stage distillation process, using the pre-trained VLM as the teacher model to transfer knowledge to the MaTVLM, further enhancing convergence speed and performance. Furthermore, we investigate the impact of differential distillation loss within our training framework. We evaluate the MaTVLM on multiple benchmarks, demonstrating competitive performance against the teacher model and existing VLMs while surpassing both Mamba-based VLMs and models of comparable parameter scales. Remarkably, the MaTVLM achieves up to 3.6x faster inference than the teacher model while reducing GPU memory consumption by 27.5%, all without compromising performance. Code and models are released at http://github.com/hustvl/MaTVLM.

  • 4 authors
·
Mar 17 2

Next Block Prediction: Video Generation via Semi-Autoregressive Modeling

Next-Token Prediction (NTP) is a de facto approach for autoregressive (AR) video generation, but it suffers from suboptimal unidirectional dependencies and slow inference speed. In this work, we propose a semi-autoregressive (semi-AR) framework, called Next-Block Prediction (NBP), for video generation. By uniformly decomposing video content into equal-sized blocks (e.g., rows or frames), we shift the generation unit from individual tokens to blocks, allowing each token in the current block to simultaneously predict the corresponding token in the next block. Unlike traditional AR modeling, our framework employs bidirectional attention within each block, enabling tokens to capture more robust spatial dependencies. By predicting multiple tokens in parallel, NBP models significantly reduce the number of generation steps, leading to faster and more efficient inference. Our model achieves FVD scores of 103.3 on UCF101 and 25.5 on K600, outperforming the vanilla NTP model by an average of 4.4. Furthermore, thanks to the reduced number of inference steps, the NBP model generates 8.89 frames (128x128 resolution) per second, achieving an 11x speedup. We also explored model scales ranging from 700M to 3B parameters, observing significant improvements in generation quality, with FVD scores dropping from 103.3 to 55.3 on UCF101 and from 25.5 to 19.5 on K600, demonstrating the scalability of our approach.

  • 4 authors
·
Feb 11 2

Pointer Networks

We introduce a new neural architecture to learn the conditional probability of an output sequence with elements that are discrete tokens corresponding to positions in an input sequence. Such problems cannot be trivially addressed by existent approaches such as sequence-to-sequence and Neural Turing Machines, because the number of target classes in each step of the output depends on the length of the input, which is variable. Problems such as sorting variable sized sequences, and various combinatorial optimization problems belong to this class. Our model solves the problem of variable size output dictionaries using a recently proposed mechanism of neural attention. It differs from the previous attention attempts in that, instead of using attention to blend hidden units of an encoder to a context vector at each decoder step, it uses attention as a pointer to select a member of the input sequence as the output. We call this architecture a Pointer Net (Ptr-Net). We show Ptr-Nets can be used to learn approximate solutions to three challenging geometric problems -- finding planar convex hulls, computing Delaunay triangulations, and the planar Travelling Salesman Problem -- using training examples alone. Ptr-Nets not only improve over sequence-to-sequence with input attention, but also allow us to generalize to variable size output dictionaries. We show that the learnt models generalize beyond the maximum lengths they were trained on. We hope our results on these tasks will encourage a broader exploration of neural learning for discrete problems.

  • 3 authors
·
Jun 9, 2015

FlashRNN: Optimizing Traditional RNNs on Modern Hardware

While Transformers and other sequence-parallelizable neural network architectures seem like the current state of the art in sequence modeling, they specifically lack state-tracking capabilities. These are important for time-series tasks and logical reasoning. Traditional RNNs like LSTMs and GRUs, as well as modern variants like sLSTM do have these capabilities at the cost of strictly sequential processing. While this is often seen as a strong limitation, we show how fast these networks can get with our hardware-optimization FlashRNN in Triton and CUDA, optimizing kernels to the register level on modern GPUs. We extend traditional RNNs with a parallelization variant that processes multiple RNNs of smaller hidden state in parallel, similar to the head-wise processing in Transformers. To enable flexibility on different GPU variants, we introduce a new optimization framework for hardware-internal cache sizes, memory and compute handling. It models the hardware in a setting using polyhedral-like constraints, including the notion of divisibility. This speeds up the solution process in our ConstrINT library for general integer constraint satisfaction problems (integer CSPs). We show that our kernels can achieve 50x speed-ups over a vanilla PyTorch implementation and allow 40x larger hidden sizes compared to our Triton implementation. Our open-source kernels and the optimization library are released here to boost research in the direction of state-tracking enabled RNNs and sequence modeling: https://github.com/NX-AI/flashrnn

  • 3 authors
·
Dec 10, 2024

arXivEdits: Understanding the Human Revision Process in Scientific Writing

Scientific publications are the primary means to communicate research discoveries, where the writing quality is of crucial importance. However, prior work studying the human editing process in this domain mainly focused on the abstract or introduction sections, resulting in an incomplete picture. In this work, we provide a complete computational framework for studying text revision in scientific writing. We first introduce arXivEdits, a new annotated corpus of 751 full papers from arXiv with gold sentence alignment across their multiple versions of revision, as well as fine-grained span-level edits and their underlying intentions for 1,000 sentence pairs. It supports our data-driven analysis to unveil the common strategies practiced by researchers for revising their papers. To scale up the analysis, we also develop automatic methods to extract revision at document-, sentence-, and word-levels. A neural CRF sentence alignment model trained on our corpus achieves 93.8 F1, enabling the reliable matching of sentences between different versions. We formulate the edit extraction task as a span alignment problem, and our proposed method extracts more fine-grained and explainable edits, compared to the commonly used diff algorithm. An intention classifier trained on our dataset achieves 78.9 F1 on the fine-grained intent classification task. Our data and system are released at tiny.one/arxivedits.

  • 3 authors
·
Oct 26, 2022

Neighboring Autoregressive Modeling for Efficient Visual Generation

Visual autoregressive models typically adhere to a raster-order ``next-token prediction" paradigm, which overlooks the spatial and temporal locality inherent in visual content. Specifically, visual tokens exhibit significantly stronger correlations with their spatially or temporally adjacent tokens compared to those that are distant. In this paper, we propose Neighboring Autoregressive Modeling (NAR), a novel paradigm that formulates autoregressive visual generation as a progressive outpainting procedure, following a near-to-far ``next-neighbor prediction" mechanism. Starting from an initial token, the remaining tokens are decoded in ascending order of their Manhattan distance from the initial token in the spatial-temporal space, progressively expanding the boundary of the decoded region. To enable parallel prediction of multiple adjacent tokens in the spatial-temporal space, we introduce a set of dimension-oriented decoding heads, each predicting the next token along a mutually orthogonal dimension. During inference, all tokens adjacent to the decoded tokens are processed in parallel, substantially reducing the model forward steps for generation. Experiments on ImageNet256times 256 and UCF101 demonstrate that NAR achieves 2.4times and 8.6times higher throughput respectively, while obtaining superior FID/FVD scores for both image and video generation tasks compared to the PAR-4X approach. When evaluating on text-to-image generation benchmark GenEval, NAR with 0.8B parameters outperforms Chameleon-7B while using merely 0.4 of the training data. Code is available at https://github.com/ThisisBillhe/NAR.

  • 7 authors
·
Mar 12 3

BAMM: Bidirectional Autoregressive Motion Model

Generating human motion from text has been dominated by denoising motion models either through diffusion or generative masking process. However, these models face great limitations in usability by requiring prior knowledge of the motion length. Conversely, autoregressive motion models address this limitation by adaptively predicting motion endpoints, at the cost of degraded generation quality and editing capabilities. To address these challenges, we propose Bidirectional Autoregressive Motion Model (BAMM), a novel text-to-motion generation framework. BAMM consists of two key components: (1) a motion tokenizer that transforms 3D human motion into discrete tokens in latent space, and (2) a masked self-attention transformer that autoregressively predicts randomly masked tokens via a hybrid attention masking strategy. By unifying generative masked modeling and autoregressive modeling, BAMM captures rich and bidirectional dependencies among motion tokens, while learning the probabilistic mapping from textual inputs to motion outputs with dynamically-adjusted motion sequence length. This feature enables BAMM to simultaneously achieving high-quality motion generation with enhanced usability and built-in motion editability. Extensive experiments on HumanML3D and KIT-ML datasets demonstrate that BAMM surpasses current state-of-the-art methods in both qualitative and quantitative measures. Our project page is available at https://exitudio.github.io/BAMM-page

  • 6 authors
·
Mar 28, 2024

A Comprehensive Survey on Pretrained Foundation Models: A History from BERT to ChatGPT

Pretrained Foundation Models (PFMs) are regarded as the foundation for various downstream tasks with different data modalities. A PFM (e.g., BERT, ChatGPT, and GPT-4) is trained on large-scale data which provides a reasonable parameter initialization for a wide range of downstream applications. BERT learns bidirectional encoder representations from Transformers, which are trained on large datasets as contextual language models. Similarly, the generative pretrained transformer (GPT) method employs Transformers as the feature extractor and is trained using an autoregressive paradigm on large datasets. Recently, ChatGPT shows promising success on large language models, which applies an autoregressive language model with zero shot or few shot prompting. The remarkable achievements of PFM have brought significant breakthroughs to various fields of AI. Numerous studies have proposed different methods, raising the demand for an updated survey. This study provides a comprehensive review of recent research advancements, challenges, and opportunities for PFMs in text, image, graph, as well as other data modalities. The review covers the basic components and existing pretraining methods used in natural language processing, computer vision, and graph learning. Additionally, it explores advanced PFMs used for different data modalities and unified PFMs that consider data quality and quantity. The review also discusses research related to the fundamentals of PFMs, such as model efficiency and compression, security, and privacy. Finally, the study provides key implications, future research directions, challenges, and open problems in the field of PFMs. Overall, this survey aims to shed light on the research of the PFMs on scalability, security, logical reasoning ability, cross-domain learning ability, and the user-friendly interactive ability for artificial general intelligence.

  • 19 authors
·
Feb 18, 2023

Self-Attentive Sequential Recommendation

Sequential dynamics are a key feature of many modern recommender systems, which seek to capture the `context' of users' activities on the basis of actions they have performed recently. To capture such patterns, two approaches have proliferated: Markov Chains (MCs) and Recurrent Neural Networks (RNNs). Markov Chains assume that a user's next action can be predicted on the basis of just their last (or last few) actions, while RNNs in principle allow for longer-term semantics to be uncovered. Generally speaking, MC-based methods perform best in extremely sparse datasets, where model parsimony is critical, while RNNs perform better in denser datasets where higher model complexity is affordable. The goal of our work is to balance these two goals, by proposing a self-attention based sequential model (SASRec) that allows us to capture long-term semantics (like an RNN), but, using an attention mechanism, makes its predictions based on relatively few actions (like an MC). At each time step, SASRec seeks to identify which items are `relevant' from a user's action history, and use them to predict the next item. Extensive empirical studies show that our method outperforms various state-of-the-art sequential models (including MC/CNN/RNN-based approaches) on both sparse and dense datasets. Moreover, the model is an order of magnitude more efficient than comparable CNN/RNN-based models. Visualizations on attention weights also show how our model adaptively handles datasets with various density, and uncovers meaningful patterns in activity sequences.

  • 2 authors
·
Aug 20, 2018

Flow Equivariant Recurrent Neural Networks

Data arrives at our senses as a continuous stream, smoothly transforming from one instant to the next. These smooth transformations can be viewed as continuous symmetries of the environment that we inhabit, defining equivalence relations between stimuli over time. In machine learning, neural network architectures that respect symmetries of their data are called equivariant and have provable benefits in terms of generalization ability and sample efficiency. To date, however, equivariance has been considered only for static transformations and feed-forward networks, limiting its applicability to sequence models, such as recurrent neural networks (RNNs), and corresponding time-parameterized sequence transformations. In this work, we extend equivariant network theory to this regime of `flows' -- one-parameter Lie subgroups capturing natural transformations over time, such as visual motion. We begin by showing that standard RNNs are generally not flow equivariant: their hidden states fail to transform in a geometrically structured manner for moving stimuli. We then show how flow equivariance can be introduced, and demonstrate that these models significantly outperform their non-equivariant counterparts in terms of training speed, length generalization, and velocity generalization, on both next step prediction and sequence classification. We present this work as a first step towards building sequence models that respect the time-parameterized symmetries which govern the world around us.

  • 1 authors
·
Jul 19 1

TS-LSTM and Temporal-Inception: Exploiting Spatiotemporal Dynamics for Activity Recognition

Recent two-stream deep Convolutional Neural Networks (ConvNets) have made significant progress in recognizing human actions in videos. Despite their success, methods extending the basic two-stream ConvNet have not systematically explored possible network architectures to further exploit spatiotemporal dynamics within video sequences. Further, such networks often use different baseline two-stream networks. Therefore, the differences and the distinguishing factors between various methods using Recurrent Neural Networks (RNN) or convolutional networks on temporally-constructed feature vectors (Temporal-ConvNet) are unclear. In this work, we first demonstrate a strong baseline two-stream ConvNet using ResNet-101. We use this baseline to thoroughly examine the use of both RNNs and Temporal-ConvNets for extracting spatiotemporal information. Building upon our experimental results, we then propose and investigate two different networks to further integrate spatiotemporal information: 1) temporal segment RNN and 2) Inception-style Temporal-ConvNet. We demonstrate that using both RNNs (using LSTMs) and Temporal-ConvNets on spatiotemporal feature matrices are able to exploit spatiotemporal dynamics to improve the overall performance. However, each of these methods require proper care to achieve state-of-the-art performance; for example, LSTMs require pre-segmented data or else they cannot fully exploit temporal information. Our analysis identifies specific limitations for each method that could form the basis of future work. Our experimental results on UCF101 and HMDB51 datasets achieve state-of-the-art performances, 94.1% and 69.0%, respectively, without requiring extensive temporal augmentation.

  • 4 authors
·
Mar 30, 2017

You Only Scan Once: Efficient Multi-dimension Sequential Modeling with LightNet

Linear attention mechanisms have gained prominence in causal language models due to their linear computational complexity and enhanced speed. However, the inherent decay mechanism in linear attention presents challenges when applied to multi-dimensional sequence modeling tasks, such as image processing and multi-modal learning. In these scenarios, the utilization of sequential scanning to establish a global receptive field necessitates multiple scans for multi-dimensional data, thereby leading to inefficiencies. This paper identifies the inefficiency caused by a multiplicative linear recurrence and proposes an efficient alternative additive linear recurrence to avoid the issue, as it can handle multi-dimensional data within a single scan. We further develop an efficient multi-dimensional sequential modeling framework called LightNet based on the new recurrence. Moreover, we present two new multi-dimensional linear relative positional encoding methods, MD-TPE and MD-LRPE to enhance the model's ability to discern positional information in multi-dimensional scenarios. Our empirical evaluations across various tasks, including image classification, image generation, bidirectional language modeling, and autoregressive language modeling, demonstrate the efficacy of LightNet, showcasing its potential as a versatile and efficient solution for multi-dimensional sequential modeling.

  • 7 authors
·
May 31, 2024

Recursive Speculative Decoding: Accelerating LLM Inference via Sampling Without Replacement

Speculative decoding is an inference-acceleration method for large language models (LLMs) where a small language model generates a draft-token sequence which is further verified by the target LLM in parallel. Recent works have advanced this method by establishing a draft-token tree, achieving superior performance over a single-sequence speculative decoding. However, those works independently generate tokens at each level of the tree, not leveraging the tree's entire diversifiability. Besides, their empirical superiority has been shown for fixed length of sequences, implicitly granting more computational resource to LLM for the tree-based methods. None of the existing works has conducted empirical studies with fixed target computational budgets despite its importance to resource-bounded devices. We present Recursive Speculative Decoding (RSD), a novel tree-based method that samples draft tokens without replacement and maximizes the diversity of the tree. During RSD's drafting, the tree is built by either Gumbel-Top-k trick that draws tokens without replacement in parallel or Stochastic Beam Search that samples sequences without replacement while early-truncating unlikely draft sequences and reducing the computational cost of LLM. We empirically evaluate RSD with Llama 2 and OPT models, showing that RSD outperforms the baseline methods, consistently for fixed draft sequence length and in most cases for fixed computational budgets at LLM.

  • 6 authors
·
Feb 21, 2024

FRCRN: Boosting Feature Representation using Frequency Recurrence for Monaural Speech Enhancement

Convolutional recurrent networks (CRN) integrating a convolutional encoder-decoder (CED) structure and a recurrent structure have achieved promising performance for monaural speech enhancement. However, feature representation across frequency context is highly constrained due to limited receptive fields in the convolutions of CED. In this paper, we propose a convolutional recurrent encoder-decoder (CRED) structure to boost feature representation along the frequency axis. The CRED applies frequency recurrence on 3D convolutional feature maps along the frequency axis following each convolution, therefore, it is capable of catching long-range frequency correlations and enhancing feature representations of speech inputs. The proposed frequency recurrence is realized efficiently using a feedforward sequential memory network (FSMN). Besides the CRED, we insert two stacked FSMN layers between the encoder and the decoder to model further temporal dynamics. We name the proposed framework as Frequency Recurrent CRN (FRCRN). We design FRCRN to predict complex Ideal Ratio Mask (cIRM) in complex-valued domain and optimize FRCRN using both time-frequency-domain and time-domain losses. Our proposed approach achieved state-of-the-art performance on wideband benchmark datasets and achieved 2nd place for the real-time fullband track in terms of Mean Opinion Score (MOS) and Word Accuracy (WAcc) in the ICASSP 2022 Deep Noise Suppression (DNS) challenge (https://github.com/alibabasglab/FRCRN).

  • 4 authors
·
Jun 15, 2022

BiPO: Bidirectional Partial Occlusion Network for Text-to-Motion Synthesis

Generating natural and expressive human motions from textual descriptions is challenging due to the complexity of coordinating full-body dynamics and capturing nuanced motion patterns over extended sequences that accurately reflect the given text. To address this, we introduce BiPO, Bidirectional Partial Occlusion Network for Text-to-Motion Synthesis, a novel model that enhances text-to-motion synthesis by integrating part-based generation with a bidirectional autoregressive architecture. This integration allows BiPO to consider both past and future contexts during generation while enhancing detailed control over individual body parts without requiring ground-truth motion length. To relax the interdependency among body parts caused by the integration, we devise the Partial Occlusion technique, which probabilistically occludes the certain motion part information during training. In our comprehensive experiments, BiPO achieves state-of-the-art performance on the HumanML3D dataset, outperforming recent methods such as ParCo, MoMask, and BAMM in terms of FID scores and overall motion quality. Notably, BiPO excels not only in the text-to-motion generation task but also in motion editing tasks that synthesize motion based on partially generated motion sequences and textual descriptions. These results reveal the BiPO's effectiveness in advancing text-to-motion synthesis and its potential for practical applications.

  • 5 authors
·
Nov 28, 2024

GottBERT: a pure German Language Model

Lately, pre-trained language models advanced the field of natural language processing (NLP). The introduction of Bidirectional Encoders for Transformers (BERT) and its optimized version RoBERTa have had significant impact and increased the relevance of pre-trained models. First, research in this field mainly started on English data followed by models trained with multilingual text corpora. However, current research shows that multilingual models are inferior to monolingual models. Currently, no German single language RoBERTa model is yet published, which we introduce in this work (GottBERT). The German portion of the OSCAR data set was used as text corpus. In an evaluation we compare its performance on the two Named Entity Recognition (NER) tasks Conll 2003 and GermEval 2014 as well as on the text classification tasks GermEval 2018 (fine and coarse) and GNAD with existing German single language BERT models and two multilingual ones. GottBERT was pre-trained related to the original RoBERTa model using fairseq. All downstream tasks were trained using hyperparameter presets taken from the benchmark of German BERT. The experiments were setup utilizing FARM. Performance was measured by the F_{1} score. GottBERT was successfully pre-trained on a 256 core TPU pod using the RoBERTa BASE architecture. Even without extensive hyper-parameter optimization, in all NER and one text classification task, GottBERT already outperformed all other tested German and multilingual models. In order to support the German NLP field, we publish GottBERT under the AGPLv3 license.

  • 5 authors
·
Dec 3, 2020

Hierarchical Masked Autoregressive Models with Low-Resolution Token Pivots

Autoregressive models have emerged as a powerful generative paradigm for visual generation. The current de-facto standard of next token prediction commonly operates over a single-scale sequence of dense image tokens, and is incapable of utilizing global context especially for early tokens prediction. In this paper, we introduce a new autoregressive design to model a hierarchy from a few low-resolution image tokens to the typical dense image tokens, and delve into a thorough hierarchical dependency across multi-scale image tokens. Technically, we present a Hierarchical Masked Autoregressive models (Hi-MAR) that pivot on low-resolution image tokens to trigger hierarchical autoregressive modeling in a multi-phase manner. Hi-MAR learns to predict a few image tokens in low resolution, functioning as intermediary pivots to reflect global structure, in the first phase. Such pivots act as the additional guidance to strengthen the next autoregressive modeling phase by shaping global structural awareness of typical dense image tokens. A new Diffusion Transformer head is further devised to amplify the global context among all tokens for mask token prediction. Extensive evaluations on both class-conditional and text-to-image generation tasks demonstrate that Hi-MAR outperforms typical AR baselines, while requiring fewer computational costs. Code is available at https://github.com/HiDream-ai/himar.

  • 7 authors
·
May 26

Hydra: Bidirectional State Space Models Through Generalized Matrix Mixers

A wide array of sequence models are built on a framework modeled after Transformers, comprising alternating sequence mixer and channel mixer layers. This paper studies a unifying matrix mixer view of sequence mixers that can be conceptualized as a linear map on the input sequence. This framework encompasses a broad range of well-known sequence models, including the self-attention of Transformers as well as recent strong alternatives such as structured state space models (SSMs), and allows understanding downstream characteristics such as efficiency and expressivity through properties of their structured matrix class. We identify a key axis of matrix parameterizations termed sequence alignment, which increases the flexibility and performance of matrix mixers, providing insights into the strong performance of Transformers and recent SSMs such as Mamba. Furthermore, the matrix mixer framework offers a systematic approach to developing sequence mixers with desired properties, allowing us to develop several new sub-quadratic sequence models. In particular, we propose a natural bidirectional extension of the Mamba model (Hydra), parameterized as a quasiseparable matrix mixer, which demonstrates superior performance over other sequence models including Transformers on non-causal tasks. As a drop-in replacement for attention layers, Hydra outperforms BERT by 0.8 points on the GLUE benchmark and ViT by 2% Top-1 accuracy on ImageNet.

  • 4 authors
·
Jul 13, 2024

In-Context Language Learning: Architectures and Algorithms

Large-scale neural language models exhibit a remarkable capacity for in-context learning (ICL): they can infer novel functions from datasets provided as input. Most of our current understanding of when and how ICL arises comes from LMs trained on extremely simple learning problems like linear regression and associative recall. There remains a significant gap between these model problems and the "real" ICL exhibited by LMs trained on large text corpora, which involves not just retrieval and function approximation but free-form generation of language and other structured outputs. In this paper, we study ICL through the lens of a new family of model problems we term in context language learning (ICLL). In ICLL, LMs are presented with a set of strings from a formal language, and must generate additional strings from the same language. We focus on in-context learning of regular languages generated by random finite automata. We evaluate a diverse set of neural sequence models (including several RNNs, Transformers, and state-space model variants) on regular ICLL tasks, aiming to answer three questions: (1) Which model classes are empirically capable of ICLL? (2) What algorithmic solutions do successful models implement to perform ICLL? (3) What architectural changes can improve ICLL in less performant models? We first show that Transformers significantly outperform neural sequence models with recurrent or convolutional representations on ICLL tasks. Next, we provide evidence that their ability to do so relies on specialized "n-gram heads" (higher-order variants of induction heads) that compute input-conditional next-token distributions. Finally, we show that hard-wiring these heads into neural models improves performance not just on ICLL, but natural language modeling -- improving the perplexity of 340M-parameter models by up to 1.14 points (6.7%) on the SlimPajama dataset.

  • 4 authors
·
Jan 23, 2024

Combining Recurrent, Convolutional, and Continuous-time Models with Linear State-Space Layers

Recurrent neural networks (RNNs), temporal convolutions, and neural differential equations (NDEs) are popular families of deep learning models for time-series data, each with unique strengths and tradeoffs in modeling power and computational efficiency. We introduce a simple sequence model inspired by control systems that generalizes these approaches while addressing their shortcomings. The Linear State-Space Layer (LSSL) maps a sequence u mapsto y by simply simulating a linear continuous-time state-space representation x = Ax + Bu, y = Cx + Du. Theoretically, we show that LSSL models are closely related to the three aforementioned families of models and inherit their strengths. For example, they generalize convolutions to continuous-time, explain common RNN heuristics, and share features of NDEs such as time-scale adaptation. We then incorporate and generalize recent theory on continuous-time memorization to introduce a trainable subset of structured matrices A that endow LSSLs with long-range memory. Empirically, stacking LSSL layers into a simple deep neural network obtains state-of-the-art results across time series benchmarks for long dependencies in sequential image classification, real-world healthcare regression tasks, and speech. On a difficult speech classification task with length-16000 sequences, LSSL outperforms prior approaches by 24 accuracy points, and even outperforms baselines that use hand-crafted features on 100x shorter sequences.

  • 7 authors
·
Oct 26, 2021

Croc: Pretraining Large Multimodal Models with Cross-Modal Comprehension

Recent advances in Large Language Models (LLMs) have catalyzed the development of Large Multimodal Models (LMMs). However, existing research primarily focuses on tuning language and image instructions, ignoring the critical pretraining phase where models learn to process textual and visual modalities jointly. In this paper, we propose a new pretraining paradigm for LMMs to enhance the visual comprehension capabilities of LLMs by introducing a novel cross-modal comprehension stage. Specifically, we design a dynamically learnable prompt token pool and employ the Hungarian algorithm to replace part of the original visual tokens with the most relevant prompt tokens. Then, we conceptualize visual tokens as analogous to a "foreign language" for the LLMs and propose a mixed attention mechanism with bidirectional visual attention and unidirectional textual attention to comprehensively enhance the understanding of visual tokens. Meanwhile, we integrate a detailed caption generation task, leveraging rich descriptions to further facilitate LLMs in understanding visual semantic information. After pretraining on 1.5 million publicly accessible data, we present a new foundation model called Croc. Experimental results demonstrate that Croc achieves new state-of-the-art performance on massive vision-language benchmarks. To support reproducibility and facilitate further research, we release the training code and pre-trained model weights at https://github.com/deepglint/Croc.

  • 11 authors
·
Oct 18, 2024

Recoding latent sentence representations -- Dynamic gradient-based activation modification in RNNs

In Recurrent Neural Networks (RNNs), encoding information in a suboptimal or erroneous way can impact the quality of representations based on later elements in the sequence and subsequently lead to wrong predictions and a worse model performance. In humans, challenging cases like garden path sentences (an instance of this being the infamous "The horse raced past the barn fell") can lead their language understanding astray. However, they are still able to correct their representation accordingly and recover when new information is encountered. Inspired by this, I propose an augmentation to standard RNNs in form of a gradient-based correction mechanism: This way I hope to enable such models to dynamically adapt their inner representation of a sentence, adding a way to correct deviations as soon as they occur. This could therefore lead to more robust models using more flexible representations, even during inference time. I conduct different experiments in the context of language modeling, where the impact of using such a mechanism is examined in detail. To this end, I look at modifications based on different kinds of time-dependent error signals and how they influence the model performance. Furthermore, this work contains a study of the model's confidence in its predictions during training and for challenging test samples and the effect of the manipulation thereof. Lastly, I also study the difference in behavior of these novel models compared to a standard LSTM baseline and investigate error cases in detail to identify points of future research. I show that while the proposed approach comes with promising theoretical guarantees and an appealing intuition, it is only able to produce minor improvements over the baseline due to challenges in its practical application and the efficacy of the tested model variants.

  • 1 authors
·
Jan 3, 2021

FlowState: Sampling Rate Invariant Time Series Forecasting

Foundation models (FMs) have transformed natural language processing, but their success has not yet translated to time series forecasting. Existing time series foundation models (TSFMs), often based on transformer variants, struggle with generalization across varying context and target lengths, lack adaptability to different sampling rates, and are computationally inefficient. We introduce FlowState, a novel TSFM architecture that addresses these challenges through two key innovations: a state space model (SSM) based encoder and a functional basis decoder. This design enables continuous-time modeling and dynamic time-scale adjustment, allowing FlowState to inherently generalize across all possible temporal resolutions, and dynamically adjust the forecasting horizons. In contrast to other state-of-the-art TSFMs, which require training data across all possible sampling rates to memorize patterns at each scale, FlowState inherently adapts its internal dynamics to the input scale, enabling smaller models, reduced data requirements, and improved efficiency. We further propose an efficient pretraining strategy that improves robustness and accelerates training. Despite being the smallest model, FlowState outperforms all other models and is state-of-the-art for the GIFT-ZS and the Chronos-ZS benchmarks. Ablation studies confirm the effectiveness of its components, and we demonstrate its unique ability to adapt online to varying input sampling rates.

  • 4 authors
·
Aug 7