Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeLinguistic Collapse: Neural Collapse in (Large) Language Models
Neural collapse (NC) is a phenomenon observed in classification tasks where top-layer representations collapse into their class means, which become equinorm, equiangular and aligned with the classifiers. These behaviors -- associated with generalization and robustness -- would manifest under specific conditions: models are trained towards zero loss, with noise-free labels belonging to balanced classes, which do not outnumber the model's hidden dimension. Recent studies have explored NC in the absence of one or more of these conditions to extend and capitalize on the associated benefits of ideal geometries. Language modeling presents a curious frontier, as training by token prediction constitutes a classification task where none of the conditions exist: the vocabulary is imbalanced and exceeds the embedding dimension; different tokens might correspond to similar contextual embeddings; and large language models (LLMs) in particular are typically only trained for a few epochs. This paper empirically investigates the impact of scaling the architectures and training of causal language models (CLMs) on their progression towards NC. We find that NC properties that develop with scaling are linked to generalization. Moreover, there is evidence of some relationship between NC and generalization independent of scale. Our work therefore underscores the generality of NC as it extends to the novel and more challenging setting of language modeling. Downstream, we seek to inspire further research on the phenomenon to deepen our understanding of LLMs -- and neural networks at large -- and improve existing architectures based on NC-related properties.
Inducing Neural Collapse in Deep Long-tailed Learning
Although deep neural networks achieve tremendous success on various classification tasks, the generalization ability drops sheer when training datasets exhibit long-tailed distributions. One of the reasons is that the learned representations (i.e. features) from the imbalanced datasets are less effective than those from balanced datasets. Specifically, the learned representation under class-balanced distribution will present the Neural Collapse (NC) phenomena. NC indicates the features from the same category are close to each other and from different categories are maximally distant, showing an optimal linear separable state of classification. However, the pattern differs on imbalanced datasets and is partially responsible for the reduced performance of the model. In this work, we propose two explicit feature regularization terms to learn high-quality representation for class-imbalanced data. With the proposed regularization, NC phenomena will appear under the class-imbalanced distribution, and the generalization ability can be significantly improved. Our method is easily implemented, highly effective, and can be plugged into most existing methods. The extensive experimental results on widely-used benchmarks show the effectiveness of our method
Neural Collapse in Deep Linear Networks: From Balanced to Imbalanced Data
Modern deep neural networks have achieved impressive performance on tasks from image classification to natural language processing. Surprisingly, these complex systems with massive amounts of parameters exhibit the same structural properties in their last-layer features and classifiers across canonical datasets when training until convergence. In particular, it has been observed that the last-layer features collapse to their class-means, and those class-means are the vertices of a simplex Equiangular Tight Frame (ETF). This phenomenon is known as Neural Collapse (NC). Recent papers have theoretically shown that NC emerges in the global minimizers of training problems with the simplified "unconstrained feature model". In this context, we take a step further and prove the NC occurrences in deep linear networks for the popular mean squared error (MSE) and cross entropy (CE) losses, showing that global solutions exhibit NC properties across the linear layers. Furthermore, we extend our study to imbalanced data for MSE loss and present the first geometric analysis of NC under bias-free setting. Our results demonstrate the convergence of the last-layer features and classifiers to a geometry consisting of orthogonal vectors, whose lengths depend on the amount of data in their corresponding classes. Finally, we empirically validate our theoretical analyses on synthetic and practical network architectures with both balanced and imbalanced scenarios.
MASIL: Towards Maximum Separable Class Representation for Few Shot Class Incremental Learning
Few Shot Class Incremental Learning (FSCIL) with few examples per class for each incremental session is the realistic setting of continual learning since obtaining large number of annotated samples is not feasible and cost effective. We present the framework MASIL as a step towards learning the maximal separable classifier. It addresses the common problem i.e forgetting of old classes and over-fitting to novel classes by learning the classifier weights to be maximally separable between classes forming a simplex Equiangular Tight Frame. We propose the idea of concept factorization explaining the collapsed features for base session classes in terms of concept basis and use these to induce classifier simplex for few shot classes. We further adds fine tuning to reduce any error occurred during factorization and train the classifier jointly on base and novel classes without retaining any base class samples in memory. Experimental results on miniImageNet, CIFAR-100 and CUB-200 demonstrate that MASIL outperforms all the benchmarks.
Symmetric Neural-Collapse Representations with Supervised Contrastive Loss: The Impact of ReLU and Batching
Supervised contrastive loss (SCL) is a competitive and often superior alternative to the cross-entropy loss for classification. While prior studies have demonstrated that both losses yield symmetric training representations under balanced data, this symmetry breaks under class imbalances. This paper presents an intriguing discovery: the introduction of a ReLU activation at the final layer effectively restores the symmetry in SCL-learned representations. We arrive at this finding analytically, by establishing that the global minimizers of an unconstrained features model with SCL loss and entry-wise non-negativity constraints form an orthogonal frame. Extensive experiments conducted across various datasets, architectures, and imbalance scenarios corroborate our finding. Importantly, our experiments reveal that the inclusion of the ReLU activation restores symmetry without compromising test accuracy. This constitutes the first geometry characterization of SCL under imbalances. Additionally, our analysis and experiments underscore the pivotal role of batch selection strategies in representation geometry. By proving necessary and sufficient conditions for mini-batch choices that ensure invariant symmetric representations, we introduce batch-binding as an efficient strategy that guarantees these conditions hold.
Perturbation Analysis of Neural Collapse
Training deep neural networks for classification often includes minimizing the training loss beyond the zero training error point. In this phase of training, a "neural collapse" behavior has been observed: the variability of features (outputs of the penultimate layer) of within-class samples decreases and the mean features of different classes approach a certain tight frame structure. Recent works analyze this behavior via idealized unconstrained features models where all the minimizers exhibit exact collapse. However, with practical networks and datasets, the features typically do not reach exact collapse, e.g., because deep layers cannot arbitrarily modify intermediate features that are far from being collapsed. In this paper, we propose a richer model that can capture this phenomenon by forcing the features to stay in the vicinity of a predefined features matrix (e.g., intermediate features). We explore the model in the small vicinity case via perturbation analysis and establish results that cannot be obtained by the previously studied models. For example, we prove reduction in the within-class variability of the optimized features compared to the predefined input features (via analyzing gradient flow on the "central-path" with minimal assumptions), analyze the minimizers in the near-collapse regime, and provide insights on the effect of regularization hyperparameters on the closeness to collapse. We support our theory with experiments in practical deep learning settings.
MaxSup: Overcoming Representation Collapse in Label Smoothing
Label Smoothing (LS) is widely adopted to curb overconfidence in neural network predictions and enhance generalization. However, previous research shows that LS can force feature representations into excessively tight clusters, eroding intra-class distinctions. More recent findings suggest that LS also induces overconfidence in misclassifications, yet the precise mechanism remained unclear. In this work, we decompose the loss term introduced by LS, revealing two key components: (i) a regularization term that functions only when the prediction is correct, and (ii) an error-enhancement term that emerges under misclassifications. This latter term compels the model to reinforce incorrect predictions with exaggerated certainty, further collapsing the feature space. To address these issues, we propose Max Suppression (MaxSup), which uniformly applies the intended regularization to both correct and incorrect predictions by penalizing the top-1 logit instead of the ground-truth logit. Through feature analyses, we show that MaxSup restores intra-class variation and sharpens inter-class boundaries. Extensive experiments on image classification and downstream tasks confirm that MaxSup is a more robust alternative to LS. Code is available at: https://github.com/ZhouYuxuanYX/Maximum-Suppression-Regularization.
Quantifying the Variability Collapse of Neural Networks
Recent studies empirically demonstrate the positive relationship between the transferability of neural networks and the within-class variation of the last layer features. The recently discovered Neural Collapse (NC) phenomenon provides a new perspective of understanding such last layer geometry of neural networks. In this paper, we propose a novel metric, named Variability Collapse Index (VCI), to quantify the variability collapse phenomenon in the NC paradigm. The VCI metric is well-motivated and intrinsically related to the linear probing loss on the last layer features. Moreover, it enjoys desired theoretical and empirical properties, including invariance under invertible linear transformations and numerical stability, that distinguishes it from previous metrics. Our experiments verify that VCI is indicative of the variability collapse and the transferability of pretrained neural networks.
Inducing Neural Collapse to a Fixed Hierarchy-Aware Frame for Reducing Mistake Severity
There is a recently discovered and intriguing phenomenon called Neural Collapse: at the terminal phase of training a deep neural network for classification, the within-class penultimate feature means and the associated classifier vectors of all flat classes collapse to the vertices of a simplex Equiangular Tight Frame (ETF). Recent work has tried to exploit this phenomenon by fixing the related classifier weights to a pre-computed ETF to induce neural collapse and maximize the separation of the learned features when training with imbalanced data. In this work, we propose to fix the linear classifier of a deep neural network to a Hierarchy-Aware Frame (HAFrame), instead of an ETF, and use a cosine similarity-based auxiliary loss to learn hierarchy-aware penultimate features that collapse to the HAFrame. We demonstrate that our approach reduces the mistake severity of the model's predictions while maintaining its top-1 accuracy on several datasets of varying scales with hierarchies of heights ranging from 3 to 12. Code: https://github.com/ltong1130ztr/HAFrame
Pushing Boundaries: Mixup's Influence on Neural Collapse
Mixup is a data augmentation strategy that employs convex combinations of training instances and their respective labels to augment the robustness and calibration of deep neural networks. Despite its widespread adoption, the nuanced mechanisms that underpin its success are not entirely understood. The observed phenomenon of Neural Collapse, where the last-layer activations and classifier of deep networks converge to a simplex equiangular tight frame (ETF), provides a compelling motivation to explore whether mixup induces alternative geometric configurations and whether those could explain its success. In this study, we delve into the last-layer activations of training data for deep networks subjected to mixup, aiming to uncover insights into its operational efficacy. Our investigation, spanning various architectures and dataset pairs, reveals that mixup's last-layer activations predominantly converge to a distinctive configuration different than one might expect. In this configuration, activations from mixed-up examples of identical classes align with the classifier, while those from different classes delineate channels along the decision boundary. Moreover, activations in earlier layers exhibit patterns, as if trained with manifold mixup. These findings are unexpected, as mixed-up features are not simple convex combinations of feature class means (as one might get, for example, by training mixup with the mean squared error loss). By analyzing this distinctive geometric configuration, we elucidate the mechanisms by which mixup enhances model calibration. To further validate our empirical observations, we conduct a theoretical analysis under the assumption of an unconstrained features model, utilizing the mixup loss. Through this, we characterize and derive the optimal last-layer features under the assumption that the classifier forms a simplex ETF.
Connect, Not Collapse: Explaining Contrastive Learning for Unsupervised Domain Adaptation
We consider unsupervised domain adaptation (UDA), where labeled data from a source domain (e.g., photographs) and unlabeled data from a target domain (e.g., sketches) are used to learn a classifier for the target domain. Conventional UDA methods (e.g., domain adversarial training) learn domain-invariant features to improve generalization to the target domain. In this paper, we show that contrastive pre-training, which learns features on unlabeled source and target data and then fine-tunes on labeled source data, is competitive with strong UDA methods. However, we find that contrastive pre-training does not learn domain-invariant features, diverging from conventional UDA intuitions. We show theoretically that contrastive pre-training can learn features that vary subtantially across domains but still generalize to the target domain, by disentangling domain and class information. Our results suggest that domain invariance is not necessary for UDA. We empirically validate our theory on benchmark vision datasets.
A cost-effective method for improving and re-purposing large, pre-trained GANs by fine-tuning their class-embeddings
Large, pre-trained generative models have been increasingly popular and useful to both the research and wider communities. Specifically, BigGANs a class-conditional Generative Adversarial Networks trained on ImageNet---achieved excellent, state-of-the-art capability in generating realistic photos. However, fine-tuning or training BigGANs from scratch is practically impossible for most researchers and engineers because (1) GAN training is often unstable and suffering from mode-collapse; and (2) the training requires a significant amount of computation, 256 Google TPUs for 2 days or 8xV100 GPUs for 15 days. Importantly, many pre-trained generative models both in NLP and image domains were found to contain biases that are harmful to society. Thus, we need computationally-feasible methods for modifying and re-purposing these huge, pre-trained models for downstream tasks. In this paper, we propose a cost-effective optimization method for improving and re-purposing BigGANs by fine-tuning only the class-embedding layer. We show the effectiveness of our model-editing approach in three tasks: (1) significantly improving the realism and diversity of samples of complete mode-collapse classes; (2) re-purposing ImageNet BigGANs for generating images for Places365; and (3) de-biasing or improving the sample diversity for selected ImageNet classes.
Rethinking Positive Pairs in Contrastive Learning
Contrastive learning, a prominent approach to representation learning, traditionally assumes positive pairs are closely related samples (the same image or class) and negative pairs are distinct samples. We challenge this assumption by proposing to learn from arbitrary pairs, allowing any pair of samples to be positive within our framework.The primary challenge of the proposed approach lies in applying contrastive learning to disparate pairs which are semantically distant. Motivated by the discovery that SimCLR can separate given arbitrary pairs (e.g., garter snake and table lamp) in a subspace, we propose a feature filter in the condition of class pairs that creates the requisite subspaces by gate vectors selectively activating or deactivating dimensions. This filter can be optimized through gradient descent within a conventional contrastive learning mechanism. We present Hydra, a universal contrastive learning framework for visual representations that extends conventional contrastive learning to accommodate arbitrary pairs. Our approach is validated using IN1K, where 1K diverse classes compose 500,500 pairs, most of them being distinct. Surprisingly, Hydra achieves superior performance in this challenging setting. Additional benefits include the prevention of dimensional collapse and the discovery of class relationships. Our work highlights the value of learning common features of arbitrary pairs and potentially broadens the applicability of contrastive learning techniques on the sample pairs with weak relationships.
Diverse Image Generation via Self-Conditioned GANs
We introduce a simple but effective unsupervised method for generating realistic and diverse images. We train a class-conditional GAN model without using manually annotated class labels. Instead, our model is conditional on labels automatically derived from clustering in the discriminator's feature space. Our clustering step automatically discovers diverse modes, and explicitly requires the generator to cover them. Experiments on standard mode collapse benchmarks show that our method outperforms several competing methods when addressing mode collapse. Our method also performs well on large-scale datasets such as ImageNet and Places365, improving both image diversity and standard quality metrics, compared to previous methods.
Exploring Weight Balancing on Long-Tailed Recognition Problem
Recognition problems in long-tailed data, in which the sample size per class is heavily skewed, have gained importance because the distribution of the sample size per class in a dataset is generally exponential unless the sample size is intentionally adjusted. Various methods have been devised to address these problems. Recently, weight balancing, which combines well-known classical regularization techniques with two-stage training, has been proposed. Despite its simplicity, it is known for its high performance compared with existing methods devised in various ways. However, there is a lack of understanding as to why this method is effective for long-tailed data. In this study, we analyze weight balancing by focusing on neural collapse and the cone effect at each training stage and found that it can be decomposed into an increase in Fisher's discriminant ratio of the feature extractor caused by weight decay and cross entropy loss and implicit logit adjustment caused by weight decay and class-balanced loss. Our analysis enables the training method to be further simplified by reducing the number of training stages to one while increasing accuracy.
Towards Stable Test-Time Adaptation in Dynamic Wild World
Test-time adaptation (TTA) has shown to be effective at tackling distribution shifts between training and testing data by adapting a given model on test samples. However, the online model updating of TTA may be unstable and this is often a key obstacle preventing existing TTA methods from being deployed in the real world. Specifically, TTA may fail to improve or even harm the model performance when test data have: 1) mixed distribution shifts, 2) small batch sizes, and 3) online imbalanced label distribution shifts, which are quite common in practice. In this paper, we investigate the unstable reasons and find that the batch norm layer is a crucial factor hindering TTA stability. Conversely, TTA can perform more stably with batch-agnostic norm layers, \ie, group or layer norm. However, we observe that TTA with group and layer norms does not always succeed and still suffers many failure cases. By digging into the failure cases, we find that certain noisy test samples with large gradients may disturb the model adaption and result in collapsed trivial solutions, \ie, assigning the same class label for all samples. To address the above collapse issue, we propose a sharpness-aware and reliable entropy minimization method, called SAR, for further stabilizing TTA from two aspects: 1) remove partial noisy samples with large gradients, 2) encourage model weights to go to a flat minimum so that the model is robust to the remaining noisy samples. Promising results demonstrate that SAR performs more stably over prior methods and is computationally efficient under the above wild test scenarios.
Model Collapse Demystified: The Case of Regression
In the era of proliferation of large language and image generation models, the phenomenon of "model collapse" refers to the situation whereby as a model is trained recursively on data generated from previous generations of itself over time, its performance degrades until the model eventually becomes completely useless, i.e the model collapses. In this work, we study this phenomenon in the setting of high-dimensional regression and obtain analytic formulae which quantitatively outline this phenomenon in a broad range of regimes. In the special case of polynomial decaying spectral and source conditions, we obtain modified scaling laws which exhibit new crossover phenomena from fast to slow rates. We also propose a simple strategy based on adaptive regularization to mitigate model collapse. Our theoretical results are validated with experiments.
On the Role of Neural Collapse in Transfer Learning
We study the ability of foundation models to learn representations for classification that are transferable to new, unseen classes. Recent results in the literature show that representations learned by a single classifier over many classes are competitive on few-shot learning problems with representations learned by special-purpose algorithms designed for such problems. In this paper we provide an explanation for this behavior based on the recently observed phenomenon that the features learned by overparameterized classification networks show an interesting clustering property, called neural collapse. We demonstrate both theoretically and empirically that neural collapse generalizes to new samples from the training classes, and -- more importantly -- to new classes as well, allowing foundation models to provide feature maps that work well in transfer learning and, specifically, in the few-shot setting.
NECO: NEural Collapse Based Out-of-distribution detection
Detecting out-of-distribution (OOD) data is a critical challenge in machine learning due to model overconfidence, often without awareness of their epistemological limits. We hypothesize that ``neural collapse'', a phenomenon affecting in-distribution data for models trained beyond loss convergence, also influences OOD data. To benefit from this interplay, we introduce NECO, a novel post-hoc method for OOD detection, which leverages the geometric properties of ``neural collapse'' and of principal component spaces to identify OOD data. Our extensive experiments demonstrate that NECO achieves state-of-the-art results on both small and large-scale OOD detection tasks while exhibiting strong generalization capabilities across different network architectures. Furthermore, we provide a theoretical explanation for the effectiveness of our method in OOD detection. Code is available at https://gitlab.com/drti/neco
Dual-Head Knowledge Distillation: Enhancing Logits Utilization with an Auxiliary Head
Traditional knowledge distillation focuses on aligning the student's predicted probabilities with both ground-truth labels and the teacher's predicted probabilities. However, the transition to predicted probabilities from logits would obscure certain indispensable information. To address this issue, it is intuitive to additionally introduce a logit-level loss function as a supplement to the widely used probability-level loss function, for exploiting the latent information of logits. Unfortunately, we empirically find that the amalgamation of the newly introduced logit-level loss and the previous probability-level loss will lead to performance degeneration, even trailing behind the performance of employing either loss in isolation. We attribute this phenomenon to the collapse of the classification head, which is verified by our theoretical analysis based on the neural collapse theory. Specifically, the gradients of the two loss functions exhibit contradictions in the linear classifier yet display no such conflict within the backbone. Drawing from the theoretical analysis, we propose a novel method called dual-head knowledge distillation, which partitions the linear classifier into two classification heads responsible for different losses, thereby preserving the beneficial effects of both losses on the backbone while eliminating adverse influences on the classification head. Extensive experiments validate that our method can effectively exploit the information inside the logits and achieve superior performance against state-of-the-art counterparts.
Geometric Properties of Neural Multivariate Regression
Neural multivariate regression underpins a wide range of domains such as control, robotics, and finance, yet the geometry of its learned representations remains poorly characterized. While neural collapse has been shown to benefit generalization in classification, we find that analogous collapse in regression consistently degrades performance. To explain this contrast, we analyze models through the lens of intrinsic dimension. Across control tasks and synthetic datasets, we estimate the intrinsic dimension of last-layer features (ID_H) and compare it with that of the regression targets (ID_Y). Collapsed models exhibit ID_H < ID_Y, leading to over-compression and poor generalization, whereas non-collapsed models typically maintain ID_H > ID_Y. For the non-collapsed models, performance with respect to ID_H depends on the data quantity and noise levels. From these observations, we identify two regimes (over-compressed and under-compressed) that determine when expanding or reducing feature dimensionality improves performance. Our results provide new geometric insights into neural regression and suggest practical strategies for enhancing generalization.
LDReg: Local Dimensionality Regularized Self-Supervised Learning
Representations learned via self-supervised learning (SSL) can be susceptible to dimensional collapse, where the learned representation subspace is of extremely low dimensionality and thus fails to represent the full data distribution and modalities. Dimensional collapse also known as the "underfilling" phenomenon is one of the major causes of degraded performance on downstream tasks. Previous work has investigated the dimensional collapse problem of SSL at a global level. In this paper, we demonstrate that representations can span over high dimensional space globally, but collapse locally. To address this, we propose a method called local dimensionality regularization (LDReg). Our formulation is based on the derivation of the Fisher-Rao metric to compare and optimize local distance distributions at an asymptotically small radius for each data point. By increasing the local intrinsic dimensionality, we demonstrate through a range of experiments that LDReg improves the representation quality of SSL. The results also show that LDReg can regularize dimensionality at both local and global levels.
Teacher-Class Network: A Neural Network Compression Mechanism
To reduce the overwhelming size of Deep Neural Networks (DNN) teacher-student methodology tries to transfer knowledge from a complex teacher network to a simple student network. We instead propose a novel method called the teacher-class network consisting of a single teacher and multiple student networks (i.e. class of students). Instead of transferring knowledge to one student only, the proposed method transfers a chunk of knowledge to each student. Our students are not trained for problem-specific logits, they are trained to mimic knowledge (dense representation) learned by the teacher network thus the combined knowledge learned by the class of students can be used to solve other problems as well. The proposed teacher-class architecture is evaluated on several benchmark datasets such as MNIST, Fashion MNIST, IMDB Movie Reviews, CAMVid, CIFAR-10 and ImageNet on multiple tasks including image classification, sentiment classification and segmentation. Our approach outperforms the state of-the-art single student approach in terms of accuracy as well as computational cost while achieving 10-30 times reduction in parameters.
Class Imbalance in Anomaly Detection: Learning from an Exactly Solvable Model
Class imbalance (CI) is a longstanding problem in machine learning, slowing down training and reducing performances. Although empirical remedies exist, it is often unclear which ones work best and when, due to the lack of an overarching theory. We address a common case of imbalance, that of anomaly (or outlier) detection. We provide a theoretical framework to analyze, interpret and address CI. It is based on an exact solution of the teacher-student perceptron model, through replica theory. Within this framework, one can distinguish several sources of CI: either intrinsic, train or test imbalance. Our analysis reveals that the optimal train imbalance is generally different from 50%, with a non trivial dependence on the intrinsic imbalance, the abundance of data and on the noise in the learning. Moreover, there is a crossover between a small noise training regime where results are independent of the noise level to a high noise regime where performances quickly degrade with noise. Our results challenge some of the conventional wisdom on CI and offer practical guidelines to address it.
A Practical Approach to Novel Class Discovery in Tabular Data
The problem of Novel Class Discovery (NCD) consists in extracting knowledge from a labeled set of known classes to accurately partition an unlabeled set of novel classes. While NCD has recently received a lot of attention from the community, it is often solved on computer vision problems and under unrealistic conditions. In particular, the number of novel classes is usually assumed to be known in advance, and their labels are sometimes used to tune hyperparameters. Methods that rely on these assumptions are not applicable in real-world scenarios. In this work, we focus on solving NCD in tabular data when no prior knowledge of the novel classes is available. To this end, we propose to tune the hyperparameters of NCD methods by adapting the k-fold cross-validation process and hiding some of the known classes in each fold. Since we have found that methods with too many hyperparameters are likely to overfit these hidden classes, we define a simple deep NCD model. This method is composed of only the essential elements necessary for the NCD problem and performs impressively well under realistic conditions. Furthermore, we find that the latent space of this method can be used to reliably estimate the number of novel classes. Additionally, we adapt two unsupervised clustering algorithms (k-means and Spectral Clustering) to leverage the knowledge of the known classes. Extensive experiments are conducted on 7 tabular datasets and demonstrate the effectiveness of the proposed method and hyperparameter tuning process, and show that the NCD problem can be solved without relying on knowledge from the novel classes.
Class-relation Knowledge Distillation for Novel Class Discovery
We tackle the problem of novel class discovery, which aims to learn novel classes without supervision based on labeled data from known classes. A key challenge lies in transferring the knowledge in the known-class data to the learning of novel classes. Previous methods mainly focus on building a shared representation space for knowledge transfer and often ignore modeling class relations. To address this, we introduce a class relation representation for the novel classes based on the predicted class distribution of a model trained on known classes. Empirically, we find that such class relation becomes less informative during typical discovery training. To prevent such information loss, we propose a novel knowledge distillation framework, which utilizes our class-relation representation to regularize the learning of novel classes. In addition, to enable a flexible knowledge distillation scheme for each data point in novel classes, we develop a learnable weighting function for the regularization, which adaptively promotes knowledge transfer based on the semantic similarity between the novel and known classes. To validate the effectiveness and generalization of our method, we conduct extensive experiments on multiple benchmarks, including CIFAR100, Stanford Cars, CUB, and FGVC-Aircraft datasets. Our results demonstrate that the proposed method outperforms the previous state-of-the-art methods by a significant margin on almost all benchmarks. Code is available at https://github.com/kleinzcy/Cr-KD-NCD{here}.
Understanding and Improving Knowledge Distillation
Knowledge Distillation (KD) is a model-agnostic technique to improve model quality while having a fixed capacity budget. It is a commonly used technique for model compression, where a larger capacity teacher model with better quality is used to train a more compact student model with better inference efficiency. Through distillation, one hopes to benefit from student's compactness, without sacrificing too much on model quality. Despite the large success of knowledge distillation, better understanding of how it benefits student model's training dynamics remains under-explored. In this paper, we categorize teacher's knowledge into three hierarchical levels and study its effects on knowledge distillation: (1) knowledge of the `universe', where KD brings a regularization effect through label smoothing; (2) domain knowledge, where teacher injects class relationships prior to student's logit layer geometry; and (3) instance specific knowledge, where teacher rescales student model's per-instance gradients based on its measurement on the event difficulty. Using systematic analyses and extensive empirical studies on both synthetic and real-world datasets, we confirm that the aforementioned three factors play a major role in knowledge distillation. Furthermore, based on our findings, we diagnose some of the failure cases of applying KD from recent studies.
PLD: A Choice-Theoretic List-Wise Knowledge Distillation
Knowledge distillation is a model compression technique in which a compact "student" network is trained to replicate the predictive behavior of a larger "teacher" network. In logit-based knowledge distillation, it has become the de facto approach to augment cross-entropy with a distillation term. Typically, this term is either a KL divergence that matches marginal probabilities or a correlation-based loss that captures intra- and inter-class relationships. In every case, it acts as an additional term to cross-entropy. This term has its own weight, which must be carefully tuned. In this paper, we adopt a choice-theoretic perspective and recast knowledge distillation under the Plackett-Luce model by interpreting teacher logits as "worth" scores. We introduce "Plackett-Luce Distillation (PLD)", a weighted list-wise ranking loss. In PLD, the teacher model transfers knowledge of its full ranking of classes, weighting each ranked choice by its own confidence. PLD directly optimizes a single "teacher-optimal" ranking. The true label is placed first, followed by the remaining classes in descending teacher confidence. This process yields a convex and translation-invariant surrogate that subsumes weighted cross-entropy. Empirically, across CIFAR-100, ImageNet-1K, and MS-COCO, PLD achieves consistent gains across diverse architectures and distillation objectives, including divergence-based, correlation-based, and feature-based methods, in both homogeneous and heterogeneous teacher-student pairs.
Why does Throwing Away Data Improve Worst-Group Error?
When facing data with imbalanced classes or groups, practitioners follow an intriguing strategy to achieve best results. They throw away examples until the classes or groups are balanced in size, and then perform empirical risk minimization on the reduced training set. This opposes common wisdom in learning theory, where the expected error is supposed to decrease as the dataset grows in size. In this work, we leverage extreme value theory to address this apparent contradiction. Our results show that the tails of the data distribution play an important role in determining the worst-group-accuracy of linear classifiers. When learning on data with heavy tails, throwing away data restores the geometric symmetry of the resulting classifier, and therefore improves its worst-group generalization.
Is Model Collapse Inevitable? Breaking the Curse of Recursion by Accumulating Real and Synthetic Data
The proliferation of generative models, combined with pretraining on web-scale data, raises a timely question: what happens when these models are trained on their own generated outputs? Recent investigations into model-data feedback loops proposed that such loops would lead to a phenomenon termed model collapse, under which performance progressively degrades with each model-data feedback iteration until fitted models become useless. However, those studies largely assumed that new data replace old data over time, where an arguably more realistic assumption is that data accumulate over time. In this paper, we ask: what effect does accumulating data have on model collapse? We empirically study this question by pretraining sequences of language models on text corpora. We confirm that replacing the original real data by each generation's synthetic data does indeed tend towards model collapse, then demonstrate that accumulating the successive generations of synthetic data alongside the original real data avoids model collapse; these results hold across a range of model sizes, architectures, and hyperparameters. We obtain similar results for deep generative models on other types of real data: diffusion models for molecule conformation generation and variational autoencoders for image generation. To understand why accumulating data can avoid model collapse, we use an analytically tractable framework introduced by prior work in which a sequence of linear models are fit to the previous models' outputs. Previous work used this framework to show that if data are replaced, the test error increases with the number of model-fitting iterations; we extend this argument to prove that if data instead accumulate, the test error has a finite upper bound independent of the number of iterations, meaning model collapse no longer occurs.
A Tale of Tails: Model Collapse as a Change of Scaling Laws
As AI model size grows, neural scaling laws have become a crucial tool to predict the improvements of large models when increasing capacity and the size of original (human or natural) training data. Yet, the widespread use of popular models means that the ecosystem of online data and text will co-evolve to progressively contain increased amounts of synthesized data. In this paper we ask: How will the scaling laws change in the inevitable regime where synthetic data makes its way into the training corpus? Will future models, still improve, or be doomed to degenerate up to total (model) collapse? We develop a theoretical framework of model collapse through the lens of scaling laws. We discover a wide range of decay phenomena, analyzing loss of scaling, shifted scaling with number of generations, the ''un-learning" of skills, and grokking when mixing human and synthesized data. Our theory is validated by large-scale experiments with a transformer on an arithmetic task and text generation using the large language model Llama2.
Understanding the Collapse of LLMs in Model Editing
Despite significant progress in model editing methods, their application in real-world scenarios remains challenging as they often cause large language models (LLMs) to collapse. Among them, ROME is particularly concerning, as it could disrupt LLMs with only a single edit. In this paper, we study the root causes of such collapse. Through extensive analysis, we identify two primary factors that contribute to the collapse: i) inconsistent handling of prefixed and unprefixed keys in the parameter update equation may result in very small denominators, causing excessively large parameter updates; ii) the subject of collapse cases is usually the first token, whose unprefixed key distribution significantly differs from the prefixed key distribution in autoregressive transformers, causing the aforementioned issue to materialize. To validate our findings, we propose a simple yet effective approach: uniformly using prefixed keys during editing phase and adding prefixes during testing phase to ensure the consistency between training and testing. The experimental results show that the proposed solution can prevent model collapse while maintaining the effectiveness of the edits.
Don't be fooled: label leakage in explanation methods and the importance of their quantitative evaluation
Feature attribution methods identify which features of an input most influence a model's output. Most widely-used feature attribution methods (such as SHAP, LIME, and Grad-CAM) are "class-dependent" methods in that they generate a feature attribution vector as a function of class. In this work, we demonstrate that class-dependent methods can "leak" information about the selected class, making that class appear more likely than it is. Thus, an end user runs the risk of drawing false conclusions when interpreting an explanation generated by a class-dependent method. In contrast, we introduce "distribution-aware" methods, which favor explanations that keep the label's distribution close to its distribution given all features of the input. We introduce SHAP-KL and FastSHAP-KL, two baseline distribution-aware methods that compute Shapley values. Finally, we perform a comprehensive evaluation of seven class-dependent and three distribution-aware methods on three clinical datasets of different high-dimensional data types: images, biosignals, and text.
Class Machine Unlearning for Complex Data via Concepts Inference and Data Poisoning
In current AI era, users may request AI companies to delete their data from the training dataset due to the privacy concerns. As a model owner, retraining a model will consume significant computational resources. Therefore, machine unlearning is a new emerged technology to allow model owner to delete requested training data or a class with little affecting on the model performance. However, for large-scaling complex data, such as image or text data, unlearning a class from a model leads to a inferior performance due to the difficulty to identify the link between classes and model. An inaccurate class deleting may lead to over or under unlearning. In this paper, to accurately defining the unlearning class of complex data, we apply the definition of Concept, rather than an image feature or a token of text data, to represent the semantic information of unlearning class. This new representation can cut the link between the model and the class, leading to a complete erasing of the impact of a class. To analyze the impact of the concept of complex data, we adopt a Post-hoc Concept Bottleneck Model, and Integrated Gradients to precisely identify concepts across different classes. Next, we take advantage of data poisoning with random and targeted labels to propose unlearning methods. We test our methods on both image classification models and large language models (LLMs). The results consistently show that the proposed methods can accurately erase targeted information from models and can largely maintain the performance of the models.
Good Teachers Explain: Explanation-Enhanced Knowledge Distillation
Knowledge Distillation (KD) has proven effective for compressing large teacher models into smaller student models. While it is well known that student models can achieve similar accuracies as the teachers, it has also been shown that they nonetheless often do not learn the same function. It is, however, often highly desirable that the student's and teacher's functions share similar properties such as basing the prediction on the same input features, as this ensures that students learn the 'right features' from the teachers. In this work, we explore whether this can be achieved by not only optimizing the classic KD loss but also the similarity of the explanations generated by the teacher and the student. Despite the idea being simple and intuitive, we find that our proposed 'explanation-enhanced' KD (e^2KD) (1) consistently provides large gains in terms of accuracy and student-teacher agreement, (2) ensures that the student learns from the teacher to be right for the right reasons and to give similar explanations, and (3) is robust with respect to the model architectures, the amount of training data, and even works with 'approximate', pre-computed explanations.
An Interactive Interface for Novel Class Discovery in Tabular Data
Novel Class Discovery (NCD) is the problem of trying to discover novel classes in an unlabeled set, given a labeled set of different but related classes. The majority of NCD methods proposed so far only deal with image data, despite tabular data being among the most widely used type of data in practical applications. To interpret the results of clustering or NCD algorithms, data scientists need to understand the domain- and application-specific attributes of tabular data. This task is difficult and can often only be performed by a domain expert. Therefore, this interface allows a domain expert to easily run state-of-the-art algorithms for NCD in tabular data. With minimal knowledge in data science, interpretable results can be generated.
A Unified Approach to Interpreting Model Predictions
Understanding why a model makes a certain prediction can be as crucial as the prediction's accuracy in many applications. However, the highest accuracy for large modern datasets is often achieved by complex models that even experts struggle to interpret, such as ensemble or deep learning models, creating a tension between accuracy and interpretability. In response, various methods have recently been proposed to help users interpret the predictions of complex models, but it is often unclear how these methods are related and when one method is preferable over another. To address this problem, we present a unified framework for interpreting predictions, SHAP (SHapley Additive exPlanations). SHAP assigns each feature an importance value for a particular prediction. Its novel components include: (1) the identification of a new class of additive feature importance measures, and (2) theoretical results showing there is a unique solution in this class with a set of desirable properties. The new class unifies six existing methods, notable because several recent methods in the class lack the proposed desirable properties. Based on insights from this unification, we present new methods that show improved computational performance and/or better consistency with human intuition than previous approaches.
PyCIL: A Python Toolbox for Class-Incremental Learning
Traditional machine learning systems are deployed under the closed-world setting, which requires the entire training data before the offline training process. However, real-world applications often face the incoming new classes, and a model should incorporate them continually. The learning paradigm is called Class-Incremental Learning (CIL). We propose a Python toolbox that implements several key algorithms for class-incremental learning to ease the burden of researchers in the machine learning community. The toolbox contains implementations of a number of founding works of CIL such as EWC and iCaRL, but also provides current state-of-the-art algorithms that can be used for conducting novel fundamental research. This toolbox, named PyCIL for Python Class-Incremental Learning, is available at https://github.com/G-U-N/PyCIL
Class-incremental Novel Class Discovery
We study the new task of class-incremental Novel Class Discovery (class-iNCD), which refers to the problem of discovering novel categories in an unlabelled data set by leveraging a pre-trained model that has been trained on a labelled data set containing disjoint yet related categories. Apart from discovering novel classes, we also aim at preserving the ability of the model to recognize previously seen base categories. Inspired by rehearsal-based incremental learning methods, in this paper we propose a novel approach for class-iNCD which prevents forgetting of past information about the base classes by jointly exploiting base class feature prototypes and feature-level knowledge distillation. We also propose a self-training clustering strategy that simultaneously clusters novel categories and trains a joint classifier for both the base and novel classes. This makes our method able to operate in a class-incremental setting. Our experiments, conducted on three common benchmarks, demonstrate that our method significantly outperforms state-of-the-art approaches. Code is available at https://github.com/OatmealLiu/class-iNCD
Mining Minority-class Examples With Uncertainty Estimates
In the real world, the frequency of occurrence of objects is naturally skewed forming long-tail class distributions, which results in poor performance on the statistically rare classes. A promising solution is to mine tail-class examples to balance the training dataset. However, mining tail-class examples is a very challenging task. For instance, most of the otherwise successful uncertainty-based mining approaches struggle due to distortion of class probabilities resulting from skewness in data. In this work, we propose an effective, yet simple, approach to overcome these challenges. Our framework enhances the subdued tail-class activations and, thereafter, uses a one-class data-centric approach to effectively identify tail-class examples. We carry out an exhaustive evaluation of our framework on three datasets spanning over two computer vision tasks. Substantial improvements in the minority-class mining and fine-tuned model's performance strongly corroborate the value of our proposed solution.
Prediction Error-based Classification for Class-Incremental Learning
Class-incremental learning (CIL) is a particularly challenging variant of continual learning, where the goal is to learn to discriminate between all classes presented in an incremental fashion. Existing approaches often suffer from excessive forgetting and imbalance of the scores assigned to classes that have not been seen together during training. In this study, we introduce a novel approach, Prediction Error-based Classification (PEC), which differs from traditional discriminative and generative classification paradigms. PEC computes a class score by measuring the prediction error of a model trained to replicate the outputs of a frozen random neural network on data from that class. The method can be interpreted as approximating a classification rule based on Gaussian Process posterior variance. PEC offers several practical advantages, including sample efficiency, ease of tuning, and effectiveness even when data are presented one class at a time. Our empirical results show that PEC performs strongly in single-pass-through-data CIL, outperforming other rehearsal-free baselines in all cases and rehearsal-based methods with moderate replay buffer size in most cases across multiple benchmarks.
UNIC: Universal Classification Models via Multi-teacher Distillation
Pretrained models have become a commodity and offer strong results on a broad range of tasks. In this work, we focus on classification and seek to learn a unique encoder able to take from several complementary pretrained models. We aim at even stronger generalization across a variety of classification tasks. We propose to learn such an encoder via multi-teacher distillation. We first thoroughly analyse standard distillation when driven by multiple strong teachers with complementary strengths. Guided by this analysis, we gradually propose improvements to the basic distillation setup. Among those, we enrich the architecture of the encoder with a ladder of expendable projectors, which increases the impact of intermediate features during distillation, and we introduce teacher dropping, a regularization mechanism that better balances the teachers' influence. Our final distillation strategy leads to student models of the same capacity as any of the teachers, while retaining or improving upon the performance of the best teacher for each task. Project page and code: https://europe.naverlabs.com/unic
Large-scale Pre-trained Models are Surprisingly Strong in Incremental Novel Class Discovery
Discovering novel concepts in unlabelled datasets and in a continuous manner is an important desideratum of lifelong learners. In the literature such problems have been partially addressed under very restricted settings, where novel classes are learned by jointly accessing a related labelled set (e.g., NCD) or by leveraging only a supervisedly pre-trained model (e.g., class-iNCD). In this work we challenge the status quo in class-iNCD and propose a learning paradigm where class discovery occurs continuously and truly unsupervisedly, without needing any related labelled set. In detail, we propose to exploit the richer priors from strong self-supervised pre-trained models (PTM). To this end, we propose simple baselines, composed of a frozen PTM backbone and a learnable linear classifier, that are not only simple to implement but also resilient under longer learning scenarios. We conduct extensive empirical evaluation on a multitude of benchmarks and show the effectiveness of our proposed baselines when compared with sophisticated state-of-the-art methods. The code is open source.
The Universality Lens: Why Even Highly Over-Parametrized Models Learn Well
A fundamental question in modern machine learning is why large, over-parameterized models, such as deep neural networks and transformers, tend to generalize well, even when their number of parameters far exceeds the number of training samples. We investigate this phenomenon through the lens of information theory, grounded in universal learning theory. Specifically, we study a Bayesian mixture learner with log-loss and (almost) uniform prior over an expansive hypothesis class. Our key result shows that the learner's regret is not determined by the overall size of the hypothesis class, but rather by the cumulative probability of all models that are close, in Kullback-Leibler divergence distance, to the true data-generating process. We refer to this cumulative probability as the weight of the hypothesis. This leads to a natural notion of model simplicity: simple models are those with large weight and thus require fewer samples to generalize, while complex models have small weight and need more data. This perspective provides a rigorous and intuitive explanation for why over-parameterized models often avoid overfitting: the presence of simple hypotheses allows the posterior to concentrate on them when supported by the data. We further bridge theory and practice by recalling that stochastic gradient descent with Langevin dynamics samples from the correct posterior distribution, enabling our theoretical learner to be approximated using standard machine learning methods combined with ensemble learning. Our analysis yields non-uniform regret bounds and aligns with key practical concepts such as flat minima and model distillation. The results apply broadly across online, batch, and supervised learning settings, offering a unified and principled understanding of the generalization behavior of modern AI systems.
Born Again Neural Networks
Knowledge Distillation (KD) consists of transferring “knowledge” from one machine learning model (the teacher) to another (the student). Commonly, the teacher is a high-capacity model with formidable performance, while the student is more compact. By transferring knowledge, one hopes to benefit from the student’s compactness, without sacrificing too much performance. We study KD from a new perspective: rather than compressing models, we train students parameterized identically to their teachers. Surprisingly, these Born-Again Networks (BANs), outperform their teachers significantly, both on computer vision and language modeling tasks. Our experiments with BANs based on DenseNets demonstrate state-of-the-art performance on the CIFAR-10 (3.5%) and CIFAR-100 (15.5%) datasets, by validation error. Additional experiments explore two distillation objectives: (i) Confidence-Weighted by Teacher Max (CWTM) and (ii) Dark Knowledge with Permuted Predictions (DKPP). Both methods elucidate the essential components of KD, demonstrating the effect of the teacher outputs on both predicted and non-predicted classes.
Shrinking Class Space for Enhanced Certainty in Semi-Supervised Learning
Semi-supervised learning is attracting blooming attention, due to its success in combining unlabeled data. To mitigate potentially incorrect pseudo labels, recent frameworks mostly set a fixed confidence threshold to discard uncertain samples. This practice ensures high-quality pseudo labels, but incurs a relatively low utilization of the whole unlabeled set. In this work, our key insight is that these uncertain samples can be turned into certain ones, as long as the confusion classes for the top-1 class are detected and removed. Invoked by this, we propose a novel method dubbed ShrinkMatch to learn uncertain samples. For each uncertain sample, it adaptively seeks a shrunk class space, which merely contains the original top-1 class, as well as remaining less likely classes. Since the confusion ones are removed in this space, the re-calculated top-1 confidence can satisfy the pre-defined threshold. We then impose a consistency regularization between a pair of strongly and weakly augmented samples in the shrunk space to strive for discriminative representations. Furthermore, considering the varied reliability among uncertain samples and the gradually improved model during training, we correspondingly design two reweighting principles for our uncertain loss. Our method exhibits impressive performance on widely adopted benchmarks. Code is available at https://github.com/LiheYoung/ShrinkMatch.
Review of Methods for Handling Class-Imbalanced in Classification Problems
Learning classifiers using skewed or imbalanced datasets can occasionally lead to classification issues; this is a serious issue. In some cases, one class contains the majority of examples while the other, which is frequently the more important class, is nevertheless represented by a smaller proportion of examples. Using this kind of data could make many carefully designed machine-learning systems ineffective. High training fidelity was a term used to describe biases vs. all other instances of the class. The best approach to all possible remedies to this issue is typically to gain from the minority class. The article examines the most widely used methods for addressing the problem of learning with a class imbalance, including data-level, algorithm-level, hybrid, cost-sensitive learning, and deep learning, etc. including their advantages and limitations. The efficiency and performance of the classifier are assessed using a myriad of evaluation metrics.
Revisiting Knowledge Distillation for Autoregressive Language Models
Knowledge distillation (KD) is a common approach to compress a teacher model to reduce its inference cost and memory footprint, by training a smaller student model. However, in the context of autoregressive language models (LMs), we empirically find that larger teacher LMs might dramatically result in a poorer student. In response to this problem, we conduct a series of analyses and reveal that different tokens have different teaching modes, neglecting which will lead to performance degradation. Motivated by this, we propose a simple yet effective adaptive teaching approach (ATKD) to improve the KD. The core of ATKD is to reduce rote learning and make teaching more diverse and flexible. Extensive experiments on 8 LM tasks show that, with the help of ATKD, various baseline KD methods can achieve consistent and significant performance gains (up to +3.04% average score) across all model types and sizes. More encouragingly, ATKD can improve the student model generalization effectively.
