Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeConCuR: Conciseness Makes State-of-the-Art Kernel Generation
GPU kernel generation by LLMs has recently experienced rapid development, leveraging test-time scaling and reinforcement learning techniques. However, a key challenge for kernel generation is the scarcity of high-quality data, as most high-quality kernels are proprietary and not open-source. This challenge prevents us from leveraging supervised fine-tuning to align LLMs to the kernel generation task. To address this challenge, we develop a pipeline that generates and curates high-quality CUDA kernels with reasoning traces, motivated by a critical observation that concise yet informative reasoning traces result in robust generation of high-performance kernels. Using this pipeline, we construct our dataset ConCuR and introduce our model KernelCoder, which is the first model trained on a curated dataset consisting of PyTorch, reasoning, and CUDA kernel pairs, to our knowledge. In the KernelBench setup, our model achieves significant improvements over the existing top-performing model, QwQ-32B, and outperforms all open-source models fine-tuned for kernel generation, as well as frontier models such as DeepSeek-V3.1-Think and Claude-4-sonnet. Finally, we show that the average reasoning length can serve as a metric to assess the difficulty of kernel generation tasks. The observations, metrics, and our data collection and curation pipeline can help obtain better data in the kernel generation task in the future.
GRAIL:Learning to Interact with Large Knowledge Graphs for Retrieval Augmented Reasoning
Large Language Models (LLMs) integrated with Retrieval-Augmented Generation (RAG) techniques have exhibited remarkable performance across a wide range of domains. However, existing RAG approaches primarily operate on unstructured data and demonstrate limited capability in handling structured knowledge such as knowledge graphs. Meanwhile, current graph retrieval methods fundamentally struggle to capture holistic graph structures while simultaneously facing precision control challenges that manifest as either critical information gaps or excessive redundant connections, collectively undermining reasoning performance. To address this challenge, we propose GRAIL: Graph-Retrieval Augmented Interactive Learning, a framework designed to interact with large-scale graphs for retrieval-augmented reasoning. Specifically, GRAIL integrates LLM-guided random exploration with path filtering to establish a data synthesis pipeline, where a fine-grained reasoning trajectory is automatically generated for each task. Based on the synthesized data, we then employ a two-stage training process to learn a policy that dynamically decides the optimal actions at each reasoning step. The overall objective of precision-conciseness balance in graph retrieval is decoupled into fine-grained process-supervised rewards to enhance data efficiency and training stability. In practical deployment, GRAIL adopts an interactive retrieval paradigm, enabling the model to autonomously explore graph paths while dynamically balancing retrieval breadth and precision. Extensive experiments have shown that GRAIL achieves an average accuracy improvement of 21.01% and F1 improvement of 22.43% on three knowledge graph question-answering datasets. Our source code and datasets is available at https://github.com/Changgeww/GRAIL.
Text Annotation Handbook: A Practical Guide for Machine Learning Projects
This handbook is a hands-on guide on how to approach text annotation tasks. It provides a gentle introduction to the topic, an overview of theoretical concepts as well as practical advice. The topics covered are mostly technical, but business, ethical and regulatory issues are also touched upon. The focus lies on readability and conciseness rather than completeness and scientific rigor. Experience with annotation and knowledge of machine learning are useful but not required. The document may serve as a primer or reference book for a wide range of professions such as team leaders, project managers, IT architects, software developers and machine learning engineers.
UNIMO-G: Unified Image Generation through Multimodal Conditional Diffusion
Existing text-to-image diffusion models primarily generate images from text prompts. However, the inherent conciseness of textual descriptions poses challenges in faithfully synthesizing images with intricate details, such as specific entities or scenes. This paper presents UNIMO-G, a simple multimodal conditional diffusion framework that operates on multimodal prompts with interleaved textual and visual inputs, which demonstrates a unified ability for both text-driven and subject-driven image generation. UNIMO-G comprises two core components: a Multimodal Large Language Model (MLLM) for encoding multimodal prompts, and a conditional denoising diffusion network for generating images based on the encoded multimodal input. We leverage a two-stage training strategy to effectively train the framework: firstly pre-training on large-scale text-image pairs to develop conditional image generation capabilities, and then instruction tuning with multimodal prompts to achieve unified image generation proficiency. A well-designed data processing pipeline involving language grounding and image segmentation is employed to construct multi-modal prompts. UNIMO-G excels in both text-to-image generation and zero-shot subject-driven synthesis, and is notably effective in generating high-fidelity images from complex multimodal prompts involving multiple image entities.
PandaLM: An Automatic Evaluation Benchmark for LLM Instruction Tuning Optimization
Instruction tuning large language models (LLMs) remains a challenging task, owing to the complexity of hyperparameter selection and the difficulty involved in evaluating the tuned models. To determine the optimal hyperparameters, an automatic, robust, and reliable evaluation benchmark is essential. However, establishing such a benchmark is not a trivial task due to the challenges associated with evaluation accuracy and privacy protection. In response to these challenges, we introduce a judge large language model, named PandaLM, which is trained to distinguish the superior model given several LLMs. PandaLM's focus extends beyond just the objective correctness of responses, which is the main focus of traditional evaluation datasets. It addresses vital subjective factors such as relative conciseness, clarity, adherence to instructions, comprehensiveness, and formality. To ensure the reliability of PandaLM, we collect a diverse human-annotated test dataset, where all contexts are generated by humans and labels are aligned with human preferences. Our results indicate that PandaLM-7B achieves 93.75% of GPT-3.5's evaluation ability and 88.28% of GPT-4's in terms of F1-score on our test dataset. PandaLM enables the evaluation of LLM to be fairer but with less cost, evidenced by significant improvements achieved by models tuned through PandaLM compared to their counterparts trained with default Alpaca's hyperparameters. In addition, PandaLM does not depend on API-based evaluations, thus avoiding potential data leakage. All resources of PandaLM are released at https://github.com/WeOpenML/PandaLM.
RewardAnything: Generalizable Principle-Following Reward Models
Reward Models, essential for guiding Large Language Model optimization, are typically trained on fixed preference datasets, resulting in rigid alignment to single, implicit preference distributions. This prevents adaptation to diverse real-world needs-from conciseness in one task to detailed explanations in another. The standard practice of collecting task-specific preference data and retraining reward models is resource-intensive, often producing biased rewards, and limits practical application. We introduce generalizable, principle-following reward models. We propose that RMs should understand and adhere to dynamically provided natural language specifications of reward principles, similar to instruction-following in LLMs. To measure this capability, we develop RABench, a comprehensive benchmark for RMs focusing on generalization across diverse principles. Evaluations on RABench reveal poor generalization of current RMs. As a solution, we present RewardAnything, a novel RM designed and trained to explicitly follow natural language principles. We achieve SotA performance with RewardAnything in traditional RM benchmark simply by specifying a well-defined principle, and results on RABench show we excel in adapting to novel principles without retraining. Furthermore, RewardAnything integrates seamlessly with existing RLHF methods and we show by a case study on how to automatically and efficiently align LLMs with only natural language principles.
Between Lines of Code: Unraveling the Distinct Patterns of Machine and Human Programmers
Large language models have catalyzed an unprecedented wave in code generation. While achieving significant advances, they blur the distinctions between machine- and human-authored source code, causing integrity and authenticity issues of software artifacts. Previous methods such as DetectGPT have proven effective in discerning machine-generated texts, but they do not identify and harness the unique patterns of machine-generated code. Thus, its applicability falters when applied to code. In this paper, we carefully study the specific patterns that characterize machine- and human-authored code. Through a rigorous analysis of code attributes such as lexical diversity, conciseness, and naturalness, we expose unique patterns inherent to each source. We particularly notice that the syntactic segmentation of code is a critical factor in identifying its provenance. Based on our findings, we propose DetectCodeGPT, a novel method for detecting machine-generated code, which improves DetectGPT by capturing the distinct stylized patterns of code. Diverging from conventional techniques that depend on external LLMs for perturbations, DetectCodeGPT perturbs the code corpus by strategically inserting spaces and newlines, ensuring both efficacy and efficiency. Experiment results show that our approach significantly outperforms state-of-the-art techniques in detecting machine-generated code.
The Benefits of a Concise Chain of Thought on Problem-Solving in Large Language Models
In this paper, we introduce Concise Chain-of-Thought (CCoT) prompting. We compared standard CoT and CCoT prompts to see how conciseness impacts response length and correct-answer accuracy. We evaluated this using GPT-3.5 and GPT-4 with a multiple-choice question-and-answer (MCQA) benchmark. CCoT reduced average response length by 48.70% for both GPT-3.5 and GPT-4 while having a negligible impact on problem-solving performance. However, on math problems, GPT-3.5 with CCoT incurs a performance penalty of 27.69%. Overall, CCoT leads to an average per-token cost reduction of 22.67%. These results have practical implications for AI systems engineers using LLMs to solve real-world problems with CoT prompt-engineering techniques. In addition, these results provide more general insight for AI researchers studying the emergent behavior of step-by-step reasoning in LLMs.
Zero-Shot Cross-Lingual Summarization via Large Language Models
Given a document in a source language, cross-lingual summarization (CLS) aims to generate a summary in a different target language. Recently, the emergence of Large Language Models (LLMs), such as GPT-3.5, ChatGPT and GPT-4, has attracted wide attention from the computational linguistics community. However, it is not yet known the performance of LLMs on CLS. In this report, we empirically use various prompts to guide LLMs to perform zero-shot CLS from different paradigms (i.e., end-to-end and pipeline), and provide a preliminary evaluation on the generated summaries. We find that ChatGPT and GPT-4 originally prefer to produce lengthy summaries with detailed information. These two LLMs can further balance informativeness and conciseness with the help of an interactive prompt, significantly improving their CLS performance. Experimental results on three widely-used CLS datasets show that GPT-4 achieves state-of-the-art zero-shot CLS performance, and performs competitively compared with the fine-tuned mBART-50. Moreover, we also find some multi-lingual and bilingual LLMs (i.e., BLOOMZ, ChatGLM-6B, Vicuna-13B and ChatYuan) have limited zero-shot CLS ability. Due to the composite nature of CLS, which requires models to perform summarization and translation simultaneously, accomplishing this task in a zero-shot manner is even a challenge for LLMs. Therefore, we sincerely hope and recommend future LLM research could use CLS as a testbed.
Rubrik's Cube: Testing a New Rubric for Evaluating Explanations on the CUBE dataset
The performance and usability of Large-Language Models (LLMs) are driving their use in explanation generation tasks. However, despite their widespread adoption, LLM explanations have been found to be unreliable, making it difficult for users to distinguish good from bad explanations. To address this issue, we present Rubrik's CUBE, an education-inspired rubric and a dataset of 26k explanations, written and later quality-annotated using the rubric by both humans and six open- and closed-source LLMs. The CUBE dataset focuses on two reasoning and two language tasks, providing the necessary diversity for us to effectively test our proposed rubric. Using Rubrik, we find that explanations are influenced by both task and perceived difficulty. Low quality stems primarily from a lack of conciseness in LLM-generated explanations, rather than cohesion and word choice. The full dataset, rubric, and code will be made available upon acceptance.
SketchDream: Sketch-based Text-to-3D Generation and Editing
Existing text-based 3D generation methods generate attractive results but lack detailed geometry control. Sketches, known for their conciseness and expressiveness, have contributed to intuitive 3D modeling but are confined to producing texture-less mesh models within predefined categories. Integrating sketch and text simultaneously for 3D generation promises enhanced control over geometry and appearance but faces challenges from 2D-to-3D translation ambiguity and multi-modal condition integration. Moreover, further editing of 3D models in arbitrary views will give users more freedom to customize their models. However, it is difficult to achieve high generation quality, preserve unedited regions, and manage proper interactions between shape components. To solve the above issues, we propose a text-driven 3D content generation and editing method, SketchDream, which supports NeRF generation from given hand-drawn sketches and achieves free-view sketch-based local editing. To tackle the 2D-to-3D ambiguity challenge, we introduce a sketch-based multi-view image generation diffusion model, which leverages depth guidance to establish spatial correspondence. A 3D ControlNet with a 3D attention module is utilized to control multi-view images and ensure their 3D consistency. To support local editing, we further propose a coarse-to-fine editing approach: the coarse phase analyzes component interactions and provides 3D masks to label edited regions, while the fine stage generates realistic results with refined details by local enhancement. Extensive experiments validate that our method generates higher-quality results compared with a combination of 2D ControlNet and image-to-3D generation techniques and achieves detailed control compared with existing diffusion-based 3D editing approaches.
Optimizing Length Compression in Large Reasoning Models
Large Reasoning Models (LRMs) have achieved remarkable success, yet they often suffer from producing unnecessary and verbose reasoning chains. We identify a core aspect of this issue as "invalid thinking" -- models tend to repeatedly double-check their work after having derived the correct answer. To address this specific inefficiency, we move beyond the general principles of Efficacy and Efficiency to propose two new, fine-grained principles: Brevity, which advocates for eliminating redundancy, and Sufficiency, which ensures critical reasoning steps are preserved. Guided by these principles, we introduce LC-R1, a post-training method based on Group Relative Policy Optimization (GRPO). LC-R1 employs a novel combination of a Length Reward for overall conciseness and a Compress Reward that is specifically designed to remove the invalid portion of the thinking process. Extensive experiments on multiple reasoning benchmarks demonstrate that LC-R1 achieves a significant reduction in sequence length (~50%) with only a marginal (~2%) drop in accuracy, achieving a favorable trade-off point on the Pareto frontier that prioritizes high compression. Our analysis further validates the robustness of LC-R1 and provides valuable insights for developing more powerful yet computationally efficient LRMs. Our code is released at https://github.com/zxiangx/LC-R1.
Sentence-wise Speech Summarization: Task, Datasets, and End-to-End Modeling with LM Knowledge Distillation
This paper introduces a novel approach called sentence-wise speech summarization (Sen-SSum), which generates text summaries from a spoken document in a sentence-by-sentence manner. Sen-SSum combines the real-time processing of automatic speech recognition (ASR) with the conciseness of speech summarization. To explore this approach, we present two datasets for Sen-SSum: Mega-SSum and CSJ-SSum. Using these datasets, our study evaluates two types of Transformer-based models: 1) cascade models that combine ASR and strong text summarization models, and 2) end-to-end (E2E) models that directly convert speech into a text summary. While E2E models are appealing to develop compute-efficient models, they perform worse than cascade models. Therefore, we propose knowledge distillation for E2E models using pseudo-summaries generated by the cascade models. Our experiments show that this proposed knowledge distillation effectively improves the performance of the E2E model on both datasets.
Concise Reasoning via Reinforcement Learning
Despite significant advancements in large language models (LLMs), a major drawback of reasoning models is their enormous token usage, which increases computational cost, resource requirements, and response time. In this work, we revisit the core principles of reinforcement learning (RL) and, through mathematical analysis, demonstrate that the tendency to generate lengthy responses arises inherently from RL-based optimization during training. This finding questions the prevailing assumption that longer responses inherently improve reasoning accuracy. Instead, we uncover a natural correlation between conciseness and accuracy that has been largely overlooked. Moreover, we show that introducing a secondary phase of RL post-training, using a small set of problems and limited resources, can significantly reduce a model's chain of thought while maintaining or even enhancing accuracy. Finally, we validate our conclusions through extensive experimental results.
Think, Verbalize, then Speak: Bridging Complex Thoughts and Comprehensible Speech
Spoken dialogue systems increasingly employ large language models (LLMs) to leverage their advanced reasoning capabilities. However, direct application of LLMs in spoken communication often yield suboptimal results due to mismatches between optimal textual and verbal delivery. While existing approaches adapt LLMs to produce speech-friendly outputs, their impact on reasoning performance remains underexplored. In this work, we propose Think-Verbalize-Speak, a framework that decouples reasoning from spoken delivery to preserve the full reasoning capacity of LLMs. Central to our method is verbalizing, an intermediate step that translates thoughts into natural, speech-ready text. We also introduce ReVerT, a latency-efficient verbalizer based on incremental and asynchronous summarization. Experiments across multiple benchmarks show that our method enhances speech naturalness and conciseness with minimal impact on reasoning. The project page with the dataset and the source code is available at https://yhytoto12.github.io/TVS-ReVerT
PEAR: Phase Entropy Aware Reward for Efficient Reasoning
Large Reasoning Models (LRMs) have achieved impressive performance on complex reasoning tasks by generating detailed chain-of-thought (CoT) explanations. However, these responses are often excessively long, containing redundant reasoning steps that inflate inference cost and reduce usability. Controlling the length of generated reasoning without sacrificing accuracy remains an open challenge. Through a systematic empirical analysis, we reveal a consistent positive correlation between model entropy and response length at different reasoning stages across diverse LRMs: the thinking phase exhibits higher entropy, reflecting exploratory behavior of longer responses, while the final answer phase shows lower entropy, indicating a more deterministic solution. This observation suggests that entropy at different reasoning stages can serve as a control knob for balancing conciseness and performance. Based on this insight, this paper introduces Phase Entropy Aware Reward (PEAR), a reward mechanism that incorporating phase-dependent entropy into the reward design. Instead of treating all tokens uniformly, PEAR penalize excessive entropy during the thinking phase and allowing moderate exploration at the final answer phase, which encourages models to generate concise reasoning traces that retain sufficient flexibility to solve the task correctly. This enables adaptive control of response length without relying on explicit length targets or rigid truncation rules. Extensive experiments across four benchmarks demonstrate that PEAR consistently reduces response length while sustaining competitive accuracy across model scales. In addition, PEAR demonstrates strong out-of-distribution (OOD) robustness beyond the training distribution. Our code is available at: https://github.com/iNLP-Lab/PEAR.
SWI: Speaking with Intent in Large Language Models
Intent, typically clearly formulated and planned, functions as a cognitive framework for reasoning and problem-solving. This paper introduces the concept of Speaking with Intent (SWI) in large language models (LLMs), where the explicitly generated intent encapsulates the model's underlying intention and provides high-level planning to guide subsequent analysis and communication. By emulating deliberate and purposeful thoughts in the human mind, SWI is hypothesized to enhance the reasoning capabilities and generation quality of LLMs. Extensive experiments on mathematical reasoning benchmarks consistently demonstrate the superiority of Speaking with Intent over Baseline (i.e., generation without explicit intent). Moreover, SWI outperforms answer-trigger prompting methods Chain-of-Thought and Plan-and-Solve and maintains competitive performance with the strong method ARR (Analyzing, Retrieving, and Reasoning). Additionally, the effectiveness and generalizability of SWI are solidified on reasoning-intensive question answering (QA) and text summarization benchmarks, where SWI brings consistent improvement to the Baseline generation. In text summarization, SWI-generated summaries exhibit greater accuracy, conciseness, and factual correctness, with fewer hallucinations. Furthermore, human evaluations verify the coherence, effectiveness, and interpretability of the intent produced by SWI. This proof-of-concept study creates a novel avenue for enhancing LLMs' reasoning abilities with cognitive notions.
Multi-Objective Reinforcement Learning Based on Decomposition: A Taxonomy and Framework
Multi-objective reinforcement learning (MORL) extends traditional RL by seeking policies making different compromises among conflicting objectives. The recent surge of interest in MORL has led to diverse studies and solving methods, often drawing from existing knowledge in multi-objective optimization based on decomposition (MOO/D). Yet, a clear categorization based on both RL and MOO/D is lacking in the existing literature. Consequently, MORL researchers face difficulties when trying to classify contributions within a broader context due to the absence of a standardized taxonomy. To tackle such an issue, this paper introduces multi-objective reinforcement learning based on decomposition (MORL/D), a novel methodology bridging the literature of RL and MOO. A comprehensive taxonomy for MORL/D is presented, providing a structured foundation for categorizing existing and potential MORL works. The introduced taxonomy is then used to scrutinize MORL research, enhancing clarity and conciseness through well-defined categorization. Moreover, a flexible framework derived from the taxonomy is introduced. This framework accommodates diverse instantiations using tools from both RL and MOO/D. Its versatility is demonstrated by implementing it in different configurations and assessing it on contrasting benchmark problems. Results indicate MORL/D instantiations achieve comparable performance to current state-of-the-art approaches on the studied problems. By presenting the taxonomy and framework, this paper offers a comprehensive perspective and a unified vocabulary for MORL. This not only facilitates the identification of algorithmic contributions but also lays the groundwork for novel research avenues in MORL.
Evaluating the Smooth Control of Attribute Intensity in Text Generation with LLMs
Controlling the attribute intensity of text generation is crucial across scenarios (e.g., writing conciseness, chatting emotion, and explanation clarity). The remarkable capabilities of large language models (LLMs) have revolutionized text generation, prompting us to explore such smooth control of LLM generation. Specifically, we propose metrics to assess the range, calibration, and consistency of the generated text's attribute intensity in response to varying control values, as well as its relevance to the intended context. To quantify the attribute intensity and context relevance, we propose an effective evaluation framework leveraging the Elo rating system and GPT4, both renowned for their robust alignment with human judgment. We look into two viable training-free methods for achieving smooth control of LLMs: (1) Prompting with semantic shifters, and (2) Modifying internal model representations. The evaluations of these two methods are conducted on 5 different attributes with various models. Our code and dataset can be obtained from https://github.com/ShangDataLab/Smooth-Control.
Fast on the Easy, Deep on the Hard: Efficient Reasoning via Powered Length Penalty
Large language models (LLMs) have demonstrated significant advancements in reasoning capabilities, performing well on various challenging benchmarks. Techniques like Chain-of-Thought prompting have been introduced to further improve reasoning. However, these approaches frequently generate longer outputs, which in turn increase computational latency. Although some methods use reinforcement learning to shorten reasoning, they often apply uniform penalties without considering the problem's complexity, leading to suboptimal outcomes. In this study, we seek to enhance the efficiency of LLM reasoning by promoting conciseness for simpler problems while preserving sufficient reasoning for more complex ones for accuracy, thus improving the model's overall performance. Specifically, we manage the model's reasoning efficiency by dividing the reward function and including a novel penalty for output length. Our approach has yielded impressive outcomes in benchmark evaluations across three datasets: GSM8K, MATH500, and AIME2024. For the comparatively simpler datasets GSM8K and MATH500, our method has effectively shortened output lengths while preserving or enhancing accuracy. On the more demanding AIME2024 dataset, our approach has resulted in improved accuracy.
TeaRAG: A Token-Efficient Agentic Retrieval-Augmented Generation Framework
Retrieval-Augmented Generation (RAG) utilizes external knowledge to augment Large Language Models' (LLMs) reliability. For flexibility, agentic RAG employs autonomous, multi-round retrieval and reasoning to resolve queries. Although recent agentic RAG has improved via reinforcement learning, they often incur substantial token overhead from search and reasoning processes. This trade-off prioritizes accuracy over efficiency. To address this issue, this work proposes TeaRAG, a token-efficient agentic RAG framework capable of compressing both retrieval content and reasoning steps. 1) First, the retrieved content is compressed by augmenting chunk-based semantic retrieval with a graph retrieval using concise triplets. A knowledge association graph is then built from semantic similarity and co-occurrence. Finally, Personalized PageRank is leveraged to highlight key knowledge within this graph, reducing the number of tokens per retrieval. 2) Besides, to reduce reasoning steps, Iterative Process-aware Direct Preference Optimization (IP-DPO) is proposed. Specifically, our reward function evaluates the knowledge sufficiency by a knowledge matching mechanism, while penalizing excessive reasoning steps. This design can produce high-quality preference-pair datasets, supporting iterative DPO to improve reasoning conciseness. Across six datasets, TeaRAG improves the average Exact Match by 4% and 2% while reducing output tokens by 61% and 59% on Llama3-8B-Instruct and Qwen2.5-14B-Instruct, respectively. Code is available at https://github.com/Applied-Machine-Learning-Lab/TeaRAG.
GRPO-LEAD: A Difficulty-Aware Reinforcement Learning Approach for Concise Mathematical Reasoning in Language Models
Recent advances in R1-like reasoning models leveraging Group Relative Policy Optimization (GRPO) have significantly improved the performance of language models on mathematical reasoning tasks. However, current GRPO implementations encounter critical challenges, including reward sparsity due to binary accuracy metrics, limited incentives for conciseness, and insufficient focus on complex reasoning tasks. To address these issues, we propose GRPO-LEAD, a suite of novel enhancements tailored for mathematical reasoning. Specifically, GRPO-LEAD introduces (1) a length-dependent accuracy reward to encourage concise and precise solutions, (2) an explicit penalty mechanism for incorrect answers to sharpen decision boundaries, and (3) a difficulty-aware advantage reweighting strategy that amplifies learning signals for challenging problems. Furthermore, we systematically examine the impact of model scale and supervised fine-tuning (SFT) strategies, demonstrating that larger-scale base models and carefully curated datasets significantly enhance reinforcement learning effectiveness. Extensive empirical evaluations and ablation studies confirm that GRPO-LEAD substantially mitigates previous shortcomings, resulting in language models that produce more concise, accurate, and robust reasoning across diverse mathematical tasks.
Learning Descriptive Image Captioning via Semipermeable Maximum Likelihood Estimation
Image captioning aims to describe visual content in natural language. As 'a picture is worth a thousand words', there could be various correct descriptions for an image. However, with maximum likelihood estimation as the training objective, the captioning model is penalized whenever its prediction mismatches with the label. For instance, when the model predicts a word expressing richer semantics than the label, it will be penalized and optimized to prefer more concise expressions, referred to as conciseness optimization. In contrast, predictions that are more concise than labels lead to richness optimization. Such conflicting optimization directions could eventually result in the model generating general descriptions. In this work, we introduce Semipermeable MaxImum Likelihood Estimation (SMILE), which allows richness optimization while blocking conciseness optimization, thus encouraging the model to generate longer captions with more details. Extensive experiments on two mainstream image captioning datasets MSCOCO and Flickr30K demonstrate that SMILE significantly enhances the descriptiveness of generated captions. We further provide in-depth investigations to facilitate a better understanding of how SMILE works.
From Long to Short: LLMs Excel at Trimming Own Reasoning Chains
O1/R1 style large reasoning models (LRMs) signal a substantial leap forward over conventional instruction-following LLMs. By applying test-time scaling to generate extended reasoning paths, they establish many SOTAs across a wide range of complex reasoning tasks. However, recent studies show that LRMs are prone to suffer from overthinking -- the tendency to overcomplicate simple problems, leading to excessive strategy switching and long, convoluted reasoning traces that hinder their interpretability. To mitigate this issue, we conduct a systematic investigation into the reasoning efficiency of a broad set of LRMs and uncover a common dilemma: the difficulty in balancing multiple generation objectives such as correctness and brevity. Based on this discovery, we propose a test-time scaling method, EDIT (Efficient Dynamic Inference Trimming), which efficiently guides LRMs to identify the shortest correct reasoning paths at test time. EDIT employs constraint-guided generation while jointly tracking length and answer distributions under varying constraints, allowing it to select responses that strike an optimal balance between conciseness and correctness. Extensive experiments across diverse models and datasets show that EDIT substantially enhance the reasoning efficiency, producing compact yet informative outputs that improve readability and user experience.
ReCUT: Balancing Reasoning Length and Accuracy in LLMs via Stepwise Trails and Preference Optimization
Recent advances in Chain-of-Thought (CoT) prompting have substantially improved the reasoning capabilities of Large Language Models (LLMs). However, these methods often suffer from overthinking, leading to unnecessarily lengthy or redundant reasoning traces. Existing approaches attempt to mitigate this issue through curating multiple reasoning chains for training LLMs, but their effectiveness is often constrained by the quality of the generated data and prone to overfitting. To address the challenge, we propose Reasoning Compression ThroUgh Stepwise Trials (ReCUT), a novel method aimed at balancing the accuracy and length of reasoning trajectory. Specifically, ReCUT employs a stepwise exploration mechanism and a long-short switched sampling strategy, enabling LLMs to incrementally generate diverse reasoning paths. These paths are evaluated and used to construct preference pairs to train two specialized models (Gemini LLMs)-one optimized for reasoning accuracy, the other for shorter reasoning. A final integrated model is obtained by interpolating the parameters of these two models. Experimental results across multiple math reasoning datasets and backbone models demonstrate that ReCUT significantly reduces reasoning lengths by approximately 30-50%, while maintaining or improving reasoning accuracy compared to various baselines. All codes and data will be released via https://github.com/NEUIR/ReCUT.
Hawkeye:Efficient Reasoning with Model Collaboration
Chain-of-Thought (CoT) reasoning has demonstrated remarkable effectiveness in enhancing the reasoning abilities of large language models (LLMs). However, its efficiency remains a challenge due to the generation of excessive intermediate reasoning tokens, which introduce semantic redundancy and overly detailed reasoning steps. Moreover, computational expense and latency are significant concerns, as the cost scales with the number of output tokens, including those intermediate steps. In this work, we observe that most CoT tokens are unnecessary, and retaining only a small portion of them is sufficient for producing high-quality responses. Inspired by this, we propose HAWKEYE, a novel post-training and inference framework where a large model produces concise CoT instructions to guide a smaller model in response generation. HAWKEYE quantifies redundancy in CoT reasoning and distills high-density information via reinforcement learning. By leveraging these concise CoTs, HAWKEYE is able to expand responses while reducing token usage and computational cost significantly. Our evaluation shows that HAWKEYE can achieve comparable response quality using only 35% of the full CoTs, while improving clarity, coherence, and conciseness by approximately 10%. Furthermore, HAWKEYE can accelerate end-to-end reasoning by up to 3.4x on complex math tasks while reducing inference cost by up to 60%. HAWKEYE will be open-sourced and the models will be available soon.
Pareto Multi-Objective Alignment for Language Models
Large language models (LLMs) are increasingly deployed in real-world applications that require careful balancing of multiple, often conflicting, objectives, such as informativeness versus conciseness, or helpfulness versus creativity. However, current alignment methods, primarily based on RLHF, optimize LLMs toward a single reward function, resulting in rigid behavior that fails to capture the complexity and diversity of human preferences. This limitation hinders the adaptability of LLMs to practical scenarios, making multi-objective alignment (MOA) a critical yet underexplored area. To bridge this gap, we propose Pareto Multi-Objective Alignment (PAMA), a principled and computationally efficient algorithm designed explicitly for MOA in LLMs. In contrast to computationally prohibitive multi-objective optimization (MOO) methods, PAMA transforms multi-objective RLHF into a convex optimization with a closed-form solution, significantly enhancing scalability. Traditional MOO approaches suffer from prohibitive O(n^2*d) complexity, where d represents the number of model parameters, typically in the billions for LLMs, rendering direct optimization infeasible. PAMA reduces this complexity to O(n) where n is the number of objectives, enabling optimization to be completed within milliseconds. We provide theoretical guarantees that PAMA converges to a Pareto stationary point, where no objective can be improved without degrading at least one other. Extensive experiments across language models ranging from 125M to 7B parameters demonstrate PAMA's robust and effective MOA capabilities, aligning with its theoretical advantages. PAMA provides a highly efficient solution to the MOA problem that was previously considered intractable, offering a practical and theoretically grounded approach to aligning LLMs with diverse human values, paving the way for versatile and adaptable real-world AI deployments.
Observe-R1: Unlocking Reasoning Abilities of MLLMs with Dynamic Progressive Reinforcement Learning
Reinforcement Learning (RL) has shown promise in improving the reasoning abilities of Large Language Models (LLMs). However, the specific challenges of adapting RL to multimodal data and formats remain relatively unexplored. In this work, we present Observe-R1, a novel framework aimed at enhancing the reasoning capabilities of multimodal large language models (MLLMs). We draw inspirations from human learning progression--from simple to complex and easy to difficult, and propose a gradual learning paradigm for MLLMs. To this end, we construct the NeuraLadder dataset, which is organized and sampled according to the difficulty and complexity of data samples for RL training. To tackle multimodal tasks, we introduce a multimodal format constraint that encourages careful observation of images, resulting in enhanced visual abilities and clearer and more structured responses. Additionally, we implement a bonus reward system that favors concise, correct answers within a length constraint, alongside a dynamic weighting mechanism that prioritizes uncertain and medium-difficulty problems, ensuring that more informative samples have a greater impact on training. Our experiments with the Qwen2.5-VL-3B and Qwen2.5-VL-7B models on 20k samples from the NeuraLadder dataset show that Observe-R1 outperforms a series of larger reasoning models on both reasoning and general benchmarks, achieving superior clarity and conciseness in reasoning chains. Ablation studies validate the effectiveness of our strategies, highlighting the robustness and generalization of our approach. The dataset and code will be released at https://github.com/zrguo/Observe-R1.
KnowsLM: A framework for evaluation of small language models for knowledge augmentation and humanised conversations
In the evolving landscape of conversational AI, generating concise, context-aware, and human-like dialogue using small and medium-sized language models (LLMs) remains a complex challenge. This study investigates the influence of LoRA rank, dataset scale, and prompt prefix design on both knowledge retention and stylistic alignment. While fine-tuning improves fluency and enables stylistic customization, its ability to integrate unseen knowledge is constrained -- particularly with smaller datasets. Conversely, RAG-augmented models, equipped to incorporate external documents at inference, demonstrated superior factual accuracy on out-of-distribution prompts, though they lacked the stylistic consistency achieved by fine-tuning. Evaluations by LLM-based judges across knowledge accuracy, conversational quality, and conciseness suggest that fine-tuning is best suited for tone adaptation, whereas RAG excels at real-time knowledge augmentation.
Robust Multi-Objective Controlled Decoding of Large Language Models
Test-time alignment of Large Language Models (LLMs) to human preferences offers a flexible way to generate responses aligned to diverse objectives without extensive retraining of LLMs. Existing methods achieve alignment to multiple objectives simultaneously (e.g., instruction-following, helpfulness, conciseness) by optimizing their corresponding reward functions. However, they often rely on predefined weights or optimize for averages, sacrificing one objective for another and leading to unbalanced outcomes. To address this, we introduce Robust Multi-Objective Decoding (RMOD), a novel inference-time algorithm that optimizes for improving worst-case rewards. RMOD formalizes the robust decoding problem as a maximin two-player game between reward weights and the sampling policy, solving for the Nash equilibrium. We show that the game reduces to a convex optimization problem to find the worst-case weights, while the best response policy can be computed analytically. We also introduce a practical RMOD variant designed for efficient decoding with contemporary LLMs, incurring minimal computational overhead compared to non-robust Multi-Objective Decoding (MOD) methods. Our experimental results showcase the effectiveness of RMOD in generating responses equitably aligned with diverse objectives, outperforming baselines up to 20%.
Prompting and Fine-Tuning of Small LLMs for Length-Controllable Telephone Call Summarization
This paper explores the rapid development of a telephone call summarization system utilizing large language models (LLMs). Our approach involves initial experiments with prompting existing LLMs to generate summaries of telephone conversations, followed by the creation of a tailored synthetic training dataset utilizing stronger frontier models. We place special focus on the diversity of the generated data and on the ability to control the length of the generated summaries to meet various use-case specific requirements. The effectiveness of our method is evaluated using two state-of-the-art LLM-as-a-judge-based evaluation techniques to ensure the quality and relevance of the summaries. Our results show that fine-tuned Llama-2-7B-based summarization model performs on-par with GPT-4 in terms of factual accuracy, completeness and conciseness. Our findings demonstrate the potential for quickly bootstrapping a practical and efficient call summarization system.
Concise Thoughts: Impact of Output Length on LLM Reasoning and Cost
Today's large language models (LLMs) can solve challenging question-answering tasks, and prompt engineering techniques, such as chain-of-thought (CoT), have gained attention for enhancing the explanation and correctness of outputs. Nevertheless, models require significant time to generate answers augmented with lengthy reasoning details. To address this issue, this paper analyzes the impact of output lengths on LLM inference pipelines and proposes novel metrics to evaluate them in terms of correct conciseness. It also examines the impact of controlling output length through a refined prompt engineering strategy, Constrained-CoT (CCoT), which encourages the model to limit output length. Experiments on pre-trained LLMs demonstrated the benefit of the proposed metrics and the effectiveness of CCoT across different models. For instance, constraining the reasoning of LLaMA2-70b to 100 words improves the accuracy from 36.01\% (CoT) to 41.07\% (CCoT) on the GSM8K dataset, while reducing the average output length by 28 words.
QGEval: A Benchmark for Question Generation Evaluation
Automatically generated questions often suffer from problems such as unclear expression or factual inaccuracies, requiring a reliable and comprehensive evaluation of their quality. Human evaluation is frequently used in the field of question generation (QG) and is one of the most accurate evaluation methods. It also serves as the standard for automatic metrics. However, there is a lack of unified evaluation criteria, which hampers the development of both QG technologies and automatic evaluation methods. To address this, we propose QGEval, a multi-dimensional Evaluation benchmark for Question Generation, which evaluates both generated questions and existing automatic metrics across 7 dimensions: fluency, clarity, conciseness, relevance, consistency, answerability, and answer consistency. We demonstrate the appropriateness of these dimensions by examining their correlations and distinctions. Analysis with QGEval reveals that 1) most QG models perform unsatisfactorily in terms of answerability and answer consistency, and 2) existing metrics fail to align well with human assessments when evaluating generated questions across the 7 dimensions. We expect this work to foster the development of both QG technologies and automatic metrics for QG.
An Information Bottleneck Perspective for Effective Noise Filtering on Retrieval-Augmented Generation
Retrieval-augmented generation integrates the capabilities of large language models with relevant information retrieved from an extensive corpus, yet encounters challenges when confronted with real-world noisy data. One recent solution is to train a filter module to find relevant content but only achieve suboptimal noise compression. In this paper, we propose to introduce the information bottleneck theory into retrieval-augmented generation. Our approach involves the filtration of noise by simultaneously maximizing the mutual information between compression and ground output, while minimizing the mutual information between compression and retrieved passage. In addition, we derive the formula of information bottleneck to facilitate its application in novel comprehensive evaluations, the selection of supervised fine-tuning data, and the construction of reinforcement learning rewards. Experimental results demonstrate that our approach achieves significant improvements across various question answering datasets, not only in terms of the correctness of answer generation but also in the conciseness with 2.5% compression rate.
DocuMint: Docstring Generation for Python using Small Language Models
Effective communication, specifically through documentation, is the beating heart of collaboration among contributors in software development. Recent advancements in language models (LMs) have enabled the introduction of a new type of actor in that ecosystem: LM-powered assistants capable of code generation, optimization, and maintenance. Our study investigates the efficacy of small language models (SLMs) for generating high-quality docstrings by assessing accuracy, conciseness, and clarity, benchmarking performance quantitatively through mathematical formulas and qualitatively through human evaluation using Likert scale. Further, we introduce DocuMint, as a large-scale supervised fine-tuning dataset with 100,000 samples. In quantitative experiments, Llama 3 8B achieved the best performance across all metrics, with conciseness and clarity scores of 0.605 and 64.88, respectively. However, under human evaluation, CodeGemma 7B achieved the highest overall score with an average of 8.3 out of 10 across all metrics. Fine-tuning the CodeGemma 2B model using the DocuMint dataset led to significant improvements in performance across all metrics, with gains of up to 22.5% in conciseness. The fine-tuned model and the dataset can be found in HuggingFace and the code can be found in the repository.
A Benchmark of Domain-Adapted Large Language Models for Generating Brief Hospital Course Summaries
Brief hospital course (BHC) summaries are common clinical documents generated by summarizing clinical notes. While large language models (LLMs) depict remarkable capabilities in automating real-world tasks, their capabilities for healthcare applications such as BHC synthesis have not been shown. To enable the adaptation of LLMs for BHC synthesis, we introduce a novel benchmark consisting of a pre-processed dataset extracted from MIMIC-IV notes, encapsulating clinical note, and brief hospital course (BHC) pairs. We assess the performance of two general-purpose LLMs and three healthcare-adapted LLMs to improve BHC synthesis from clinical notes. Using clinical notes as input for generating BHCs, we apply prompting-based (using in-context learning) and fine-tuning-based adaptation strategies to three open-source LLMs (Clinical-T5-Large, Llama2-13B, FLAN-UL2) and two proprietary LLMs (GPT-3.5, GPT-4). We quantitatively evaluate the performance of these LLMs across varying context-length inputs using conventional natural language similarity metrics. We further perform a qualitative study where five diverse clinicians blindly compare clinician-written BHCs and two LLM-generated BHCs for 30 samples across metrics of comprehensiveness, conciseness, factual correctness, and fluency. Overall, we present a new benchmark and pre-processed dataset for using LLMs in BHC synthesis from clinical notes. We observe high-quality summarization performance for both in-context proprietary and fine-tuned open-source LLMs using both quantitative metrics and a qualitative clinical reader study. We propose our work as a benchmark to motivate future works to adapt and assess the performance of LLMs in BHC synthesis.
SEAHORSE: A Multilingual, Multifaceted Dataset for Summarization Evaluation
Reliable automatic evaluation of summarization systems is challenging due to the multifaceted and subjective nature of the task. This is especially the case for languages other than English, where human evaluations are scarce. In this work, we introduce SEAHORSE, a dataset for multilingual, multifaceted summarization evaluation. SEAHORSE consists of 96K summaries with human ratings along 6 quality dimensions: comprehensibility, repetition, grammar, attribution, main ideas, and conciseness, covering 6 languages, 9 systems and 4 datasets. As a result of its size and scope, SEAHORSE can serve both as a benchmark to evaluate learnt metrics, as well as a large-scale resource for training such metrics. We show that metrics trained with SEAHORSE achieve strong performance on the out-of-domain meta-evaluation benchmarks TRUE (Honovich et al., 2022) and mFACE (Aharoni et al., 2022). We make SEAHORSE publicly available for future research on multilingual and multifaceted summarization evaluation.
Data Cards: Purposeful and Transparent Dataset Documentation for Responsible AI
As research and industry moves towards large-scale models capable of numerous downstream tasks, the complexity of understanding multi-modal datasets that give nuance to models rapidly increases. A clear and thorough understanding of a dataset's origins, development, intent, ethical considerations and evolution becomes a necessary step for the responsible and informed deployment of models, especially those in people-facing contexts and high-risk domains. However, the burden of this understanding often falls on the intelligibility, conciseness, and comprehensiveness of the documentation. It requires consistency and comparability across the documentation of all datasets involved, and as such documentation must be treated as a user-centric product in and of itself. In this paper, we propose Data Cards for fostering transparent, purposeful and human-centered documentation of datasets within the practical contexts of industry and research. Data Cards are structured summaries of essential facts about various aspects of ML datasets needed by stakeholders across a dataset's lifecycle for responsible AI development. These summaries provide explanations of processes and rationales that shape the data and consequently the models, such as upstream sources, data collection and annotation methods; training and evaluation methods, intended use; or decisions affecting model performance. We also present frameworks that ground Data Cards in real-world utility and human-centricity. Using two case studies, we report on desirable characteristics that support adoption across domains, organizational structures, and audience groups. Finally, we present lessons learned from deploying over 20 Data Cards.
Learning to Summarize from LLM-generated Feedback
Developing effective text summarizers remains a challenge due to issues like hallucinations, key information omissions, and verbosity in LLM-generated summaries. This work explores using LLM-generated feedback to improve summary quality by aligning the summaries with human preferences for faithfulness, completeness, and conciseness. We introduce FeedSum, a large-scale dataset containing multi-dimensional LLM feedback on summaries of varying quality across diverse domains. Our experiments show how feedback quality, dimensionality, and granularity influence preference learning, revealing that high-quality, multi-dimensional, fine-grained feedback significantly improves summary generation. We also compare two methods for using this feedback: supervised fine-tuning and direct preference optimization. Finally, we introduce SummLlama3-8b, a model that outperforms the nearly 10x larger Llama3-70b-instruct in generating human-preferred summaries, demonstrating that smaller models can achieve superior performance with appropriate training. The full dataset will be released soon. The SummLlama3-8B model is now available at https://huggingface.co/DISLab/SummLlama3-8B.
Beyond Token Length: Step Pruner for Efficient and Accurate Reasoning in Large Language Models
Large Reasoning Models (LRMs) demonstrate strong performance on complex tasks but often suffer from excessive verbosity, known as "overthinking." Existing solutions via reinforcement learning (RL) typically penalize generated tokens to promote conciseness. However, these methods encounter two challenges: responses with fewer tokens do not always correspond to fewer reasoning steps, and models may develop hacking behavior in later stages of training by discarding reasoning steps to minimize token usage. In this work, we introduce Step Pruner (SP), an RL framework that steers LRMs toward more efficient reasoning by favoring compact reasoning steps. Our step-aware reward function prioritizes correctness while imposing penalties for redundant steps, and withholds rewards for incorrect responses to prevent the reinforcement of erroneous reasoning. Moreover, we propose a dynamic stopping mechanism: when the length of any output step exceeds the upper limit, we halt updates to prevent hacking behavior caused by merging steps. Extensive experiments across four reasoning benchmarks demonstrate that SP achieves state-of-the-art accuracy while significantly reducing response length. For instance, on AIME24, SP reduces token usage by 69.7\%.
Reasoning or Not? A Comprehensive Evaluation of Reasoning LLMs for Dialogue Summarization
Dialogue summarization is a challenging task with significant practical value in customer service, meeting analysis, and conversational AI. Although large language models (LLMs) have achieved substantial progress in summarization tasks, the performance of step-by-step reasoning architectures-specifically Long Chain-of-Thought (CoT) implementations such as OpenAI-o1 and DeepSeek-R1-remains unexplored for dialogue scenarios requiring concurrent abstraction and conciseness. In this work, we present the first comprehensive and systematic evaluation of state-of-the-art reasoning LLMs and non-reasoning LLMs across three major paradigms-generic, role-oriented, and query-oriented dialogue summarization. Our study spans diverse languages, domains, and summary lengths, leveraging strong benchmarks (SAMSum, DialogSum, CSDS, and QMSum) and advanced evaluation protocols that include both LLM-based automatic metrics and human-inspired criteria. Contrary to trends in other reasoning-intensive tasks, our findings show that explicit stepwise reasoning does not consistently improve dialogue summarization quality. Instead, reasoning LLMs are often prone to verbosity, factual inconsistencies, and less concise summaries compared to their non-reasoning counterparts. Through scenario-specific analyses and detailed case studies, we further identify when and why explicit reasoning may fail to benefit-or even hinder-summarization in complex dialogue contexts. Our work provides new insights into the limitations of current reasoning LLMs and highlights the need for targeted modeling and evaluation strategies for real-world dialogue summarization.
Can LVLMs and Automatic Metrics Capture Underlying Preferences of Blind and Low-Vision Individuals for Navigational Aid?
Vision is a primary means of how humans perceive the environment, but Blind and Low-Vision (BLV) people need assistance understanding their surroundings, especially in unfamiliar environments. The emergence of semantic-based systems as assistance tools for BLV users has motivated many researchers to explore responses from Large Vision-Language Models (LVLMs). However, it has yet been studied preferences of BLV users on diverse types/styles of responses from LVLMs, specifically for navigational aid. To fill this gap, we first construct Eye4B dataset, consisting of human-validated 1.1k curated outdoor/indoor scenes with 5-10 relevant requests per scene. Then, we conduct an in-depth user study with eight BLV users to evaluate their preferences on six LVLMs from five perspectives: Afraidness, Nonactionability, Sufficiency, and Conciseness. Finally, we introduce Eye4B benchmark for evaluating alignment between widely used model-based image-text metrics and our collected BLV preferences. Our work can be set as a guideline for developing BLV-aware LVLMs towards a Barrier-Free AI system.
Fact :Teaching MLLMs with Faithful, Concise and Transferable Rationales
The remarkable performance of Multimodal Large Language Models (MLLMs) has unequivocally demonstrated their proficient understanding capabilities in handling a wide array of visual tasks. Nevertheless, the opaque nature of their black-box reasoning processes persists as an enigma, rendering them uninterpretable and struggling with hallucination. Their ability to execute intricate compositional reasoning tasks is also constrained, culminating in a stagnation of learning progression for these models. In this work, we introduce Fact, a novel paradigm designed to generate multimodal rationales that are faithful, concise, and transferable for teaching MLLMs. This paradigm utilizes verifiable visual programming to generate executable code guaranteeing faithfulness and precision. Subsequently, through a series of operations including pruning, merging, and bridging, the rationale enhances its conciseness. Furthermore, we filter rationales that can be transferred to end-to-end paradigms from programming paradigms to guarantee transferability. Empirical evidence from experiments demonstrates the superiority of our method across models of varying parameter sizes, significantly enhancing their compositional reasoning and generalization ability. Our approach also reduces hallucinations owing to its high correlation between images and text.
Walk Before You Run! Concise LLM Reasoning via Reinforcement Learning
As test-time scaling becomes a pivotal research frontier in Large Language Models (LLMs) development, contemporary and advanced post-training methodologies increasingly focus on extending the generation length of long Chain-of-Thought (CoT) responses to enhance reasoning capabilities toward DeepSeek R1-like performance. However, recent studies reveal a persistent overthinking phenomenon in state-of-the-art reasoning models, manifesting as excessive redundancy or repetitive thinking patterns in long CoT responses. To address this issue, in this paper, we propose a simple yet effective two-stage reinforcement learning framework for achieving concise reasoning in LLMs, named ConciseR. Specifically, the first stage, using more training steps, aims to incentivize the model's reasoning capabilities via Group Relative Policy Optimization with clip-higher and dynamic sampling components (GRPO++), and the second stage, using fewer training steps, explicitly enforces conciseness and improves efficiency via Length-aware Group Relative Policy Optimization (L-GRPO). Significantly, ConciseR only optimizes response length once all rollouts of a sample are correct, following the "walk before you run" principle. Extensive experimental results demonstrate that our ConciseR model, which generates more concise CoT reasoning responses, outperforms recent state-of-the-art reasoning models with zero RL paradigm across AIME 2024, MATH-500, AMC 2023, Minerva, and Olympiad benchmarks.
