new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 19

Building on Efficient Foundations: Effectively Training LLMs with Structured Feedforward Layers

State-of-the-art results in large language models (LLMs) often rely on scale, which becomes computationally expensive. This has sparked a research agenda to reduce these models' parameter counts and computational costs without significantly impacting their performance. Our study focuses on transformer-based LLMs, specifically targeting the computationally intensive feedforward networks (FFNs), which are less studied than attention blocks. We consider three structured linear parameterizations of the FFN using efficient low-rank and block-diagonal matrices. In contrast to many previous works that examined these approximations, our study i) explores these structures from a training-from-scratch perspective, ii) scales up to 1.3B parameters, and iii) is conducted within recent Transformer-based LLMs rather than convolutional architectures. We demonstrate that these structures can lead to actual computational gains in various scenarios, including online decoding when using a pre-merge technique. Additionally, we propose a novel training regime, called self-guided training, aimed at improving the poor training dynamics that these approximations exhibit when used from initialization. Interestingly, the scaling performance of structured matrices is explored, revealing steeper curves in scaling training FLOPs, along with a favorable scaling trend in the overtraining regime. Specifically, we show that wide and structured networks can utilize training FLOPs more efficiently, with fewer parameters and lower loss than dense models at their optimal trade-off. Our code is available at https://github.com/CLAIRE-Labo/StructuredFFN/tree/main.

  • 4 authors
·
Jun 24, 2024

Language models scale reliably with over-training and on downstream tasks

Scaling laws are useful guides for developing language models, but there are still gaps between current scaling studies and how language models are ultimately trained and evaluated. For instance, scaling is usually studied in the compute-optimal training regime (i.e., "Chinchilla optimal" regime); however, in practice, models are often over-trained to reduce inference costs. Moreover, scaling laws mostly predict loss on next-token prediction, but ultimately models are compared based on downstream task performance. In this paper, we address both shortcomings. To do so, we create a testbed of 104 models with 0.011B to 6.9B parameters trained with various numbers of tokens on three data distributions. First, we investigate scaling in the over-trained regime. We fit scaling laws that extrapolate in both the number of model parameters and the ratio of training tokens to parameters. This enables us to predict the validation loss of a 1.4B parameter, 900B token run (i.e., 32times over-trained) and a 6.9B parameter, 138B token runx2014each from experiments that take 300times less compute. Second, we relate the perplexity of a language model to its downstream task performance via a power law. We use this law to predict top-1 error averaged over downstream tasks for the two aforementioned models using experiments that take 20times less compute. Our experiments are available at https://github.com/mlfoundations/scaling.

  • 23 authors
·
Mar 13, 2024 1