new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 19

d-SEAMS: Deferred Structural Elucidation Analysis for Molecular Simulations

Structural analyses are an integral part of computational research on nucleation and supercooled water, whose accuracy and efficiency can impact the validity and feasibility of such studies. The underlying molecular mechanisms of these often elusive and computationally expensive processes can be inferred from the evolution of ice-like structures, determined using appropriate structural analysis techniques. We present d-SEAMS, a free and open-source post-processing engine for the analysis of molecular dynamics trajectories, which is specifically able to qualitatively classify ice structures, in both strong confinement and bulk systems. For the first time, recent algorithms for confined ice structure determination have been implemented, along with topological network criteria for bulk ice structure determination. Recognizing the need for customization in structural analysis, d-SEAMS has a unique code architecture, built with `nix`, employing a `YAML`-`Lua` scripting pipeline. The software has been designed to be user-friendly and easy to extend. The engine outputs are compatible with popular graphics software suites, allowing for immediate visual insights into the systems studied. We demonstrate the features of d-SEAMS by using it to analyze nucleation in the bulk regime and for quasi-one and quasi-two-dimensional systems. Structural time evolution and quantitative metrics are determined for heterogenous ice nucleation on a silver-exposed beta-AgI surface, homogenous ice nucleation, flat monolayer square ice formation and freezing of an ice nanotube.

  • 3 authors
·
Sep 21, 2019

Amortized Sampling with Transferable Normalizing Flows

Efficient equilibrium sampling of molecular conformations remains a core challenge in computational chemistry and statistical inference. Classical approaches such as molecular dynamics or Markov chain Monte Carlo inherently lack amortization; the computational cost of sampling must be paid in-full for each system of interest. The widespread success of generative models has inspired interest into overcoming this limitation through learning sampling algorithms. Despite performing on par with conventional methods when trained on a single system, learned samplers have so far demonstrated limited ability to transfer across systems. We prove that deep learning enables the design of scalable and transferable samplers by introducing Prose, a 280 million parameter all-atom transferable normalizing flow trained on a corpus of peptide molecular dynamics trajectories up to 8 residues in length. Prose draws zero-shot uncorrelated proposal samples for arbitrary peptide systems, achieving the previously intractable transferability across sequence length, whilst retaining the efficient likelihood evaluation of normalizing flows. Through extensive empirical evaluation we demonstrate the efficacy of Prose as a proposal for a variety of sampling algorithms, finding a simple importance sampling-based finetuning procedure to achieve superior performance to established methods such as sequential Monte Carlo on unseen tetrapeptides. We open-source the Prose codebase, model weights, and training dataset, to further stimulate research into amortized sampling methods and finetuning objectives.

  • 8 authors
·
Aug 25