new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 21

REAL: Resilience and Adaptation using Large Language Models on Autonomous Aerial Robots

Large Language Models (LLMs) pre-trained on internet-scale datasets have shown impressive capabilities in code understanding, synthesis, and general purpose question-and-answering. Key to their performance is the substantial prior knowledge acquired during training and their ability to reason over extended sequences of symbols, often presented in natural language. In this work, we aim to harness the extensive long-term reasoning, natural language comprehension, and the available prior knowledge of LLMs for increased resilience and adaptation in autonomous mobile robots. We introduce REAL, an approach for REsilience and Adaptation using LLMs. REAL provides a strategy to employ LLMs as a part of the mission planning and control framework of an autonomous robot. The LLM employed by REAL provides (i) a source of prior knowledge to increase resilience for challenging scenarios that the system had not been explicitly designed for; (ii) a way to interpret natural-language and other log/diagnostic information available in the autonomy stack, for mission planning; (iii) a way to adapt the control inputs using minimal user-provided prior knowledge about the dynamics/kinematics of the robot. We integrate REAL in the autonomy stack of a real multirotor, querying onboard an offboard LLM at 0.1-1.0 Hz as part the robot's mission planning and control feedback loops. We demonstrate in real-world experiments the ability of the LLM to reduce the position tracking errors of a multirotor under the presence of (i) errors in the parameters of the controller and (ii) unmodeled dynamics. We also show (iii) decision making to avoid potentially dangerous scenarios (e.g., robot oscillates) that had not been explicitly accounted for in the initial prompt design.

  • 6 authors
·
Nov 2, 2023

Model-Based Control with Sparse Neural Dynamics

Learning predictive models from observations using deep neural networks (DNNs) is a promising new approach to many real-world planning and control problems. However, common DNNs are too unstructured for effective planning, and current control methods typically rely on extensive sampling or local gradient descent. In this paper, we propose a new framework for integrated model learning and predictive control that is amenable to efficient optimization algorithms. Specifically, we start with a ReLU neural model of the system dynamics and, with minimal losses in prediction accuracy, we gradually sparsify it by removing redundant neurons. This discrete sparsification process is approximated as a continuous problem, enabling an end-to-end optimization of both the model architecture and the weight parameters. The sparsified model is subsequently used by a mixed-integer predictive controller, which represents the neuron activations as binary variables and employs efficient branch-and-bound algorithms. Our framework is applicable to a wide variety of DNNs, from simple multilayer perceptrons to complex graph neural dynamics. It can efficiently handle tasks involving complicated contact dynamics, such as object pushing, compositional object sorting, and manipulation of deformable objects. Numerical and hardware experiments show that, despite the aggressive sparsification, our framework can deliver better closed-loop performance than existing state-of-the-art methods.

  • 7 authors
·
Dec 20, 2023

Disengagement Cause-and-Effect Relationships Extraction Using an NLP Pipeline

The advancement in machine learning and artificial intelligence is promoting the testing and deployment of autonomous vehicles (AVs) on public roads. The California Department of Motor Vehicles (CA DMV) has launched the Autonomous Vehicle Tester Program, which collects and releases reports related to Autonomous Vehicle Disengagement (AVD) from autonomous driving. Understanding the causes of AVD is critical to improving the safety and stability of the AV system and provide guidance for AV testing and deployment. In this work, a scalable end-to-end pipeline is constructed to collect, process, model, and analyze the disengagement reports released from 2014 to 2020 using natural language processing deep transfer learning. The analysis of disengagement data using taxonomy, visualization and statistical tests revealed the trends of AV testing, categorized cause frequency, and significant relationships between causes and effects of AVD. We found that (1) manufacturers tested AVs intensively during the Spring and/or Winter, (2) test drivers initiated more than 80% of the disengagement while more than 75% of the disengagement were led by errors in perception, localization & mapping, planning and control of the AV system itself, and (3) there was a significant relationship between the initiator of AVD and the cause category. This study serves as a successful practice of deep transfer learning using pre-trained models and generates a consolidated disengagement database allowing further investigation for other researchers.

  • 3 authors
·
Nov 5, 2021

JARVIS-1: Open-World Multi-task Agents with Memory-Augmented Multimodal Language Models

Achieving human-like planning and control with multimodal observations in an open world is a key milestone for more functional generalist agents. Existing approaches can handle certain long-horizon tasks in an open world. However, they still struggle when the number of open-world tasks could potentially be infinite and lack the capability to progressively enhance task completion as game time progresses. We introduce JARVIS-1, an open-world agent that can perceive multimodal input (visual observations and human instructions), generate sophisticated plans, and perform embodied control, all within the popular yet challenging open-world Minecraft universe. Specifically, we develop JARVIS-1 on top of pre-trained multimodal language models, which map visual observations and textual instructions to plans. The plans will be ultimately dispatched to the goal-conditioned controllers. We outfit JARVIS-1 with a multimodal memory, which facilitates planning using both pre-trained knowledge and its actual game survival experiences. In our experiments, JARVIS-1 exhibits nearly perfect performances across over 200 varying tasks from the Minecraft Universe Benchmark, ranging from entry to intermediate levels. JARVIS-1 has achieved a completion rate of 12.5% in the long-horizon diamond pickaxe task. This represents a significant increase up to 5 times compared to previous records. Furthermore, we show that JARVIS-1 is able to self-improve following a life-long learning paradigm thanks to multimodal memory, sparking a more general intelligence and improved autonomy. The project page is available at https://craftjarvis-jarvis1.github.io.

  • 12 authors
·
Nov 10, 2023 1

FindingDory: A Benchmark to Evaluate Memory in Embodied Agents

Large vision-language models have recently demonstrated impressive performance in planning and control tasks, driving interest in their application to real-world robotics. However, deploying these models for reasoning in embodied contexts is limited by their ability to incorporate long-term experience collected across multiple days and represented by vast collections of images. Current VLMs typically struggle to process more than a few hundred images concurrently, highlighting the need for more efficient mechanisms to handle long-term memory in embodied settings. To effectively evaluate these models for long-horizon control, a benchmark must specifically target scenarios where memory is crucial for success. Existing long-video QA benchmarks overlook embodied challenges like object manipulation and navigation, which demand low-level skills and fine-grained reasoning over past interactions. Moreover, effective memory integration in embodied agents involves both recalling relevant historical information and executing actions based on that information, making it essential to study these aspects together rather than in isolation. In this work, we introduce a new benchmark for long-range embodied tasks in the Habitat simulator. This benchmark evaluates memory-based capabilities across 60 tasks requiring sustained engagement and contextual awareness in an environment. The tasks can also be procedurally extended to longer and more challenging versions, enabling scalable evaluation of memory and reasoning. We also present baselines that integrate state-of-the-art VLMs with low level navigation policies, assessing their performance on these memory-intensive tasks and highlight areas for improvement.

  • 5 authors
·
Jun 18

Chat with the Environment: Interactive Multimodal Perception Using Large Language Models

Programming robot behavior in a complex world faces challenges on multiple levels, from dextrous low-level skills to high-level planning and reasoning. Recent pre-trained Large Language Models (LLMs) have shown remarkable reasoning ability in few-shot robotic planning. However, it remains challenging to ground LLMs in multimodal sensory input and continuous action output, while enabling a robot to interact with its environment and acquire novel information as its policies unfold. We develop a robot interaction scenario with a partially observable state, which necessitates a robot to decide on a range of epistemic actions in order to sample sensory information among multiple modalities, before being able to execute the task correctly. An interactive perception framework is therefore proposed with an LLM as its backbone, whose ability is exploited to instruct epistemic actions and to reason over the resulting multimodal sensations (vision, sound, haptics, proprioception), as well as to plan an entire task execution based on the interactively acquired information. Our study demonstrates that LLMs can provide high-level planning and reasoning skills and control interactive robot behavior in a multimodal environment, while multimodal modules with the context of the environmental state help ground the LLMs and extend their processing ability. The project website can be found at https://matcha-model.github.io{blue{https://matcha-model.github.io/}}.

  • 5 authors
·
Mar 14, 2023

Action Flow Matching for Continual Robot Learning

Continual learning in robotics seeks systems that can constantly adapt to changing environments and tasks, mirroring human adaptability. A key challenge is refining dynamics models, essential for planning and control, while addressing issues such as safe adaptation, catastrophic forgetting, outlier management, data efficiency, and balancing exploration with exploitation -- all within task and onboard resource constraints. Towards this goal, we introduce a generative framework leveraging flow matching for online robot dynamics model alignment. Rather than executing actions based on a misaligned model, our approach refines planned actions to better match with those the robot would take if its model was well aligned. We find that by transforming the actions themselves rather than exploring with a misaligned model -- as is traditionally done -- the robot collects informative data more efficiently, thereby accelerating learning. Moreover, we validate that the method can handle an evolving and possibly imperfect model while reducing, if desired, the dependency on replay buffers or legacy model snapshots. We validate our approach using two platforms: an unmanned ground vehicle and a quadrotor. The results highlight the method's adaptability and efficiency, with a record 34.2\% higher task success rate, demonstrating its potential towards enabling continual robot learning. Code: https://github.com/AlejandroMllo/action_flow_matching.

  • 2 authors
·
Apr 25 1

Towards a Unified Understanding of Robot Manipulation: A Comprehensive Survey

Embodied intelligence has witnessed remarkable progress in recent years, driven by advances in computer vision, natural language processing, and the rise of large-scale multimodal models. Among its core challenges, robot manipulation stands out as a fundamental yet intricate problem, requiring the seamless integration of perception, planning, and control to enable interaction within diverse and unstructured environments. This survey presents a comprehensive overview of robotic manipulation, encompassing foundational background, task-organized benchmarks and datasets, and a unified taxonomy of existing methods. We extend the classical division between high-level planning and low-level control by broadening high-level planning to include language, code, motion, affordance, and 3D representations, while introducing a new taxonomy of low-level learning-based control grounded in training paradigms such as input modeling, latent learning, and policy learning. Furthermore, we provide the first dedicated taxonomy of key bottlenecks, focusing on data collection, utilization, and generalization, and conclude with an extensive review of real-world applications. Compared with prior surveys, our work offers both a broader scope and deeper insight, serving as an accessible roadmap for newcomers and a structured reference for experienced researchers. All related resources, including research papers, open-source datasets, and projects, are curated for the community at https://github.com/BaiShuanghao/Awesome-Robotics-Manipulation.

  • 18 authors
·
Oct 12

CoDynTrust: Robust Asynchronous Collaborative Perception via Dynamic Feature Trust Modulus

Collaborative perception, fusing information from multiple agents, can extend perception range so as to improve perception performance. However, temporal asynchrony in real-world environments, caused by communication delays, clock misalignment, or sampling configuration differences, can lead to information mismatches. If this is not well handled, then the collaborative performance is patchy, and what's worse safety accidents may occur. To tackle this challenge, we propose CoDynTrust, an uncertainty-encoded asynchronous fusion perception framework that is robust to the information mismatches caused by temporal asynchrony. CoDynTrust generates dynamic feature trust modulus (DFTM) for each region of interest by modeling aleatoric and epistemic uncertainty as well as selectively suppressing or retaining single-vehicle features, thereby mitigating information mismatches. We then design a multi-scale fusion module to handle multi-scale feature maps processed by DFTM. Compared to existing works that also consider asynchronous collaborative perception, CoDynTrust combats various low-quality information in temporally asynchronous scenarios and allows uncertainty to be propagated to downstream tasks such as planning and control. Experimental results demonstrate that CoDynTrust significantly reduces performance degradation caused by temporal asynchrony across multiple datasets, achieving state-of-the-art detection performance even with temporal asynchrony. The code is available at https://github.com/CrazyShout/CoDynTrust.

  • 7 authors
·
Feb 12

EmbodiedGPT: Vision-Language Pre-Training via Embodied Chain of Thought

Embodied AI is a crucial frontier in robotics, capable of planning and executing action sequences for robots to accomplish long-horizon tasks in physical environments. In this work, we introduce EmbodiedGPT, an end-to-end multi-modal foundation model for embodied AI, empowering embodied agents with multi-modal understanding and execution capabilities. To achieve this, we have made the following efforts: (i) We craft a large-scale embodied planning dataset, termed EgoCOT. The dataset consists of carefully selected videos from the Ego4D dataset, along with corresponding high-quality language instructions. Specifically, we generate a sequence of sub-goals with the "Chain of Thoughts" mode for effective embodied planning. (ii) We introduce an efficient training approach to EmbodiedGPT for high-quality plan generation, by adapting a 7B large language model (LLM) to the EgoCOT dataset via prefix tuning. (iii) We introduce a paradigm for extracting task-related features from LLM-generated planning queries to form a closed loop between high-level planning and low-level control. Extensive experiments show the effectiveness of EmbodiedGPT on embodied tasks, including embodied planning, embodied control, visual captioning, and visual question answering. Notably, EmbodiedGPT significantly enhances the success rate of the embodied control task by extracting more effective features. It has achieved a remarkable 1.6 times increase in success rate on the Franka Kitchen benchmark and a 1.3 times increase on the Meta-World benchmark, compared to the BLIP-2 baseline fine-tuned with the Ego4D dataset.

  • 10 authors
·
May 24, 2023

RoboDexVLM: Visual Language Model-Enabled Task Planning and Motion Control for Dexterous Robot Manipulation

This paper introduces RoboDexVLM, an innovative framework for robot task planning and grasp detection tailored for a collaborative manipulator equipped with a dexterous hand. Previous methods focus on simplified and limited manipulation tasks, which often neglect the complexities associated with grasping a diverse array of objects in a long-horizon manner. In contrast, our proposed framework utilizes a dexterous hand capable of grasping objects of varying shapes and sizes while executing tasks based on natural language commands. The proposed approach has the following core components: First, a robust task planner with a task-level recovery mechanism that leverages vision-language models (VLMs) is designed, which enables the system to interpret and execute open-vocabulary commands for long sequence tasks. Second, a language-guided dexterous grasp perception algorithm is presented based on robot kinematics and formal methods, tailored for zero-shot dexterous manipulation with diverse objects and commands. Comprehensive experimental results validate the effectiveness, adaptability, and robustness of RoboDexVLM in handling long-horizon scenarios and performing dexterous grasping. These results highlight the framework's ability to operate in complex environments, showcasing its potential for open-vocabulary dexterous manipulation. Our open-source project page can be found at https://henryhcliu.github.io/robodexvlm.

  • 6 authors
·
Mar 3

VLA-OS: Structuring and Dissecting Planning Representations and Paradigms in Vision-Language-Action Models

Recent studies on Vision-Language-Action (VLA) models have shifted from the end-to-end action-generation paradigm toward a pipeline involving task planning followed by action generation, demonstrating improved performance on various complex, long-horizon manipulation tasks. However, existing approaches vary significantly in terms of network architectures, planning paradigms, representations, and training data sources, making it challenging for researchers to identify the precise sources of performance gains and components to be further improved. To systematically investigate the impacts of different planning paradigms and representations isolating from network architectures and training data, in this paper, we introduce VLA-OS, a unified VLA architecture series capable of various task planning paradigms, and design a comprehensive suite of controlled experiments across diverse object categories (rigid and deformable), visual modalities (2D and 3D), environments (simulation and real-world), and end-effectors (grippers and dexterous hands). Our results demonstrate that: 1) visually grounded planning representations are generally better than language planning representations; 2) the Hierarchical-VLA paradigm generally achieves superior or comparable performance than other paradigms on task performance, pretraining, generalization ability, scalability, and continual learning ability, albeit at the cost of slower training and inference speeds.

  • 11 authors
·
Jun 20

MuLan: Multimodal-LLM Agent for Progressive and Interactive Multi-Object Diffusion

Existing text-to-image models still struggle to generate images of multiple objects, especially in handling their spatial positions, relative sizes, overlapping, and attribute bindings. To efficiently address these challenges, we develop a training-free Multimodal-LLM agent (MuLan), as a human painter, that can progressively generate multi-object with intricate planning and feedback control. MuLan harnesses a large language model (LLM) to decompose a prompt to a sequence of sub-tasks, each generating only one object by stable diffusion, conditioned on previously generated objects. Unlike existing LLM-grounded methods, MuLan only produces a high-level plan at the beginning while the exact size and location of each object are determined upon each sub-task by an LLM and attention guidance. Moreover, MuLan adopts a vision-language model (VLM) to provide feedback to the image generated in each sub-task and control the diffusion model to re-generate the image if it violates the original prompt. Hence, each model in every step of MuLan only needs to address an easy sub-task it is specialized for. The multi-step process also allows human users to monitor the generation process and make preferred changes at any intermediate step via text prompts, thereby improving the human-AI collaboration experience. We collect 200 prompts containing multi-objects with spatial relationships and attribute bindings from different benchmarks to evaluate MuLan. The results demonstrate the superiority of MuLan in generating multiple objects over baselines and its creativity when collaborating with human users. The code is available at https://github.com/measure-infinity/mulan-code.

  • 5 authors
·
Feb 20, 2024

A Comprehensive Survey of Deep Research: Systems, Methodologies, and Applications

This survey examines the rapidly evolving field of Deep Research systems -- AI-powered applications that automate complex research workflows through the integration of large language models, advanced information retrieval, and autonomous reasoning capabilities. We analyze more than 80 commercial and non-commercial implementations that have emerged since 2023, including OpenAI/Deep Research, Gemini/Deep Research, Perplexity/Deep Research, and numerous open-source alternatives. Through comprehensive examination, we propose a novel hierarchical taxonomy that categorizes systems according to four fundamental technical dimensions: foundation models and reasoning engines, tool utilization and environmental interaction, task planning and execution control, and knowledge synthesis and output generation. We explore the architectural patterns, implementation approaches, and domain-specific adaptations that characterize these systems across academic, scientific, business, and educational applications. Our analysis reveals both the significant capabilities of current implementations and the technical and ethical challenges they present regarding information accuracy, privacy, intellectual property, and accessibility. The survey concludes by identifying promising research directions in advanced reasoning architectures, multimodal integration, domain specialization, human-AI collaboration, and ecosystem standardization that will likely shape the future evolution of this transformative technology. By providing a comprehensive framework for understanding Deep Research systems, this survey contributes to both the theoretical understanding of AI-augmented knowledge work and the practical development of more capable, responsible, and accessible research technologies. The paper resources can be viewed at https://github.com/scienceaix/deepresearch.

  • 2 authors
·
Jun 14

PoAct: Policy and Action Dual-Control Agent for Generalized Applications

Based on their superior comprehension and reasoning capabilities, Large Language Model (LLM) driven agent frameworks have achieved significant success in numerous complex reasoning tasks. ReAct-like agents can solve various intricate problems step-by-step through progressive planning and tool calls, iteratively optimizing new steps based on environmental feedback. However, as the planning capabilities of LLMs improve, the actions invoked by tool calls in ReAct-like frameworks often misalign with complex planning and challenging data organization. Code Action addresses these issues while also introducing the challenges of a more complex action space and more difficult action organization. To leverage Code Action and tackle the challenges of its complexity, this paper proposes Policy and Action Dual-Control Agent (PoAct) for generalized applications. The aim is to achieve higher-quality code actions and more accurate reasoning paths by dynamically switching reasoning policies and modifying the action space. Experimental results on the Agent Benchmark for both legal and generic scenarios demonstrate the superior reasoning capabilities and reduced token consumption of our approach in complex tasks. On the LegalAgentBench, our method shows a 20 percent improvement over the baseline while requiring fewer tokens. We conducted experiments and analyses on the GPT-4o and GLM-4 series models, demonstrating the significant potential and scalability of our approach to solve complex problems.

  • 9 authors
·
Jan 12

Robix: A Unified Model for Robot Interaction, Reasoning and Planning

We introduce Robix, a unified model that integrates robot reasoning, task planning, and natural language interaction within a single vision-language architecture. Acting as the high-level cognitive layer in a hierarchical robot system, Robix dynamically generates atomic commands for the low-level controller and verbal responses for human interaction, enabling robots to follow complex instructions, plan long-horizon tasks, and interact naturally with human within an end-to-end framework. Robix further introduces novel capabilities such as proactive dialogue, real-time interruption handling, and context-aware commonsense reasoning during task execution. At its core, Robix leverages chain-of-thought reasoning and adopts a three-stage training strategy: (1) continued pretraining to enhance foundational embodied reasoning abilities including 3D spatial understanding, visual grounding, and task-centric reasoning; (2) supervised finetuning to model human-robot interaction and task planning as a unified reasoning-action sequence; and (3) reinforcement learning to improve reasoning-action consistency and long-horizon task coherence. Extensive experiments demonstrate that Robix outperforms both open-source and commercial baselines (e.g., GPT-4o and Gemini 2.5 Pro) in interactive task execution, demonstrating strong generalization across diverse instruction types (e.g., open-ended, multi-stage, constrained, invalid, and interrupted) and various user-involved tasks such as table bussing, grocery shopping, and dietary filtering.

OpenHA: A Series of Open-Source Hierarchical Agentic Models in Minecraft

The choice of action spaces is a critical yet unresolved challenge in developing capable, end-to-end trainable agents. This paper first presents a large-scale, systematic comparison of prominent abstracted action spaces and tokenizers for Vision-Language-Action (VLA) or hierarchical agent models in the open-ended Minecraft. Our analysis reveals that no single action space is universally optimal; instead, the most effective abstraction is highly task-dependent, creating a dilemma for building generalist agents. To resolve this, we introduce Chain of Action (CoA), a novel framework that unifies high-level planning and low-level control within a single, monolithic VLA model. CoA treats an abstracted action not as a command for a separate policy, but as an intermediate reasoning step--akin to a chain of thought--that guides the generation of the final, executable action. Furthermore, we demonstrate that an All-in-One agent trained on a diverse mixture of action spaces using the CoA paradigm learns a more robust and generalizable policy. This unified agent achieves a new state-of-the-art, improving the overall task success rate over strong, specialized baselines. To foster reproducible research, we release the OpenHA (Open Hierarchical Agents) suite, which includes our comprehensive benchmark of over 800 distinct tasks, curated datasets, source code, and all pretrained model checkpoints at https://github.com/CraftJarvis/OpenHA

  • 7 authors
·
Sep 12 1

LoHoVLA: A Unified Vision-Language-Action Model for Long-Horizon Embodied Tasks

Real-world embodied agents face long-horizon tasks, characterized by high-level goals demanding multi-step solutions beyond single actions. Successfully navigating these requires both high-level task planning (i.e., decomposing goals into sub-tasks) and low-level motion control (i.e., generating precise robot actions). While existing vision language action (VLA) models and hierarchical architectures offer potential in embodied tasks, the former often falter in planning, and the latter can suffer from coordination issues, both hampering performance. We introduce a new unified VLA framework for long-horizon tasks, dubbed LoHoVLA, to overcome these limitations. LoHoVLA leverages a large pretrained vision language model (VLM) as the backbone to jointly generate language and action tokens for sub-task generation and robot action prediction, respectively. This shared representation promotes better generalization across tasks. Additionally, LoHoVLA embraces a hierarchical closed-loop control mechanism to mitigate errors originating from both high-level planning and low-level control. To train LoHoVLA, we introduce LoHoSet, a dataset built on the Ravens simulator, containing 20 long-horizon tasks, each with 1,000 expert demonstrations composed of visual observations, linguistic goals, sub-tasks, and robot actions. Experimental results show that LoHoVLA significantly surpasses both hierarchical and standard VLA approaches on long-horizon embodied tasks in the Ravens simulator. These findings underscore the promise of unified architectures for advancing generalizable embodied intelligence.

  • 5 authors
·
May 31 3

Put Your Money Where Your Mouth Is: Evaluating Strategic Planning and Execution of LLM Agents in an Auction Arena

Can Large Language Models (LLMs) simulate human behavior in complex environments? LLMs have recently been shown to exhibit advanced reasoning skills but much of NLP evaluation still relies on static benchmarks. Answering this requires evaluation environments that probe strategic reasoning in competitive, dynamic scenarios that involve long-term planning. We introduce AucArena, a novel simulation environment for evaluating LLMs within auctions, a setting chosen for being highly unpredictable and involving many skills related to resource and risk management, while also being easy to evaluate. We conduct several controlled simulations using state-of-the-art LLMs as bidding agents. We find that through simple prompting, LLMs do indeed demonstrate many of the skills needed for effectively engaging in auctions (e.g., managing budget, adhering to long-term goals and priorities), skills that we find can be sharpened by explicitly encouraging models to be adaptive and observe strategies in past auctions. These results are significant as they show the potential of using LLM agents to model intricate social dynamics, especially in competitive settings. However, we also observe considerable variability in the capabilities of individual LLMs. Notably, even our most advanced models (GPT-4) are occasionally surpassed by heuristic baselines and human agents, highlighting the potential for further improvements in the design of LLM agents and the important role that our simulation environment can play in further testing and refining agent architectures.

  • 5 authors
·
Oct 9, 2023

ReCode: Unify Plan and Action for Universal Granularity Control

Real-world tasks require decisions at varying granularities, and humans excel at this by leveraging a unified cognitive representation where planning is fundamentally understood as a high-level form of action. However, current Large Language Model (LLM)-based agents lack this crucial capability to operate fluidly across decision granularities. This limitation stems from existing paradigms that enforce a rigid separation between high-level planning and low-level action, which impairs dynamic adaptability and limits generalization. We propose ReCode (Recursive Code Generation), a novel paradigm that addresses this limitation by unifying planning and action within a single code representation. In this representation, ReCode treats high-level plans as abstract placeholder functions, which the agent then recursively decomposes into finer-grained sub-functions until reaching primitive actions. This recursive approach dissolves the rigid boundary between plan and action, enabling the agent to dynamically control its decision granularity. Furthermore, the recursive structure inherently generates rich, multi-granularity training data, enabling models to learn hierarchical decision-making processes. Extensive experiments show ReCode significantly surpasses advanced baselines in inference performance and demonstrates exceptional data efficiency in training, validating our core insight that unifying planning and action through recursive code generation is a powerful and effective approach to achieving universal granularity control. The code is available at https://github.com/FoundationAgents/ReCode.

  • 13 authors
·
Oct 27 1

Towards Zero-Shot, Controllable Dialog Planning with LLMs

Recently, Large Language Models (LLMs) have emerged as an alternative to training task-specific dialog agents, due to their broad reasoning capabilities and performance in zero-shot learning scenarios. However, many LLM-based dialog systems fall short in planning towards an overarching dialog goal and therefore cannot steer the conversation appropriately. Furthermore, these models struggle with hallucination, making them unsuitable for information access in sensitive domains, such as legal or medical domains, where correctness of information given to users is critical. The recently introduced task Conversational Tree Search (CTS) proposes the use of dialog graphs to avoid hallucination in sensitive domains, however, state-of-the-art agents are Reinforcement Learning (RL) based and require long training times, despite excelling at dialog strategy. This paper introduces a novel zero-shot method for controllable CTS agents, where LLMs guide the dialog planning through domain graphs by searching and pruning relevant graph nodes based on user interaction preferences. We show that these agents significantly outperform state-of-the-art CTS agents (p<0.0001; Barnard Exact test) in simulation. This generalizes to all available CTS domains. Finally, we perform user evaluation to test the agent's performance in the wild, showing that our policy significantly (p<0.05; Barnard Exact) improves task-success compared to the state-of-the-art RL-based CTS agent.

  • 2 authors
·
Oct 8, 2024

Training-free Guidance in Text-to-Video Generation via Multimodal Planning and Structured Noise Initialization

Recent advancements in text-to-video (T2V) diffusion models have significantly enhanced the visual quality of the generated videos. However, even recent T2V models find it challenging to follow text descriptions accurately, especially when the prompt requires accurate control of spatial layouts or object trajectories. A recent line of research uses layout guidance for T2V models that require fine-tuning or iterative manipulation of the attention map during inference time. This significantly increases the memory requirement, making it difficult to adopt a large T2V model as a backbone. To address this, we introduce Video-MSG, a training-free Guidance method for T2V generation based on Multimodal planning and Structured noise initialization. Video-MSG consists of three steps, where in the first two steps, Video-MSG creates Video Sketch, a fine-grained spatio-temporal plan for the final video, specifying background, foreground, and object trajectories, in the form of draft video frames. In the last step, Video-MSG guides a downstream T2V diffusion model with Video Sketch through noise inversion and denoising. Notably, Video-MSG does not need fine-tuning or attention manipulation with additional memory during inference time, making it easier to adopt large T2V models. Video-MSG demonstrates its effectiveness in enhancing text alignment with multiple T2V backbones (VideoCrafter2 and CogVideoX-5B) on popular T2V generation benchmarks (T2VCompBench and VBench). We provide comprehensive ablation studies about noise inversion ratio, different background generators, background object detection, and foreground object segmentation.

  • 6 authors
·
Apr 11 2

Learn to Follow: Decentralized Lifelong Multi-agent Pathfinding via Planning and Learning

Multi-agent Pathfinding (MAPF) problem generally asks to find a set of conflict-free paths for a set of agents confined to a graph and is typically solved in a centralized fashion. Conversely, in this work, we investigate the decentralized MAPF setting, when the central controller that posses all the information on the agents' locations and goals is absent and the agents have to sequientially decide the actions on their own without having access to a full state of the environment. We focus on the practically important lifelong variant of MAPF, which involves continuously assigning new goals to the agents upon arrival to the previous ones. To address this complex problem, we propose a method that integrates two complementary approaches: planning with heuristic search and reinforcement learning through policy optimization. Planning is utilized to construct and re-plan individual paths. We enhance our planning algorithm with a dedicated technique tailored to avoid congestion and increase the throughput of the system. We employ reinforcement learning to discover the collision avoidance policies that effectively guide the agents along the paths. The policy is implemented as a neural network and is effectively trained without any reward-shaping or external guidance. We evaluate our method on a wide range of setups comparing it to the state-of-the-art solvers. The results show that our method consistently outperforms the learnable competitors, showing higher throughput and better ability to generalize to the maps that were unseen at the training stage. Moreover our solver outperforms a rule-based one in terms of throughput and is an order of magnitude faster than a state-of-the-art search-based solver.

  • 5 authors
·
Oct 2, 2023

Unlocking Reasoning Potential in Large Langauge Models by Scaling Code-form Planning

Despite the remarkable success of large language models (LLMs) on traditional natural language processing tasks, their planning ability remains a critical bottleneck in tackling complex multi-step reasoning tasks. Existing approaches mainly rely on prompting or task-specific fine-tuning, often suffering from poor robustness and cross-task generalization. To address the limitation, we introduce CodePlan, a scalable framework that empowers LLMs to generate and follow code-form plans -- pseudocode that outlines high-level, structured reasoning processes. By leveraging the structured and versatile nature of code, CodePlan effectively captures the rich semantics and control flows inherent to sophisticated reasoning tasks. Importantly, CodePlan allows automatic extraction of code-form plans from massive, wide-ranging text corpora without the need for curated, task-specific datasets. This enables it to scale up efficiently and improve LLM's reasoning capabilities across diverse scenarios. To train CodePlan, we construct a large-scale dataset of 2M examples that integrate code-form plans with standard prompt-response pairs from existing corpora. With minimal computation overhead during both training and inference, CodePlan achieves a 25.1\% relative improvement compared with directly generating responses, averaged across 13 challenging multi-step reasoning benchmarks, spanning mathematical reasoning, symbolic reasoning, instruction-following, multi-hop QA, and decision-making tasks. Further analysis reveals CodePlan's increasing performance gains on more complex reasoning tasks, as well as significant data efficiency thanks to its generalization ability.

  • 5 authors
·
Sep 19, 2024

Control Map Distribution using Map Query Bank for Online Map Generation

Reliable autonomous driving systems require high-definition (HD) map that contains detailed map information for planning and navigation. However, pre-build HD map requires a large cost. Visual-based Online Map Generation (OMG) has become an alternative low-cost solution to build a local HD map. Query-based BEV Transformer has been a base model for this task. This model learns HD map predictions from an initial map queries distribution which is obtained by offline optimization on training set. Besides the quality of BEV feature, the performance of this model also highly relies on the capacity of initial map query distribution. However, this distribution is limited because the limited query number. To make map predictions optimal on each test sample, it is essential to generate a suitable initial distribution for each specific scenario. This paper proposes to decompose the whole HD map distribution into a set of point representations, namely map query bank (MQBank). To build specific map query initial distributions of different scenarios, low-cost standard definition map (SD map) data is introduced as a kind of prior knowledge. Moreover, each layer of map decoder network learns instance-level map query features, which will lose detailed information of each point. However, BEV feature map is a point-level dense feature. It is important to keep point-level information in map queries when interacting with BEV feature map. This can also be solved with map query bank method. Final experiments show a new insight on SD map prior and a new record on OpenLaneV2 benchmark with 40.5%, 45.7% mAP on vehicle lane and pedestrian area.

  • 7 authors
·
Apr 4

MUSES: 3D-Controllable Image Generation via Multi-Modal Agent Collaboration

Despite recent advancements in text-to-image generation, most existing methods struggle to create images with multiple objects and complex spatial relationships in 3D world. To tackle this limitation, we introduce a generic AI system, namely MUSES, for 3D-controllable image generation from user queries. Specifically, our MUSES addresses this challenging task by developing a progressive workflow with three key components, including (1) Layout Manager for 2D-to-3D layout lifting, (2) Model Engineer for 3D object acquisition and calibration, (3) Image Artist for 3D-to-2D image rendering. By mimicking the collaboration of human professionals, this multi-modal agent pipeline facilitates the effective and automatic creation of images with 3D-controllable objects, through an explainable integration of top-down planning and bottom-up generation. Additionally, we find that existing benchmarks lack detailed descriptions of complex 3D spatial relationships of multiple objects. To fill this gap, we further construct a new benchmark of T2I-3DisBench (3D image scene), which describes diverse 3D image scenes with 50 detailed prompts. Extensive experiments show the state-of-the-art performance of MUSES on both T2I-CompBench and T2I-3DisBench, outperforming recent strong competitors such as DALL-E 3 and Stable Diffusion 3. These results demonstrate a significant step of MUSES forward in bridging natural language, 2D image generation, and 3D world. Our codes and models will be released soon.

  • 6 authors
·
Aug 20, 2024

SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries

Evaluating the performance of autonomous vehicle planning algorithms necessitates simulating long-tail safety-critical traffic scenarios. However, traditional methods for generating such scenarios often fall short in terms of controllability and realism; they also neglect the dynamics of agent interactions. To address these limitations, we introduce SAFE-SIM, a novel diffusion-based controllable closed-loop safety-critical simulation framework. Our approach yields two distinct advantages: 1) generating realistic long-tail safety-critical scenarios that closely reflect real-world conditions, and 2) providing controllable adversarial behavior for more comprehensive and interactive evaluations. We develop a novel approach to simulate safety-critical scenarios through an adversarial term in the denoising process of diffusion models, which allows an adversarial agent to challenge a planner with plausible maneuvers while all agents in the scene exhibit reactive and realistic behaviors. Furthermore, we propose novel guidance objectives and a partial diffusion process that enables users to control key aspects of the scenarios, such as the collision type and aggressiveness of the adversarial agent, while maintaining the realism of the behavior. We validate our framework empirically using the nuScenes and nuPlan datasets across multiple planners, demonstrating improvements in both realism and controllability. These findings affirm that diffusion models provide a robust and versatile foundation for safety-critical, interactive traffic simulation, extending their utility across the broader autonomous driving landscape. Project website: https://safe-sim.github.io/.

  • 5 authors
·
Dec 30, 2023

Structured Prompting and Feedback-Guided Reasoning with LLMs for Data Interpretation

Large language models (LLMs) have demonstrated remarkable capabilities in natural language understanding and task generalization. However, their application to structured data analysis remains fragile due to inconsistencies in schema interpretation, misalignment between user intent and model output, and limited mechanisms for self-correction when failures occur. This paper introduces the STROT Framework (Structured Task Reasoning and Output Transformation), a method for structured prompting and feedback-driven transformation logic generation aimed at improving the reliability and semantic alignment of LLM-based analytical workflows. STROT begins with lightweight schema introspection and sample-based field classification, enabling dynamic context construction that captures both the structure and statistical profile of the input data. This contextual information is embedded in structured prompts that guide the model toward generating task-specific, interpretable outputs. To address common failure modes in complex queries, STROT incorporates a refinement mechanism in which the model iteratively revises its outputs based on execution feedback and validation signals. Unlike conventional approaches that rely on static prompts or single-shot inference, STROT treats the LLM as a reasoning agent embedded within a controlled analysis loop -- capable of adjusting its output trajectory through planning and correction. The result is a robust and reproducible framework for reasoning over structured data with LLMs, applicable to diverse data exploration and analysis tasks where interpretability, stability, and correctness are essential.

  • 1 authors
·
May 2

RePLan: Robotic Replanning with Perception and Language Models

Advancements in large language models (LLMs) have demonstrated their potential in facilitating high-level reasoning, logical reasoning and robotics planning. Recently, LLMs have also been able to generate reward functions for low-level robot actions, effectively bridging the interface between high-level planning and low-level robot control. However, the challenge remains that even with syntactically correct plans, robots can still fail to achieve their intended goals. This failure can be attributed to imperfect plans proposed by LLMs or to unforeseeable environmental circumstances that hinder the execution of planned subtasks due to erroneous assumptions about the state of objects. One way to prevent these challenges is to rely on human-provided step-by-step instructions, limiting the autonomy of robotic systems. Vision Language Models (VLMs) have shown remarkable success in tasks such as visual question answering and image captioning. Leveraging the capabilities of VLMs, we present a novel framework called Robotic Replanning with Perception and Language Models (RePLan) that enables real-time replanning capabilities for long-horizon tasks. This framework utilizes the physical grounding provided by a VLM's understanding of the world's state to adapt robot actions when the initial plan fails to achieve the desired goal. We test our approach within four environments containing seven long-horizion tasks. We find that RePLan enables a robot to successfully adapt to unforeseen obstacles while accomplishing open-ended, long-horizon goals, where baseline models cannot. Find more information at https://replan-lm.github.io/replan.github.io/

  • 6 authors
·
Jan 8, 2024

Input Convex Lipschitz RNN: A Fast and Robust Approach for Engineering Tasks

Computational efficiency and robustness are essential in process modeling, optimization, and control for real-world engineering applications. While neural network-based approaches have gained significant attention in recent years, conventional neural networks often fail to address these two critical aspects simultaneously or even independently. Inspired by natural physical systems and established literature, input convex architectures are known to enhance computational efficiency in optimization tasks, whereas Lipschitz-constrained architectures improve robustness. However, combining these properties within a single model requires careful review, as inappropriate methods for enforcing one property can undermine the other. To overcome this, we introduce a novel network architecture, termed Input Convex Lipschitz Recurrent Neural Networks (ICLRNNs). This architecture seamlessly integrates the benefits of convexity and Lipschitz continuity, enabling fast and robust neural network-based modeling and optimization. The ICLRNN outperforms existing recurrent units in both computational efficiency and robustness. Additionally, it has been successfully applied to practical engineering scenarios, such as modeling and control of chemical process and the modeling and real-world solar irradiance prediction for solar PV system planning at LHT Holdings in Singapore. Source code is available at https://github.com/killingbear999/ICLRNN.

  • 2 authors
·
Jan 15, 2024

Recent Advancements in Deep Learning Applications and Methods for Autonomous Navigation: A Comprehensive Review

This review article is an attempt to survey all recent AI based techniques used to deal with major functions in This review paper presents a comprehensive overview of end-to-end deep learning frameworks used in the context of autonomous navigation, including obstacle detection, scene perception, path planning, and control. The paper aims to bridge the gap between autonomous navigation and deep learning by analyzing recent research studies and evaluating the implementation and testing of deep learning methods. It emphasizes the importance of navigation for mobile robots, autonomous vehicles, and unmanned aerial vehicles, while also acknowledging the challenges due to environmental complexity, uncertainty, obstacles, dynamic environments, and the need to plan paths for multiple agents. The review highlights the rapid growth of deep learning in engineering data science and its development of innovative navigation methods. It discusses recent interdisciplinary work related to this field and provides a brief perspective on the limitations, challenges, and potential areas of growth for deep learning methods in autonomous navigation. Finally, the paper summarizes the findings and practices at different stages, correlating existing and future methods, their applicability, scalability, and limitations. The review provides a valuable resource for researchers and practitioners working in the field of autonomous navigation and deep learning.

  • 2 authors
·
Feb 21, 2023

HUGSIM: A Real-Time, Photo-Realistic and Closed-Loop Simulator for Autonomous Driving

In the past few decades, autonomous driving algorithms have made significant progress in perception, planning, and control. However, evaluating individual components does not fully reflect the performance of entire systems, highlighting the need for more holistic assessment methods. This motivates the development of HUGSIM, a closed-loop, photo-realistic, and real-time simulator for evaluating autonomous driving algorithms. We achieve this by lifting captured 2D RGB images into the 3D space via 3D Gaussian Splatting, improving the rendering quality for closed-loop scenarios, and building the closed-loop environment. In terms of rendering, We tackle challenges of novel view synthesis in closed-loop scenarios, including viewpoint extrapolation and 360-degree vehicle rendering. Beyond novel view synthesis, HUGSIM further enables the full closed simulation loop, dynamically updating the ego and actor states and observations based on control commands. Moreover, HUGSIM offers a comprehensive benchmark across more than 70 sequences from KITTI-360, Waymo, nuScenes, and PandaSet, along with over 400 varying scenarios, providing a fair and realistic evaluation platform for existing autonomous driving algorithms. HUGSIM not only serves as an intuitive evaluation benchmark but also unlocks the potential for fine-tuning autonomous driving algorithms in a photorealistic closed-loop setting.

  • 9 authors
·
Dec 2, 2024 2

Dexterous Legged Locomotion in Confined 3D Spaces with Reinforcement Learning

Recent advances of locomotion controllers utilizing deep reinforcement learning (RL) have yielded impressive results in terms of achieving rapid and robust locomotion across challenging terrain, such as rugged rocks, non-rigid ground, and slippery surfaces. However, while these controllers primarily address challenges underneath the robot, relatively little research has investigated legged mobility through confined 3D spaces, such as narrow tunnels or irregular voids, which impose all-around constraints. The cyclic gait patterns resulted from existing RL-based methods to learn parameterized locomotion skills characterized by motion parameters, such as velocity and body height, may not be adequate to navigate robots through challenging confined 3D spaces, requiring both agile 3D obstacle avoidance and robust legged locomotion. Instead, we propose to learn locomotion skills end-to-end from goal-oriented navigation in confined 3D spaces. To address the inefficiency of tracking distant navigation goals, we introduce a hierarchical locomotion controller that combines a classical planner tasked with planning waypoints to reach a faraway global goal location, and an RL-based policy trained to follow these waypoints by generating low-level motion commands. This approach allows the policy to explore its own locomotion skills within the entire solution space and facilitates smooth transitions between local goals, enabling long-term navigation towards distant goals. In simulation, our hierarchical approach succeeds at navigating through demanding confined 3D environments, outperforming both pure end-to-end learning approaches and parameterized locomotion skills. We further demonstrate the successful real-world deployment of our simulation-trained controller on a real robot.

  • 4 authors
·
Mar 6, 2024

AutoStory: Generating Diverse Storytelling Images with Minimal Human Effort

Story visualization aims to generate a series of images that match the story described in texts, and it requires the generated images to satisfy high quality, alignment with the text description, and consistency in character identities. Given the complexity of story visualization, existing methods drastically simplify the problem by considering only a few specific characters and scenarios, or requiring the users to provide per-image control conditions such as sketches. However, these simplifications render these methods incompetent for real applications. To this end, we propose an automated story visualization system that can effectively generate diverse, high-quality, and consistent sets of story images, with minimal human interactions. Specifically, we utilize the comprehension and planning capabilities of large language models for layout planning, and then leverage large-scale text-to-image models to generate sophisticated story images based on the layout. We empirically find that sparse control conditions, such as bounding boxes, are suitable for layout planning, while dense control conditions, e.g., sketches and keypoints, are suitable for generating high-quality image content. To obtain the best of both worlds, we devise a dense condition generation module to transform simple bounding box layouts into sketch or keypoint control conditions for final image generation, which not only improves the image quality but also allows easy and intuitive user interactions. In addition, we propose a simple yet effective method to generate multi-view consistent character images, eliminating the reliance on human labor to collect or draw character images.

  • 6 authors
·
Nov 19, 2023 3

Physically Embodied Gaussian Splatting: A Realtime Correctable World Model for Robotics

For robots to robustly understand and interact with the physical world, it is highly beneficial to have a comprehensive representation - modelling geometry, physics, and visual observations - that informs perception, planning, and control algorithms. We propose a novel dual Gaussian-Particle representation that models the physical world while (i) enabling predictive simulation of future states and (ii) allowing online correction from visual observations in a dynamic world. Our representation comprises particles that capture the geometrical aspect of objects in the world and can be used alongside a particle-based physics system to anticipate physically plausible future states. Attached to these particles are 3D Gaussians that render images from any viewpoint through a splatting process thus capturing the visual state. By comparing the predicted and observed images, our approach generates visual forces that correct the particle positions while respecting known physical constraints. By integrating predictive physical modelling with continuous visually-derived corrections, our unified representation reasons about the present and future while synchronizing with reality. Our system runs in realtime at 30Hz using only 3 cameras. We validate our approach on 2D and 3D tracking tasks as well as photometric reconstruction quality. Videos are found at https://embodied-gaussians.github.io/.

  • 4 authors
·
Jun 15, 2024

MolmoAct: Action Reasoning Models that can Reason in Space

Reasoning is central to purposeful action, yet most robotic foundation models map perception and instructions directly to control, which limits adaptability, generalization, and semantic grounding. We introduce Action Reasoning Models (ARMs), a class of vision-language-action models that integrate perception, planning, and control through a structured three-stage pipeline. Our model, MolmoAct, encodes observations and instructions into depth-aware perception tokens, generates mid-level spatial plans as editable trajectory traces, and predicts precise low-level actions, enabling explainable and steerable behavior. MolmoAct-7B-D achieves strong performance across simulation and real-world settings: 70.5% zero-shot accuracy on SimplerEnv Visual Matching tasks, surpassing closed-source Pi-0 and GR00T N1; 86.6% average success on LIBERO, including an additional 6.3% gain over ThinkAct on long-horizon tasks; and in real-world fine-tuning, an additional 10% (single-arm) and an additional 22.7% (bimanual) task progression over Pi-0-FAST. It also outperforms baselines by an additional 23.3% on out-of-distribution generalization and achieves top human-preference scores for open-ended instruction following and trajectory steering. Furthermore, we release, for the first time, the MolmoAct Dataset -- a mid-training robot dataset comprising over 10,000 high quality robot trajectories across diverse scenarios and tasks. Training with this dataset yields an average 5.5% improvement in general performance over the base model. We release all model weights, training code, our collected dataset, and our action reasoning dataset, establishing MolmoAct as both a state-of-the-art robotics foundation model and an open blueprint for building ARMs that transform perception into purposeful action through structured reasoning. Blogpost: https://allenai.org/blog/molmoact

allenai Ai2
·
Aug 11 2

ReSim: Reliable World Simulation for Autonomous Driving

How can we reliably simulate future driving scenarios under a wide range of ego driving behaviors? Recent driving world models, developed exclusively on real-world driving data composed mainly of safe expert trajectories, struggle to follow hazardous or non-expert behaviors, which are rare in such data. This limitation restricts their applicability to tasks such as policy evaluation. In this work, we address this challenge by enriching real-world human demonstrations with diverse non-expert data collected from a driving simulator (e.g., CARLA), and building a controllable world model trained on this heterogeneous corpus. Starting with a video generator featuring a diffusion transformer architecture, we devise several strategies to effectively integrate conditioning signals and improve prediction controllability and fidelity. The resulting model, ReSim, enables Reliable Simulation of diverse open-world driving scenarios under various actions, including hazardous non-expert ones. To close the gap between high-fidelity simulation and applications that require reward signals to judge different actions, we introduce a Video2Reward module that estimates a reward from ReSim's simulated future. Our ReSim paradigm achieves up to 44% higher visual fidelity, improves controllability for both expert and non-expert actions by over 50%, and boosts planning and policy selection performance on NAVSIM by 2% and 25%, respectively.

  • 10 authors
·
Jun 11

AutoGLM: Autonomous Foundation Agents for GUIs

We present AutoGLM, a new series in the ChatGLM family, designed to serve as foundation agents for autonomous control of digital devices through Graphical User Interfaces (GUIs). While foundation models excel at acquiring human knowledge, they often struggle with decision-making in dynamic real-world environments, limiting their progress toward artificial general intelligence. This limitation underscores the importance of developing foundation agents capable of learning through autonomous environmental interactions by reinforcing existing models. Focusing on Web Browser and Phone as representative GUI scenarios, we have developed AutoGLM as a practical foundation agent system for real-world GUI interactions. Our approach integrates a comprehensive suite of techniques and infrastructures to create deployable agent systems suitable for user delivery. Through this development, we have derived two key insights: First, the design of an appropriate "intermediate interface" for GUI control is crucial, enabling the separation of planning and grounding behaviors, which require distinct optimization for flexibility and accuracy respectively. Second, we have developed a novel progressive training framework that enables self-evolving online curriculum reinforcement learning for AutoGLM. Our evaluations demonstrate AutoGLM's effectiveness across multiple domains. For web browsing, AutoGLM achieves a 55.2% success rate on VAB-WebArena-Lite (improving to 59.1% with a second attempt) and 96.2% on OpenTable evaluation tasks. In Android device control, AutoGLM attains a 36.2% success rate on AndroidLab (VAB-Mobile) and 89.7% on common tasks in popular Chinese APPs.

  • 30 authors
·
Oct 28, 2024

Neural Fields in Robotics: A Survey

Neural Fields have emerged as a transformative approach for 3D scene representation in computer vision and robotics, enabling accurate inference of geometry, 3D semantics, and dynamics from posed 2D data. Leveraging differentiable rendering, Neural Fields encompass both continuous implicit and explicit neural representations enabling high-fidelity 3D reconstruction, integration of multi-modal sensor data, and generation of novel viewpoints. This survey explores their applications in robotics, emphasizing their potential to enhance perception, planning, and control. Their compactness, memory efficiency, and differentiability, along with seamless integration with foundation and generative models, make them ideal for real-time applications, improving robot adaptability and decision-making. This paper provides a thorough review of Neural Fields in robotics, categorizing applications across various domains and evaluating their strengths and limitations, based on over 200 papers. First, we present four key Neural Fields frameworks: Occupancy Networks, Signed Distance Fields, Neural Radiance Fields, and Gaussian Splatting. Second, we detail Neural Fields' applications in five major robotics domains: pose estimation, manipulation, navigation, physics, and autonomous driving, highlighting key works and discussing takeaways and open challenges. Finally, we outline the current limitations of Neural Fields in robotics and propose promising directions for future research. Project page: https://robonerf.github.io

  • 8 authors
·
Oct 26, 2024 2

Enhancing Vision-Language Model Training with Reinforcement Learning in Synthetic Worlds for Real-World Success

Interactive multimodal agents must convert raw visual observations into coherent sequences of language-conditioned actions -- a capability that current vision-language models (VLMs) still lack. Earlier reinforcement-learning (RL) efforts could, in principle, endow VLMs with such skills, but they have seldom tested whether the learned behaviours generalize beyond their training simulators, and they depend either on brittle hyperparameter tuning or on dense-reward environments with low state variability. We introduce Vision-Language Decoupled Actor-Critic (VL-DAC), a lightweight, hyperparameter-free RL algorithm. VL-DAC applies PPO updates to action tokens while learning value only at the environment-step level: an arrangement, to our knowledge, not previously explored for large VLMs or LLMs. This simple decoupling removes unstable weighting terms and yields faster, more reliable convergence. Training a single VLM with VL-DAC in one inexpensive simulator at a time (MiniWorld, Gym-Cards, ALFWorld, or WebShop) already produces policies that generalize widely: +50\% relative on BALROG (game-centric agentic control), +5\% relative on the hardest part of VSI-Bench (spatial planning), and +2\% on VisualWebBench (web navigation), all without degrading general image understanding accuracy. These results provide the first evidence that a simple RL algorithm can train VLMs entirely in cheap synthetic worlds while delivering measurable gains on real-image agentic, spatial-reasoning, and web-navigation benchmarks.

  • 5 authors
·
Aug 6 2

Evaluating Cognitive Maps and Planning in Large Language Models with CogEval

Recently an influx of studies claim emergent cognitive abilities in large language models (LLMs). Yet, most rely on anecdotes, overlook contamination of training sets, or lack systematic Evaluation involving multiple tasks, control conditions, multiple iterations, and statistical robustness tests. Here we make two major contributions. First, we propose CogEval, a cognitive science-inspired protocol for the systematic evaluation of cognitive capacities in Large Language Models. The CogEval protocol can be followed for the evaluation of various abilities. Second, here we follow CogEval to systematically evaluate cognitive maps and planning ability across eight LLMs (OpenAI GPT-4, GPT-3.5-turbo-175B, davinci-003-175B, Google Bard, Cohere-xlarge-52.4B, Anthropic Claude-1-52B, LLaMA-13B, and Alpaca-7B). We base our task prompts on human experiments, which offer both established construct validity for evaluating planning, and are absent from LLM training sets. We find that, while LLMs show apparent competence in a few planning tasks with simpler structures, systematic evaluation reveals striking failure modes in planning tasks, including hallucinations of invalid trajectories and getting trapped in loops. These findings do not support the idea of emergent out-of-the-box planning ability in LLMs. This could be because LLMs do not understand the latent relational structures underlying planning problems, known as cognitive maps, and fail at unrolling goal-directed trajectories based on the underlying structure. Implications for application and future directions are discussed.

  • 8 authors
·
Sep 24, 2023 1

DriveAdapter: Breaking the Coupling Barrier of Perception and Planning in End-to-End Autonomous Driving

End-to-end autonomous driving aims to build a fully differentiable system that takes raw sensor data as inputs and directly outputs the planned trajectory or control signals of the ego vehicle. State-of-the-art methods usually follow the `Teacher-Student' paradigm. The Teacher model uses privileged information (ground-truth states of surrounding agents and map elements) to learn the driving strategy. The student model only has access to raw sensor data and conducts behavior cloning on the data collected by the teacher model. By eliminating the noise of the perception part during planning learning, state-of-the-art works could achieve better performance with significantly less data compared to those coupled ones. However, under the current Teacher-Student paradigm, the student model still needs to learn a planning head from scratch, which could be challenging due to the redundant and noisy nature of raw sensor inputs and the casual confusion issue of behavior cloning. In this work, we aim to explore the possibility of directly adopting the strong teacher model to conduct planning while letting the student model focus more on the perception part. We find that even equipped with a SOTA perception model, directly letting the student model learn the required inputs of the teacher model leads to poor driving performance, which comes from the large distribution gap between predicted privileged inputs and the ground-truth. To this end, we propose DriveAdapter, which employs adapters with the feature alignment objective function between the student (perception) and teacher (planning) modules. Additionally, since the pure learning-based teacher model itself is imperfect and occasionally breaks safety rules, we propose a method of action-guided feature learning with a mask for those imperfect teacher features to further inject the priors of hand-crafted rules into the learning process.

  • 6 authors
·
Aug 1, 2023

X-Scene: Large-Scale Driving Scene Generation with High Fidelity and Flexible Controllability

Diffusion models are advancing autonomous driving by enabling realistic data synthesis, predictive end-to-end planning, and closed-loop simulation, with a primary focus on temporally consistent generation. However, the generation of large-scale 3D scenes that require spatial coherence remains underexplored. In this paper, we propose X-Scene, a novel framework for large-scale driving scene generation that achieves both geometric intricacy and appearance fidelity, while offering flexible controllability. Specifically, X-Scene supports multi-granular control, including low-level conditions such as user-provided or text-driven layout for detailed scene composition and high-level semantic guidance such as user-intent and LLM-enriched text prompts for efficient customization. To enhance geometrical and visual fidelity, we introduce a unified pipeline that sequentially generates 3D semantic occupancy and the corresponding multiview images, while ensuring alignment between modalities. Additionally, we extend the generated local region into a large-scale scene through consistency-aware scene outpainting, which extrapolates new occupancy and images conditioned on the previously generated area, enhancing spatial continuity and preserving visual coherence. The resulting scenes are lifted into high-quality 3DGS representations, supporting diverse applications such as scene exploration. Comprehensive experiments demonstrate that X-Scene significantly advances controllability and fidelity for large-scale driving scene generation, empowering data generation and simulation for autonomous driving.

  • 6 authors
·
Jun 16

LightPlanner: Unleashing the Reasoning Capabilities of Lightweight Large Language Models in Task Planning

In recent years, lightweight large language models (LLMs) have garnered significant attention in the robotics field due to their low computational resource requirements and suitability for edge deployment. However, in task planning -- particularly for complex tasks that involve dynamic semantic logic reasoning -- lightweight LLMs have underperformed. To address this limitation, we propose a novel task planner, LightPlanner, which enhances the performance of lightweight LLMs in complex task planning by fully leveraging their reasoning capabilities. Unlike conventional planners that use fixed skill templates, LightPlanner controls robot actions via parameterized function calls, dynamically generating parameter values. This approach allows for fine-grained skill control and improves task planning success rates in complex scenarios. Furthermore, we introduce hierarchical deep reasoning. Before generating each action decision step, LightPlanner thoroughly considers three levels: action execution (feedback verification), semantic parsing (goal consistency verification), and parameter generation (parameter validity verification). This ensures the correctness of subsequent action controls. Additionally, we incorporate a memory module to store historical actions, thereby reducing context length and enhancing planning efficiency for long-term tasks. We train the LightPlanner-1.5B model on our LightPlan-40k dataset, which comprises 40,000 action controls across tasks with 2 to 13 action steps. Experiments demonstrate that our model achieves the highest task success rate despite having the smallest number of parameters. In tasks involving spatial semantic reasoning, the success rate exceeds that of ReAct by 14.9 percent. Moreover, we demonstrate LightPlanner's potential to operate on edge devices.

  • 7 authors
·
Mar 11

ERA: Transforming VLMs into Embodied Agents via Embodied Prior Learning and Online Reinforcement Learning

Recent advances in embodied AI highlight the potential of vision language models (VLMs) as agents capable of perception, reasoning, and interaction in complex environments. However, top-performing systems rely on large-scale models that are costly to deploy, while smaller VLMs lack the necessary knowledge and skills to succeed. To bridge this gap, we present Embodied Reasoning Agent (ERA), a two-stage framework that integrates prior knowledge learning and online reinforcement learning (RL). The first stage, Embodied Prior Learning, distills foundational knowledge from three types of data: (1) Trajectory-Augmented Priors, which enrich existing trajectory data with structured reasoning generated by stronger models; (2) Environment-Anchored Priors, which provide in-environment knowledge and grounding supervision; and (3) External Knowledge Priors, which transfer general knowledge from out-of-environment datasets. In the second stage, we develop an online RL pipeline that builds on these priors to further enhance agent performance. To overcome the inherent challenges in agent RL, including long horizons, sparse rewards, and training instability, we introduce three key designs: self-summarization for context management, dense reward shaping, and turn-level policy optimization. Extensive experiments on both high-level planning (EB-ALFRED) and low-level control (EB-Manipulation) tasks demonstrate that ERA-3B surpasses both prompting-based large models and previous training-based baselines. Specifically, it achieves overall improvements of 8.4\% on EB-ALFRED and 19.4\% on EB-Manipulation over GPT-4o, and exhibits strong generalization to unseen tasks. Overall, ERA offers a practical path toward scalable embodied intelligence, providing methodological insights for future embodied AI systems.

Case Studies for Computing Density of Reachable States for Safe Autonomous Motion Planning

Density of the reachable states can help understand the risk of safety-critical systems, especially in situations when worst-case reachability is too conservative. Recent work provides a data-driven approach to compute the density distribution of autonomous systems' forward reachable states online. In this paper, we study the use of such approach in combination with model predictive control for verifiable safe path planning under uncertainties. We first use the learned density distribution to compute the risk of collision online. If such risk exceeds the acceptable threshold, our method will plan for a new path around the previous trajectory, with the risk of collision below the threshold. Our method is well-suited to handle systems with uncertainties and complicated dynamics as our data-driven approach does not need an analytical form of the systems' dynamics and can estimate forward state density with an arbitrary initial distribution of uncertainties. We design two challenging scenarios (autonomous driving and hovercraft control) for safe motion planning in environments with obstacles under system uncertainties. We first show that our density estimation approach can reach a similar accuracy as the Monte-Carlo-based method while using only 0.01X training samples. By leveraging the estimated risk, our algorithm achieves the highest success rate in goal reaching when enforcing the safety rate above 0.99.

  • 4 authors
·
Sep 16, 2022

VideoDirectorGPT: Consistent Multi-scene Video Generation via LLM-Guided Planning

Although recent text-to-video (T2V) generation methods have seen significant advancements, most of these works focus on producing short video clips of a single event with a single background (i.e., single-scene videos). Meanwhile, recent large language models (LLMs) have demonstrated their capability in generating layouts and programs to control downstream visual modules such as image generation models. This raises an important question: can we leverage the knowledge embedded in these LLMs for temporally consistent long video generation? In this paper, we propose VideoDirectorGPT, a novel framework for consistent multi-scene video generation that uses the knowledge of LLMs for video content planning and grounded video generation. Specifically, given a single text prompt, we first ask our video planner LLM (GPT-4) to expand it into a 'video plan', which involves generating the scene descriptions, the entities with their respective layouts, the background for each scene, and consistency groupings of the entities and backgrounds. Next, guided by this output from the video planner, our video generator, Layout2Vid, has explicit control over spatial layouts and can maintain temporal consistency of entities/backgrounds across scenes, while only trained with image-level annotations. Our experiments demonstrate that VideoDirectorGPT framework substantially improves layout and movement control in both single- and multi-scene video generation and can generate multi-scene videos with visual consistency across scenes, while achieving competitive performance with SOTAs in open-domain single-scene T2V generation. We also demonstrate that our framework can dynamically control the strength for layout guidance and can also generate videos with user-provided images. We hope our framework can inspire future work on better integrating the planning ability of LLMs into consistent long video generation.

  • 4 authors
·
Sep 26, 2023 5

EMAC+: Embodied Multimodal Agent for Collaborative Planning with VLM+LLM

Although LLMs demonstrate proficiency in several text-based reasoning and planning tasks, their implementation in robotics control is constrained by significant deficiencies: (1) LLM agents are designed to work mainly with textual inputs rather than visual conditions; (2) Current multimodal agents treat LLMs as static planners, which separates their reasoning from environment dynamics, resulting in actions that do not take domain-specific knowledge into account; and (3) LLMs are not designed to learn from visual interactions, which makes it harder for them to make better policies for specific domains. In this paper, we introduce EMAC+, an Embodied Multimodal Agent that collaboratively integrates LLM and VLM via a bidirectional training paradigm. Unlike existing methods, EMAC+ dynamically refines high-level textual plans generated by an LLM using real-time feedback from a VLM executing low-level visual control tasks. We address critical limitations of previous models by enabling the LLM to internalize visual environment dynamics directly through interactive experience, rather than relying solely on static symbolic mappings. Extensive experimental evaluations on ALFWorld and RT-1 benchmarks demonstrate that EMAC+ achieves superior task performance, robustness against noisy observations, and efficient learning. We also conduct thorough ablation studies and provide detailed analyses of success and failure cases.

  • 3 authors
·
May 26

MORSE-500: A Programmatically Controllable Video Benchmark to Stress-Test Multimodal Reasoning

Despite rapid advances in vision-language models (VLMs), current benchmarks for multimodal reasoning fall short in three key dimensions. First, they overwhelmingly rely on static images, failing to capture the temporal complexity of real-world environments. Second, they narrowly focus on mathematical problem-solving, neglecting the broader spectrum of reasoning skills -- including abstract, physical, planning, spatial, and temporal capabilities -- required for robust multimodal intelligence. Third, many benchmarks quickly saturate, offering limited headroom for diagnosing failure modes or measuring continued progress. We introduce MORSE-500 (Multimodal Reasoning Stress-test Environment), a video benchmark composed of 500 fully scripted clips with embedded questions spanning six complementary reasoning categories. Each instance is programmatically generated using deterministic Python scripts (via Manim, Matplotlib, MoviePy), generative video models, and curated real footage. This script-driven design allows fine-grained control over visual complexity, distractor density, and temporal dynamics -- enabling difficulty to be scaled systematically as models improve. Unlike static benchmarks that become obsolete once saturated, MORSE-500 is built to evolve: its controllable generation pipeline supports the creation of arbitrarily challenging new instances, making it ideally suited for stress-testing next-generation models. Initial experiments with state-of-the-art systems -- including various Gemini 2.5 Pro and OpenAI o3 which represent the strongest available at the time, alongside strong open-source models -- reveal substantial performance gaps across all categories, with particularly large deficits in abstract and planning tasks. We release the full dataset, generation scripts, and evaluation harness to support transparent, reproducible, and forward-looking multimodal reasoning research.

Planning with Large Language Models for Code Generation

Existing large language model-based code generation pipelines typically use beam search or sampling algorithms during the decoding process. Although the programs they generate achieve high token-matching-based scores, they often fail to compile or generate incorrect outputs. The main reason is that conventional Transformer decoding algorithms may not be the best choice for code generation. In this work, we propose a novel Transformer decoding algorithm, Planning-Guided Transformer Decoding (PG-TD), that uses a planning algorithm to do lookahead search and guide the Transformer to generate better programs. Specifically, instead of simply optimizing the likelihood of the generated sequences, the Transformer makes use of a planner to generate candidate programs and test them on public test cases. The Transformer can therefore make more informed decisions and generate tokens that will eventually lead to higher-quality programs. We also design a mechanism that shares information between the Transformer and the planner to make our algorithm computationally efficient. We empirically evaluate our framework with several large language models as backbones on public coding challenge benchmarks, showing that 1) it can generate programs that consistently achieve higher performance compared with competing baseline methods; 2) it enables controllable code generation, such as concise codes and highly-commented codes by optimizing modified objective.

  • 6 authors
·
Mar 9, 2023

Towards General Computer Control: A Multimodal Agent for Red Dead Redemption II as a Case Study

Despite the success in specific tasks and scenarios, existing foundation agents, empowered by large models (LMs) and advanced tools, still cannot generalize to different scenarios, mainly due to dramatic differences in the observations and actions across scenarios. In this work, we propose the General Computer Control (GCC) setting: building foundation agents that can master any computer task by taking only screen images (and possibly audio) of the computer as input, and producing keyboard and mouse operations as output, similar to human-computer interaction. The main challenges of achieving GCC are: 1) the multimodal observations for decision-making, 2) the requirements of accurate control of keyboard and mouse, 3) the need for long-term memory and reasoning, and 4) the abilities of efficient exploration and self-improvement. To target GCC, we introduce Cradle, an agent framework with six main modules, including: 1) information gathering to extract multi-modality information, 2) self-reflection to rethink past experiences, 3) task inference to choose the best next task, 4) skill curation for generating and updating relevant skills for given tasks, 5) action planning to generate specific operations for keyboard and mouse control, and 6) memory for storage and retrieval of past experiences and known skills. To demonstrate the capabilities of generalization and self-improvement of Cradle, we deploy it in the complex AAA game Red Dead Redemption II, serving as a preliminary attempt towards GCC with a challenging target. To our best knowledge, our work is the first to enable LMM-based agents to follow the main storyline and finish real missions in complex AAA games, with minimal reliance on prior knowledge or resources. The project website is at https://baai-agents.github.io/Cradle/.

  • 16 authors
·
Mar 5, 2024 1

Hi-Agent: Hierarchical Vision-Language Agents for Mobile Device Control

Building agents that autonomously operate mobile devices has attracted increasing attention. While Vision-Language Models (VLMs) show promise, most existing approaches rely on direct state-to-action mappings, which lack structured reasoning and planning, and thus generalize poorly to novel tasks or unseen UI layouts. We introduce Hi-Agent, a trainable hierarchical vision-language agent for mobile control, featuring a high-level reasoning model and a low-level action model that are jointly optimized. For efficient training, we reformulate multi-step decision-making as a sequence of single-step subgoals and propose a foresight advantage function, which leverages execution feedback from the low-level model to guide high-level optimization. This design alleviates the path explosion issue encountered by Group Relative Policy Optimization (GRPO) in long-horizon tasks and enables stable, critic-free joint training. Hi-Agent achieves a new State-Of-The-Art (SOTA) 87.9% task success rate on the Android-in-the-Wild (AitW) benchmark, significantly outperforming prior methods across three paradigms: prompt-based (AppAgent: 17.7%), supervised (Filtered BC: 54.5%), and reinforcement learning-based (DigiRL: 71.9%). It also demonstrates competitive zero-shot generalization on the ScreenSpot-v2 benchmark. On the more challenging AndroidWorld benchmark, Hi-Agent also scales effectively with larger backbones, showing strong adaptability in high-complexity mobile control scenarios.

  • 12 authors
·
Oct 16

DriveMLM: Aligning Multi-Modal Large Language Models with Behavioral Planning States for Autonomous Driving

Large language models (LLMs) have opened up new possibilities for intelligent agents, endowing them with human-like thinking and cognitive abilities. In this work, we delve into the potential of large language models (LLMs) in autonomous driving (AD). We introduce DriveMLM, an LLM-based AD framework that can perform close-loop autonomous driving in realistic simulators. To this end, (1) we bridge the gap between the language decisions and the vehicle control commands by standardizing the decision states according to the off-the-shelf motion planning module. (2) We employ a multi-modal LLM (MLLM) to model the behavior planning module of a module AD system, which uses driving rules, user commands, and inputs from various sensors (e.g., camera, lidar) as input and makes driving decisions and provide explanations; This model can plug-and-play in existing AD systems such as Apollo for close-loop driving. (3) We design an effective data engine to collect a dataset that includes decision state and corresponding explanation annotation for model training and evaluation. We conduct extensive experiments and show that our model achieves 76.1 driving score on the CARLA Town05 Long, and surpasses the Apollo baseline by 4.7 points under the same settings, demonstrating the effectiveness of our model. We hope this work can serve as a baseline for autonomous driving with LLMs. Code and models shall be released at https://github.com/OpenGVLab/DriveMLM.

  • 16 authors
·
Dec 14, 2023

SLEDGE: Synthesizing Simulation Environments for Driving Agents with Generative Models

SLEDGE is the first generative simulator for vehicle motion planning trained on real-world driving logs. Its core component is a learned model that is able to generate agent bounding boxes and lane graphs. The model's outputs serve as an initial state for traffic simulation. The unique properties of the entities to be generated for SLEDGE, such as their connectivity and variable count per scene, render the naive application of most modern generative models to this task non-trivial. Therefore, together with a systematic study of existing lane graph representations, we introduce a novel raster-to-vector autoencoder (RVAE). It encodes agents and the lane graph into distinct channels in a rasterized latent map. This facilitates both lane-conditioned agent generation and combined generation of lanes and agents with a Diffusion Transformer. Using generated entities in SLEDGE enables greater control over the simulation, e.g. upsampling turns or increasing traffic density. Further, SLEDGE can support 500m long routes, a capability not found in existing data-driven simulators like nuPlan. It presents new challenges for planning algorithms, evidenced by failure rates of over 40% for PDM, the winner of the 2023 nuPlan challenge, when tested on hard routes and dense traffic generated by our model. Compared to nuPlan, SLEDGE requires 500times less storage to set up (<4GB), making it a more accessible option and helping with democratizing future research in this field.

  • 3 authors
·
Mar 26, 2024

CodeAgents: A Token-Efficient Framework for Codified Multi-Agent Reasoning in LLMs

Effective prompt design is essential for improving the planning capabilities of large language model (LLM)-driven agents. However, existing structured prompting strategies are typically limited to single-agent, plan-only settings, and often evaluate performance solely based on task accuracy - overlooking critical factors such as token efficiency, modularity, and scalability in multi-agent environments. To address these limitations, we introduce CodeAgents, a prompting framework that codifies multi-agent reasoning and enables structured, token-efficient planning in multi-agent systems. In CodeAgents, all components of agent interaction - Task, Plan, Feedback, system roles, and external tool invocations - are codified into modular pseudocode enriched with control structures (e.g., loops, conditionals), boolean logic, and typed variables. This design transforms loosely connected agent plans into cohesive, interpretable, and verifiable multi-agent reasoning programs. We evaluate the proposed framework across three diverse benchmarks - GAIA, HotpotQA, and VirtualHome - using a range of representative LLMs. Results show consistent improvements in planning performance, with absolute gains of 3-36 percentage points over natural language prompting baselines. On VirtualHome, our method achieves a new state-of-the-art success rate of 56%. In addition, our approach reduces input and output token usage by 55-87% and 41-70%, respectively, underscoring the importance of token-aware evaluation metrics in the development of scalable multi-agent LLM systems. The code and resources are available at: https://anonymous.4open.science/r/CodifyingAgent-5A86

  • 6 authors
·
Jul 3

Safe LLM-Controlled Robots with Formal Guarantees via Reachability Analysis

The deployment of Large Language Models (LLMs) in robotic systems presents unique safety challenges, particularly in unpredictable environments. Although LLMs, leveraging zero-shot learning, enhance human-robot interaction and decision-making capabilities, their inherent probabilistic nature and lack of formal guarantees raise significant concerns for safety-critical applications. Traditional model-based verification approaches often rely on precise system models, which are difficult to obtain for real-world robotic systems and may not be fully trusted due to modeling inaccuracies, unmodeled dynamics, or environmental uncertainties. To address these challenges, this paper introduces a safety assurance framework for LLM-controlled robots based on data-driven reachability analysis, a formal verification technique that ensures all possible system trajectories remain within safe operational limits. Our framework specifically investigates the problem of instructing an LLM to navigate the robot to a specified goal and assesses its ability to generate low-level control actions that successfully guide the robot safely toward that goal. By leveraging historical data to construct reachable sets of states for the robot-LLM system, our approach provides rigorous safety guarantees against unsafe behaviors without relying on explicit analytical models. We validate the framework through experimental case studies in autonomous navigation and task planning, demonstrating its effectiveness in mitigating risks associated with LLM-generated commands. This work advances the integration of formal methods into LLM-based robotics, offering a principled and practical approach to ensuring safety in next-generation autonomous systems.

  • 4 authors
·
Mar 5

Risk Map As Middleware: Towards Interpretable Cooperative End-to-end Autonomous Driving for Risk-Aware Planning

End-to-end paradigm has emerged as a promising approach to autonomous driving. However, existing single-agent end-to-end pipelines are often constrained by occlusion and limited perception range, resulting in hazardous driving. Furthermore, their black-box nature prevents the interpretability of the driving behavior, leading to an untrustworthiness system. To address these limitations, we introduce Risk Map as Middleware (RiskMM) and propose an interpretable cooperative end-to-end driving framework. The risk map learns directly from the driving data and provides an interpretable spatiotemporal representation of the scenario from the upstream perception and the interactions between the ego vehicle and the surrounding environment for downstream planning. RiskMM first constructs a multi-agent spatiotemporal representation with unified Transformer-based architecture, then derives risk-aware representations by modeling interactions among surrounding environments with attention. These representations are subsequently fed into a learning-based Model Predictive Control (MPC) module. The MPC planner inherently accommodates physical constraints and different vehicle types and can provide interpretation by aligning learned parameters with explicit MPC elements. Evaluations conducted on the real-world V2XPnP-Seq dataset confirm that RiskMM achieves superior and robust performance in risk-aware trajectory planning, significantly enhancing the interpretability of the cooperative end-to-end driving framework. The codebase will be released to facilitate future research in this field.

  • 5 authors
·
Aug 11

Continual Model-Based Reinforcement Learning with Hypernetworks

Effective planning in model-based reinforcement learning (MBRL) and model-predictive control (MPC) relies on the accuracy of the learned dynamics model. In many instances of MBRL and MPC, this model is assumed to be stationary and is periodically re-trained from scratch on state transition experience collected from the beginning of environment interactions. This implies that the time required to train the dynamics model - and the pause required between plan executions - grows linearly with the size of the collected experience. We argue that this is too slow for lifelong robot learning and propose HyperCRL, a method that continually learns the encountered dynamics in a sequence of tasks using task-conditional hypernetworks. Our method has three main attributes: first, it includes dynamics learning sessions that do not revisit training data from previous tasks, so it only needs to store the most recent fixed-size portion of the state transition experience; second, it uses fixed-capacity hypernetworks to represent non-stationary and task-aware dynamics; third, it outperforms existing continual learning alternatives that rely on fixed-capacity networks, and does competitively with baselines that remember an ever increasing coreset of past experience. We show that HyperCRL is effective in continual model-based reinforcement learning in robot locomotion and manipulation scenarios, such as tasks involving pushing and door opening. Our project website with videos is at this link https://rvl.cs.toronto.edu/blog/2020/hypercrl

  • 4 authors
·
Sep 24, 2020

VidEgoThink: Assessing Egocentric Video Understanding Capabilities for Embodied AI

Recent advancements in Multi-modal Large Language Models (MLLMs) have opened new avenues for applications in Embodied AI. Building on previous work, EgoThink, we introduce VidEgoThink, a comprehensive benchmark for evaluating egocentric video understanding capabilities. To bridge the gap between MLLMs and low-level control in Embodied AI, we design four key interrelated tasks: video question-answering, hierarchy planning, visual grounding and reward modeling. To minimize manual annotation costs, we develop an automatic data generation pipeline based on the Ego4D dataset, leveraging the prior knowledge and multimodal capabilities of GPT-4o. Three human annotators then filter the generated data to ensure diversity and quality, resulting in the VidEgoThink benchmark. We conduct extensive experiments with three types of models: API-based MLLMs, open-source image-based MLLMs, and open-source video-based MLLMs. Experimental results indicate that all MLLMs, including GPT-4o, perform poorly across all tasks related to egocentric video understanding. These findings suggest that foundation models still require significant advancements to be effectively applied to first-person scenarios in Embodied AI. In conclusion, VidEgoThink reflects a research trend towards employing MLLMs for egocentric vision, akin to human capabilities, enabling active observation and interaction in the complex real-world environments.

  • 9 authors
·
Oct 15, 2024 3

Mastering Text-to-Image Diffusion: Recaptioning, Planning, and Generating with Multimodal LLMs

Diffusion models have exhibit exceptional performance in text-to-image generation and editing. However, existing methods often face challenges when handling complex text prompts that involve multiple objects with multiple attributes and relationships. In this paper, we propose a brand new training-free text-to-image generation/editing framework, namely Recaption, Plan and Generate (RPG), harnessing the powerful chain-of-thought reasoning ability of multimodal LLMs to enhance the compositionality of text-to-image diffusion models. Our approach employs the MLLM as a global planner to decompose the process of generating complex images into multiple simpler generation tasks within subregions. We propose complementary regional diffusion to enable region-wise compositional generation. Furthermore, we integrate text-guided image generation and editing within the proposed RPG in a closed-loop fashion, thereby enhancing generalization ability. Extensive experiments demonstrate our RPG outperforms state-of-the-art text-to-image diffusion models, including DALL-E 3 and SDXL, particularly in multi-category object composition and text-image semantic alignment. Notably, our RPG framework exhibits wide compatibility with various MLLM architectures (e.g., MiniGPT-4) and diffusion backbones (e.g., ControlNet). Our code is available at: https://github.com/YangLing0818/RPG-DiffusionMaster

  • 6 authors
·
Jan 22, 2024 2

Affordances-Oriented Planning using Foundation Models for Continuous Vision-Language Navigation

LLM-based agents have demonstrated impressive zero-shot performance in vision-language navigation (VLN) task. However, existing LLM-based methods often focus only on solving high-level task planning by selecting nodes in predefined navigation graphs for movements, overlooking low-level control in navigation scenarios. To bridge this gap, we propose AO-Planner, a novel Affordances-Oriented Planner for continuous VLN task. Our AO-Planner integrates various foundation models to achieve affordances-oriented low-level motion planning and high-level decision-making, both performed in a zero-shot setting. Specifically, we employ a Visual Affordances Prompting (VAP) approach, where the visible ground is segmented by SAM to provide navigational affordances, based on which the LLM selects potential candidate waypoints and plans low-level paths towards selected waypoints. We further propose a high-level PathAgent which marks planned paths into the image input and reasons the most probable path by comprehending all environmental information. Finally, we convert the selected path into 3D coordinates using camera intrinsic parameters and depth information, avoiding challenging 3D predictions for LLMs. Experiments on the challenging R2R-CE and RxR-CE datasets show that AO-Planner achieves state-of-the-art zero-shot performance (8.8% improvement on SPL). Our method can also serve as a data annotator to obtain pseudo-labels, distilling its waypoint prediction ability into a learning-based predictor. This new predictor does not require any waypoint data from the simulator and achieves 47% SR competing with supervised methods. We establish an effective connection between LLM and 3D world, presenting novel prospects for employing foundation models in low-level motion control.

  • 6 authors
·
Jul 8, 2024

ODYSSEY: Open-World Quadrupeds Exploration and Manipulation for Long-Horizon Tasks

Language-guided long-horizon mobile manipulation has long been a grand challenge in embodied semantic reasoning, generalizable manipulation, and adaptive locomotion. Three fundamental limitations hinder progress: First, although large language models have improved spatial reasoning and task planning through semantic priors, existing implementations remain confined to tabletop scenarios, failing to address the constrained perception and limited actuation ranges of mobile platforms. Second, current manipulation strategies exhibit insufficient generalization when confronted with the diverse object configurations encountered in open-world environments. Third, while crucial for practical deployment, the dual requirement of maintaining high platform maneuverability alongside precise end-effector control in unstructured settings remains understudied. In this work, we present ODYSSEY, a unified mobile manipulation framework for agile quadruped robots equipped with manipulators, which seamlessly integrates high-level task planning with low-level whole-body control. To address the challenge of egocentric perception in language-conditioned tasks, we introduce a hierarchical planner powered by a vision-language model, enabling long-horizon instruction decomposition and precise action execution. At the control level, our novel whole-body policy achieves robust coordination across challenging terrains. We further present the first benchmark for long-horizon mobile manipulation, evaluating diverse indoor and outdoor scenarios. Through successful sim-to-real transfer, we demonstrate the system's generalization and robustness in real-world deployments, underscoring the practicality of legged manipulators in unstructured environments. Our work advances the feasibility of generalized robotic assistants capable of complex, dynamic tasks. Our project page: https://kaijwang.github.io/odyssey.github.io/

  • 10 authors
·
Aug 11 3

DexHandDiff: Interaction-aware Diffusion Planning for Adaptive Dexterous Manipulation

Dexterous manipulation with contact-rich interactions is crucial for advanced robotics. While recent diffusion-based planning approaches show promise for simple manipulation tasks, they often produce unrealistic ghost states (e.g., the object automatically moves without hand contact) or lack adaptability when handling complex sequential interactions. In this work, we introduce DexHandDiff, an interaction-aware diffusion planning framework for adaptive dexterous manipulation. DexHandDiff models joint state-action dynamics through a dual-phase diffusion process which consists of pre-interaction contact alignment and post-contact goal-directed control, enabling goal-adaptive generalizable dexterous manipulation. Additionally, we incorporate dynamics model-based dual guidance and leverage large language models for automated guidance function generation, enhancing generalizability for physical interactions and facilitating diverse goal adaptation through language cues. Experiments on physical interaction tasks such as door opening, pen and block re-orientation, object relocation, and hammer striking demonstrate DexHandDiff's effectiveness on goals outside training distributions, achieving over twice the average success rate (59.2% vs. 29.5%) compared to existing methods. Our framework achieves an average of 70.7% success rate on goal adaptive dexterous tasks, highlighting its robustness and flexibility in contact-rich manipulation.

  • 9 authors
·
Nov 27, 2024

MotionCanvas: Cinematic Shot Design with Controllable Image-to-Video Generation

This paper presents a method that allows users to design cinematic video shots in the context of image-to-video generation. Shot design, a critical aspect of filmmaking, involves meticulously planning both camera movements and object motions in a scene. However, enabling intuitive shot design in modern image-to-video generation systems presents two main challenges: first, effectively capturing user intentions on the motion design, where both camera movements and scene-space object motions must be specified jointly; and second, representing motion information that can be effectively utilized by a video diffusion model to synthesize the image animations. To address these challenges, we introduce MotionCanvas, a method that integrates user-driven controls into image-to-video (I2V) generation models, allowing users to control both object and camera motions in a scene-aware manner. By connecting insights from classical computer graphics and contemporary video generation techniques, we demonstrate the ability to achieve 3D-aware motion control in I2V synthesis without requiring costly 3D-related training data. MotionCanvas enables users to intuitively depict scene-space motion intentions, and translates them into spatiotemporal motion-conditioning signals for video diffusion models. We demonstrate the effectiveness of our method on a wide range of real-world image content and shot-design scenarios, highlighting its potential to enhance the creative workflows in digital content creation and adapt to various image and video editing applications.

SafeAgentBench: A Benchmark for Safe Task Planning of Embodied LLM Agents

With the integration of large language models (LLMs), embodied agents have strong capabilities to understand and plan complicated natural language instructions. However, a foreseeable issue is that those embodied agents can also flawlessly execute some hazardous tasks, potentially causing damages in the real world. Existing benchmarks predominantly overlook critical safety risks, focusing solely on planning performance, while a few evaluate LLMs' safety awareness only on non-interactive image-text data. To address this gap, we present SafeAgentBench-the first benchmark for safety-aware task planning of embodied LLM agents in interactive simulation environments. SafeAgentBench includes: (1) an executable, diverse, and high-quality dataset of 750 tasks, rigorously curated to cover 10 potential hazards and 3 task types; (2) SafeAgentEnv, a universal embodied environment with a low-level controller, supporting multi-agent execution with 17 high-level actions for 8 state-of-the-art baselines; and (3) reliable evaluation methods from both execution and semantic perspectives. Experimental results show that, although agents based on different design frameworks exhibit substantial differences in task success rates, their overall safety awareness remains weak. The most safety-conscious baseline achieves only a 10\% rejection rate for detailed hazardous tasks. Moreover, simply replacing the LLM driving the agent does not lead to notable improvements in safety awareness. More details and code are available at https://github.com/shengyin1224/SafeAgentBench.

  • 10 authors
·
Dec 17, 2024

Transcendental Idealism of Planner: Evaluating Perception from Planning Perspective for Autonomous Driving

Evaluating the performance of perception modules in autonomous driving is one of the most critical tasks in developing the complex intelligent system. While module-level unit test metrics adopted from traditional computer vision tasks are feasible to some extent, it remains far less explored to measure the impact of perceptual noise on the driving quality of autonomous vehicles in a consistent and holistic manner. In this work, we propose a principled framework that provides a coherent and systematic understanding of the impact an error in the perception module imposes on an autonomous agent's planning that actually controls the vehicle. Specifically, the planning process is formulated as expected utility maximisation, where all input signals from upstream modules jointly provide a world state description, and the planner strives for the optimal action by maximising the expected utility determined by both world states and actions. We show that, under practical conditions, the objective function can be represented as an inner product between the world state description and the utility function in a Hilbert space. This geometric interpretation enables a novel way to analyse the impact of noise in world state estimation on planning and leads to a universal metric for evaluating perception. The whole framework resembles the idea of transcendental idealism in the classical philosophical literature, which gives the name to our approach.

  • 2 authors
·
Jun 12, 2023

Being-0: A Humanoid Robotic Agent with Vision-Language Models and Modular Skills

Building autonomous robotic agents capable of achieving human-level performance in real-world embodied tasks is an ultimate goal in humanoid robot research. Recent advances have made significant progress in high-level cognition with Foundation Models (FMs) and low-level skill development for humanoid robots. However, directly combining these components often results in poor robustness and efficiency due to compounding errors in long-horizon tasks and the varied latency of different modules. We introduce Being-0, a hierarchical agent framework that integrates an FM with a modular skill library. The FM handles high-level cognitive tasks such as instruction understanding, task planning, and reasoning, while the skill library provides stable locomotion and dexterous manipulation for low-level control. To bridge the gap between these levels, we propose a novel Connector module, powered by a lightweight vision-language model (VLM). The Connector enhances the FM's embodied capabilities by translating language-based plans into actionable skill commands and dynamically coordinating locomotion and manipulation to improve task success. With all components, except the FM, deployable on low-cost onboard computation devices, Being-0 achieves efficient, real-time performance on a full-sized humanoid robot equipped with dexterous hands and active vision. Extensive experiments in large indoor environments demonstrate Being-0's effectiveness in solving complex, long-horizon tasks that require challenging navigation and manipulation subtasks. For further details and videos, visit https://beingbeyond.github.io/being-0.

  • 9 authors
·
Mar 16 2

GeoDrive: 3D Geometry-Informed Driving World Model with Precise Action Control

Recent advancements in world models have revolutionized dynamic environment simulation, allowing systems to foresee future states and assess potential actions. In autonomous driving, these capabilities help vehicles anticipate the behavior of other road users, perform risk-aware planning, accelerate training in simulation, and adapt to novel scenarios, thereby enhancing safety and reliability. Current approaches exhibit deficiencies in maintaining robust 3D geometric consistency or accumulating artifacts during occlusion handling, both critical for reliable safety assessment in autonomous navigation tasks. To address this, we introduce GeoDrive, which explicitly integrates robust 3D geometry conditions into driving world models to enhance spatial understanding and action controllability. Specifically, we first extract a 3D representation from the input frame and then obtain its 2D rendering based on the user-specified ego-car trajectory. To enable dynamic modeling, we propose a dynamic editing module during training to enhance the renderings by editing the positions of the vehicles. Extensive experiments demonstrate that our method significantly outperforms existing models in both action accuracy and 3D spatial awareness, leading to more realistic, adaptable, and reliable scene modeling for safer autonomous driving. Additionally, our model can generalize to novel trajectories and offers interactive scene editing capabilities, such as object editing and object trajectory control.

  • 8 authors
·
May 28 3

FinRobot: Generative Business Process AI Agents for Enterprise Resource Planning in Finance

Enterprise Resource Planning (ERP) systems serve as the digital backbone of modern financial institutions, yet they continue to rely on static, rule-based workflows that limit adaptability, scalability, and intelligence. As business operations grow more complex and data-rich, conventional ERP platforms struggle to integrate structured and unstructured data in real time and to accommodate dynamic, cross-functional workflows. In this paper, we present the first AI-native, agent-based framework for ERP systems, introducing a novel architecture of Generative Business Process AI Agents (GBPAs) that bring autonomy, reasoning, and dynamic optimization to enterprise workflows. The proposed system integrates generative AI with business process modeling and multi-agent orchestration, enabling end-to-end automation of complex tasks such as budget planning, financial reporting, and wire transfer processing. Unlike traditional workflow engines, GBPAs interpret user intent, synthesize workflows in real time, and coordinate specialized sub-agents for modular task execution. We validate the framework through case studies in bank wire transfers and employee reimbursements, two representative financial workflows with distinct complexity and data modalities. Results show that GBPAs achieve up to 40% reduction in processing time, 94% drop in error rate, and improved regulatory compliance by enabling parallelism, risk control insertion, and semantic reasoning. These findings highlight the potential of GBPAs to bridge the gap between generative AI capabilities and enterprise-grade automation, laying the groundwork for the next generation of intelligent ERP systems.

  • 8 authors
·
Jun 2

DiagrammerGPT: Generating Open-Domain, Open-Platform Diagrams via LLM Planning

Text-to-image (T2I) generation has seen significant growth over the past few years. Despite this, there has been little work on generating diagrams with T2I models. A diagram is a symbolic/schematic representation that explains information using structurally rich and spatially complex visualizations (e.g., a dense combination of related objects, text labels, directional arrows, connection lines, etc.). Existing state-of-the-art T2I models often fail at diagram generation because they lack fine-grained object layout control when many objects are densely connected via complex relations such as arrows/lines and also often fail to render comprehensible text labels. To address this gap, we present DiagrammerGPT, a novel two-stage text-to-diagram generation framework that leverages the layout guidance capabilities of LLMs (e.g., GPT-4) to generate more accurate open-domain, open-platform diagrams. In the first stage, we use LLMs to generate and iteratively refine 'diagram plans' (in a planner-auditor feedback loop) which describe all the entities (objects and text labels), their relationships (arrows or lines), and their bounding box layouts. In the second stage, we use a diagram generator, DiagramGLIGEN, and a text label rendering module to generate diagrams following the diagram plans. To benchmark the text-to-diagram generation task, we introduce AI2D-Caption, a densely annotated diagram dataset built on top of the AI2D dataset. We show quantitatively and qualitatively that our DiagrammerGPT framework produces more accurate diagrams, outperforming existing T2I models. We also provide comprehensive analysis including open-domain diagram generation, vector graphic diagram generation in different platforms, human-in-the-loop diagram plan editing, and multimodal planner/auditor LLMs (e.g., GPT-4Vision). We hope our work can inspire further research on diagram generation via T2I models and LLMs.

  • 4 authors
·
Oct 18, 2023

Foundation Models for Decision Making: Problems, Methods, and Opportunities

Foundation models pretrained on diverse data at scale have demonstrated extraordinary capabilities in a wide range of vision and language tasks. When such models are deployed in real world environments, they inevitably interface with other entities and agents. For example, language models are often used to interact with human beings through dialogue, and visual perception models are used to autonomously navigate neighborhood streets. In response to these developments, new paradigms are emerging for training foundation models to interact with other agents and perform long-term reasoning. These paradigms leverage the existence of ever-larger datasets curated for multimodal, multitask, and generalist interaction. Research at the intersection of foundation models and decision making holds tremendous promise for creating powerful new systems that can interact effectively across a diverse range of applications such as dialogue, autonomous driving, healthcare, education, and robotics. In this manuscript, we examine the scope of foundation models for decision making, and provide conceptual tools and technical background for understanding the problem space and exploring new research directions. We review recent approaches that ground foundation models in practical decision making applications through a variety of methods such as prompting, conditional generative modeling, planning, optimal control, and reinforcement learning, and discuss common challenges and open problems in the field.

  • 6 authors
·
Mar 7, 2023

Gaitor: Learning a Unified Representation Across Gaits for Real-World Quadruped Locomotion

The current state-of-the-art in quadruped locomotion is able to produce a variety of complex motions. These methods either rely on switching between a discrete set of skills or learn a distribution across gaits using complex black-box models. Alternatively, we present Gaitor, which learns a disentangled and 2D representation across locomotion gaits. This learnt representation forms a planning space for closed-loop control delivering continuous gait transitions and perceptive terrain traversal. Gaitor's latent space is readily interpretable and we discover that during gait transitions, novel unseen gaits emerge. The latent space is disentangled with respect to footswing heights and lengths. This means that these gait characteristics can be varied independently in the 2D latent representation. Together with a simple terrain encoding and a learnt planner operating in the latent space, Gaitor can take motion commands including desired gait type and swing characteristics all while reacting to uneven terrain. We evaluate Gaitor in both simulation and the real world on the ANYmal C platform. To the best of our knowledge, this is the first work learning a unified and interpretable latent space for multiple gaits, resulting in continuous blending between different locomotion modes on a real quadruped robot. An overview of the methods and results in this paper is found at https://youtu.be/eVFQbRyilCA.

  • 5 authors
·
May 29, 2024

QUAR-VLA: Vision-Language-Action Model for Quadruped Robots

The important manifestation of robot intelligence is the ability to naturally interact and autonomously make decisions. Traditional approaches to robot control often compartmentalize perception, planning, and decision-making, simplifying system design but limiting the synergy between different information streams. This compartmentalization poses challenges in achieving seamless autonomous reasoning, decision-making, and action execution. To address these limitations, a novel paradigm, named Vision-Language-Action tasks for QUAdruped Robots (QUAR-VLA), has been introduced in this paper. This approach tightly integrates visual information and instructions to generate executable actions, effectively merging perception, planning, and decision-making. The central idea is to elevate the overall intelligence of the robot. Within this framework, a notable challenge lies in aligning fine-grained instructions with visual perception information. This emphasizes the complexity involved in ensuring that the robot accurately interprets and acts upon detailed instructions in harmony with its visual observations. Consequently, we propose QUAdruped Robotic Transformer (QUART), a family of VLA models to integrate visual information and instructions from diverse modalities as input and generates executable actions for real-world robots and present QUAdruped Robot Dataset (QUARD), a large-scale multi-task dataset including navigation, complex terrain locomotion, and whole-body manipulation tasks for training QUART models. Our extensive evaluation (4000 evaluation trials) shows that our approach leads to performant robotic policies and enables QUART to obtain a range of emergent capabilities.

  • 6 authors
·
Dec 22, 2023

AgentTuning: Enabling Generalized Agent Abilities for LLMs

Open large language models (LLMs) with great performance in various tasks have significantly advanced the development of LLMs. However, they are far inferior to commercial models such as ChatGPT and GPT-4 when acting as agents to tackle complex tasks in the real world. These agent tasks employ LLMs as the central controller responsible for planning, memorization, and tool utilization, necessitating both fine-grained prompting methods and robust LLMs to achieve satisfactory performance. Though many prompting methods have been proposed to complete particular agent tasks, there is lack of research focusing on improving the agent capabilities of LLMs themselves without compromising their general abilities. In this work, we present AgentTuning, a simple and general method to enhance the agent abilities of LLMs while maintaining their general LLM capabilities. We construct AgentInstruct, a lightweight instruction-tuning dataset containing high-quality interaction trajectories. We employ a hybrid instruction-tuning strategy by combining AgentInstruct with open-source instructions from general domains. AgentTuning is used to instruction-tune the Llama 2 series, resulting in AgentLM. Our evaluations show that AgentTuning enables LLMs' agent capabilities without compromising general abilities. The AgentLM-70B is comparable to GPT-3.5-turbo on unseen agent tasks, demonstrating generalized agent capabilities. We open source the AgentInstruct and AgentLM-7B, 13B, and 70B models at https://github.com/THUDM/AgentTuning , serving open and powerful alternatives to commercial LLMs for agent tasks.

  • 7 authors
·
Oct 19, 2023 1

Ark: An Open-source Python-based Framework for Robot Learning

Robotics has made remarkable hardware strides-from DARPA's Urban and Robotics Challenges to the first humanoid-robot kickboxing tournament-yet commercial autonomy still lags behind progress in machine learning. A major bottleneck is software: current robot stacks demand steep learning curves, low-level C/C++ expertise, fragmented tooling, and intricate hardware integration, in stark contrast to the Python-centric, well-documented ecosystems that propelled modern AI. We introduce ARK, an open-source, Python-first robotics framework designed to close that gap. ARK presents a Gym-style environment interface that allows users to collect data, preprocess it, and train policies using state-of-the-art imitation-learning algorithms (e.g., ACT, Diffusion Policy) while seamlessly toggling between high-fidelity simulation and physical robots. A lightweight client-server architecture provides networked publisher-subscriber communication, and optional C/C++ bindings ensure real-time performance when needed. ARK ships with reusable modules for control, SLAM, motion planning, system identification, and visualization, along with native ROS interoperability. Comprehensive documentation and case studies-from manipulation to mobile navigation-demonstrate rapid prototyping, effortless hardware swapping, and end-to-end pipelines that rival the convenience of mainstream machine-learning workflows. By unifying robotics and AI practices under a common Python umbrella, ARK lowers entry barriers and accelerates research and commercial deployment of autonomous robots.

From Elements to Design: A Layered Approach for Automatic Graphic Design Composition

In this work, we investigate automatic design composition from multimodal graphic elements. Although recent studies have developed various generative models for graphic design, they usually face the following limitations: they only focus on certain subtasks and are far from achieving the design composition task; they do not consider the hierarchical information of graphic designs during the generation process. To tackle these issues, we introduce the layered design principle into Large Multimodal Models (LMMs) and propose a novel approach, called LaDeCo, to accomplish this challenging task. Specifically, LaDeCo first performs layer planning for a given element set, dividing the input elements into different semantic layers according to their contents. Based on the planning results, it subsequently predicts element attributes that control the design composition in a layer-wise manner, and includes the rendered image of previously generated layers into the context. With this insightful design, LaDeCo decomposes the difficult task into smaller manageable steps, making the generation process smoother and clearer. The experimental results demonstrate the effectiveness of LaDeCo in design composition. Furthermore, we show that LaDeCo enables some interesting applications in graphic design, such as resolution adjustment, element filling, design variation, etc. In addition, it even outperforms the specialized models in some design subtasks without any task-specific training.

  • 6 authors
·
Dec 27, 2024 2

Atari-GPT: Investigating the Capabilities of Multimodal Large Language Models as Low-Level Policies for Atari Games

Recent advancements in large language models (LLMs) have expanded their capabilities beyond traditional text-based tasks to multimodal domains, integrating visual, auditory, and textual data. While multimodal LLMs have been extensively explored for high-level planning in domains like robotics and games, their potential as low-level controllers remains largely untapped. This paper explores the application of multimodal LLMs as low-level controllers in the domain of Atari video games, introducing Atari game performance as a new benchmark for evaluating the ability of multimodal LLMs to perform low-level control tasks. Unlike traditional reinforcement learning (RL) and imitation learning (IL) methods that require extensive computational resources as well as reward function specification, these LLMs utilize pre-existing multimodal knowledge to directly engage with game environments. Our study assesses multiple multimodal LLMs performance against traditional RL agents, human players, and random agents, focusing on their ability to understand and interact with complex visual scenes and formulate strategic responses. Additionally, we examine the impact of In-Context Learning (ICL) by incorporating human-demonstrated game-play trajectories to enhance the models contextual understanding. Through this investigation, we aim to determine the extent to which multimodal LLMs can leverage their extensive training to effectively function as low-level controllers, thereby redefining potential applications in dynamic and visually complex environments. Additional results and videos are available at our project webpage: https://sites.google.com/view/atari-gpt/.

  • 4 authors
·
Aug 28, 2024

A Survey on (M)LLM-Based GUI Agents

Graphical User Interface (GUI) Agents have emerged as a transformative paradigm in human-computer interaction, evolving from rule-based automation scripts to sophisticated AI-driven systems capable of understanding and executing complex interface operations. This survey provides a comprehensive examination of the rapidly advancing field of LLM-based GUI Agents, systematically analyzing their architectural foundations, technical components, and evaluation methodologies. We identify and analyze four fundamental components that constitute modern GUI Agents: (1) perception systems that integrate text-based parsing with multimodal understanding for comprehensive interface comprehension; (2) exploration mechanisms that construct and maintain knowledge bases through internal modeling, historical experience, and external information retrieval; (3) planning frameworks that leverage advanced reasoning methodologies for task decomposition and execution; and (4) interaction systems that manage action generation with robust safety controls. Through rigorous analysis of these components, we reveal how recent advances in large language models and multimodal learning have revolutionized GUI automation across desktop, mobile, and web platforms. We critically examine current evaluation frameworks, highlighting methodological limitations in existing benchmarks while proposing directions for standardization. This survey also identifies key technical challenges, including accurate element localization, effective knowledge retrieval, long-horizon planning, and safety-aware execution control, while outlining promising research directions for enhancing GUI Agents' capabilities. Our systematic review provides researchers and practitioners with a thorough understanding of the field's current state and offers insights into future developments in intelligent interface automation.

  • 15 authors
·
Mar 27

Matryoshka: Learning to Drive Black-Box LLMs with LLMs

Despite the impressive generative abilities of black-box large language models (LLMs), their inherent opacity hinders further advancements in capabilities such as reasoning, planning, and personalization. Existing works aim to enhance LLM capabilities via domain-specific adaptation or in-context learning, which require additional training on accessible model parameters, an infeasible option for black-box LLMs. To address this challenge, we introduce Matryoshika, a lightweight white-box LLM controller that guides a large-scale black-box LLM generator by decomposing complex tasks into a series of intermediate outputs. Specifically, we consider the black-box LLM as an environment, with Matryoshika serving as a policy to provide intermediate guidance through prompts for driving the black-box LLM. Matryoshika is trained to pivot the outputs of the black-box LLM aligning with preferences during iterative interaction, which enables controllable multi-turn generation and self-improvement in optimizing intermediate guidance. Empirical evaluations on three diverse tasks demonstrate that Matryoshika effectively enhances the capabilities of black-box LLMs in complex, long-horizon tasks, including reasoning, planning, and personalization. By leveraging this pioneering controller-generator framework to mitigate dependence on model parameters, Matryoshika provides a transparent and practical solution for improving black-box LLMs through controllable multi-turn generation using white-box LLMs.

  • 7 authors
·
Oct 28, 2024

RoboCerebra: A Large-scale Benchmark for Long-horizon Robotic Manipulation Evaluation

Recent advances in vision-language models (VLMs) have enabled instruction-conditioned robotic systems with improved generalization. However, most existing work focuses on reactive System 1 policies, underutilizing VLMs' strengths in semantic reasoning and long-horizon planning. These System 2 capabilities-characterized by deliberative, goal-directed thinking-remain under explored due to the limited temporal scale and structural complexity of current benchmarks. To address this gap, we introduce RoboCerebra, a benchmark for evaluating high-level reasoning in long-horizon robotic manipulation. RoboCerebra includes: (1) a large-scale simulation dataset with extended task horizons and diverse subtask sequences in household environments; (2) a hierarchical framework combining a high-level VLM planner with a low-level vision-language-action (VLA) controller; and (3) an evaluation protocol targeting planning, reflection, and memory through structured System 1-System 2 interaction. The dataset is constructed via a top-down pipeline, where GPT generates task instructions and decomposes them into subtask sequences. Human operators execute the subtasks in simulation, yielding high-quality trajectories with dynamic object variations. Compared to prior benchmarks, RoboCerebra features significantly longer action sequences and denser annotations. We further benchmark state-of-the-art VLMs as System 2 modules and analyze their performance across key cognitive dimensions, advancing the development of more capable and generalizable robotic planners.

  • 7 authors
·
Jun 7

Hydra-NeXt: Robust Closed-Loop Driving with Open-Loop Training

End-to-end autonomous driving research currently faces a critical challenge in bridging the gap between open-loop training and closed-loop deployment. Current approaches are trained to predict trajectories in an open-loop environment, which struggle with quick reactions to other agents in closed-loop environments and risk generating kinematically infeasible plans due to the gap between open-loop training and closed-loop driving. In this paper, we introduce Hydra-NeXt, a novel multi-branch planning framework that unifies trajectory prediction, control prediction, and a trajectory refinement network in one model. Unlike current open-loop trajectory prediction models that only handle general-case planning, Hydra-NeXt further utilizes a control decoder to focus on short-term actions, which enables faster responses to dynamic situations and reactive agents. Moreover, we propose the Trajectory Refinement module to augment and refine the planning decisions by effectively adhering to kinematic constraints in closed-loop environments. This unified approach bridges the gap between open-loop training and closed-loop driving, demonstrating superior performance of 65.89 Driving Score (DS) and 48.20% Success Rate (SR) on the Bench2Drive dataset without relying on external experts for data collection. Hydra-NeXt surpasses the previous state-of-the-art by 22.98 DS and 17.49 SR, marking a significant advancement in autonomous driving. Code will be available at https://github.com/woxihuanjiangguo/Hydra-NeXt.

  • 6 authors
·
Mar 15

Submodular Reinforcement Learning

In reinforcement learning (RL), rewards of states are typically considered additive, and following the Markov assumption, they are independent of states visited previously. In many important applications, such as coverage control, experiment design and informative path planning, rewards naturally have diminishing returns, i.e., their value decreases in light of similar states visited previously. To tackle this, we propose submodular RL (SubRL), a paradigm which seeks to optimize more general, non-additive (and history-dependent) rewards modelled via submodular set functions which capture diminishing returns. Unfortunately, in general, even in tabular settings, we show that the resulting optimization problem is hard to approximate. On the other hand, motivated by the success of greedy algorithms in classical submodular optimization, we propose SubPO, a simple policy gradient-based algorithm for SubRL that handles non-additive rewards by greedily maximizing marginal gains. Indeed, under some assumptions on the underlying Markov Decision Process (MDP), SubPO recovers optimal constant factor approximations of submodular bandits. Moreover, we derive a natural policy gradient approach for locally optimizing SubRL instances even in large state- and action- spaces. We showcase the versatility of our approach by applying SubPO to several applications, such as biodiversity monitoring, Bayesian experiment design, informative path planning, and coverage maximization. Our results demonstrate sample efficiency, as well as scalability to high-dimensional state-action spaces.

  • 4 authors
·
Jul 25, 2023

BTL-UI: Blink-Think-Link Reasoning Model for GUI Agent

In the field of AI-driven human-GUI interaction automation, while rapid advances in multimodal large language models and reinforcement fine-tuning techniques have yielded remarkable progress, a fundamental challenge persists: their interaction logic significantly deviates from natural human-GUI communication patterns. To fill this gap, we propose "Blink-Think-Link" (BTL), a brain-inspired framework for human-GUI interaction that mimics the human cognitive process between users and graphical interfaces. The system decomposes interactions into three biologically plausible phases: (1) Blink - rapid detection and attention to relevant screen areas, analogous to saccadic eye movements; (2) Think - higher-level reasoning and decision-making, mirroring cognitive planning; and (3) Link - generation of executable commands for precise motor control, emulating human action selection mechanisms. Additionally, we introduce two key technical innovations for the BTL framework: (1) Blink Data Generation - an automated annotation pipeline specifically optimized for blink data, and (2) BTL Reward -- the first rule-based reward mechanism that enables reinforcement learning driven by both process and outcome. Building upon this framework, we develop a GUI agent model named BTL-UI, which demonstrates consistent state-of-the-art performance across both static GUI understanding and dynamic interaction tasks in comprehensive benchmarks. These results provide conclusive empirical validation of the framework's efficacy in developing advanced GUI Agents.

Chain of Tools: Large Language Model is an Automatic Multi-tool Learner

Augmenting large language models (LLMs) with external tools has emerged as a promising approach to extend their utility, empowering them to solve practical tasks. Existing work typically empowers LLMs as tool users with a manually designed workflow, where the LLM plans a series of tools in a step-by-step manner, and sequentially executes each tool to obtain intermediate results until deriving the final answer. However, they suffer from two challenges in realistic scenarios: (1) The handcrafted control flow is often ad-hoc and constraints the LLM to local planning; (2) The LLM is instructed to use only manually demonstrated tools or well-trained Python functions, which limits its generalization to new tools. In this work, we first propose Automatic Tool Chain (ATC), a framework that enables the LLM to act as a multi-tool user, which directly utilizes a chain of tools through programming. To scale up the scope of the tools, we next propose a black-box probing method. This further empowers the LLM as a tool learner that can actively discover and document tool usages, teaching themselves to properly master new tools. For a comprehensive evaluation, we build a challenging benchmark named ToolFlow, which diverges from previous benchmarks by its long-term planning scenarios and complex toolset. Experiments on both existing datasets and ToolFlow illustrate the superiority of our framework. Analysis on different settings also validates the effectiveness and the utility of our black-box probing algorithm.

  • 10 authors
·
May 26, 2024

Learning Robot Soccer from Egocentric Vision with Deep Reinforcement Learning

We apply multi-agent deep reinforcement learning (RL) to train end-to-end robot soccer policies with fully onboard computation and sensing via egocentric RGB vision. This setting reflects many challenges of real-world robotics, including active perception, agile full-body control, and long-horizon planning in a dynamic, partially-observable, multi-agent domain. We rely on large-scale, simulation-based data generation to obtain complex behaviors from egocentric vision which can be successfully transferred to physical robots using low-cost sensors. To achieve adequate visual realism, our simulation combines rigid-body physics with learned, realistic rendering via multiple Neural Radiance Fields (NeRFs). We combine teacher-based multi-agent RL and cross-experiment data reuse to enable the discovery of sophisticated soccer strategies. We analyze active-perception behaviors including object tracking and ball seeking that emerge when simply optimizing perception-agnostic soccer play. The agents display equivalent levels of performance and agility as policies with access to privileged, ground-truth state. To our knowledge, this paper constitutes a first demonstration of end-to-end training for multi-agent robot soccer, mapping raw pixel observations to joint-level actions, that can be deployed in the real world. Videos of the game-play and analyses can be seen on our website https://sites.google.com/view/vision-soccer .

  • 16 authors
·
May 3, 2024 1

Foundation Model Driven Robotics: A Comprehensive Review

The rapid emergence of foundation models, particularly Large Language Models (LLMs) and Vision-Language Models (VLMs), has introduced a transformative paradigm in robotics. These models offer powerful capabilities in semantic understanding, high-level reasoning, and cross-modal generalization, enabling significant advances in perception, planning, control, and human-robot interaction. This critical review provides a structured synthesis of recent developments, categorizing applications across simulation-driven design, open-world execution, sim-to-real transfer, and adaptable robotics. Unlike existing surveys that emphasize isolated capabilities, this work highlights integrated, system-level strategies and evaluates their practical feasibility in real-world environments. Key enabling trends such as procedural scene generation, policy generalization, and multimodal reasoning are discussed alongside core bottlenecks, including limited embodiment, lack of multimodal data, safety risks, and computational constraints. Through this lens, this paper identifies both the architectural strengths and critical limitations of foundation model-based robotics, highlighting open challenges in real-time operation, grounding, resilience, and trust. The review concludes with a roadmap for future research aimed at bridging semantic reasoning and physical intelligence through more robust, interpretable, and embodied models.

  • 2 authors
·
Jul 14

Parametric Depth Based Feature Representation Learning for Object Detection and Segmentation in Bird's Eye View

Recent vision-only perception models for autonomous driving achieved promising results by encoding multi-view image features into Bird's-Eye-View (BEV) space. A critical step and the main bottleneck of these methods is transforming image features into the BEV coordinate frame. This paper focuses on leveraging geometry information, such as depth, to model such feature transformation. Existing works rely on non-parametric depth distribution modeling leading to significant memory consumption, or ignore the geometry information to address this problem. In contrast, we propose to use parametric depth distribution modeling for feature transformation. We first lift the 2D image features to the 3D space defined for the ego vehicle via a predicted parametric depth distribution for each pixel in each view. Then, we aggregate the 3D feature volume based on the 3D space occupancy derived from depth to the BEV frame. Finally, we use the transformed features for downstream tasks such as object detection and semantic segmentation. Existing semantic segmentation methods do also suffer from an hallucination problem as they do not take visibility information into account. This hallucination can be particularly problematic for subsequent modules such as control and planning. To mitigate the issue, our method provides depth uncertainty and reliable visibility-aware estimations. We further leverage our parametric depth modeling to present a novel visibility-aware evaluation metric that, when taken into account, can mitigate the hallucination problem. Extensive experiments on object detection and semantic segmentation on the nuScenes datasets demonstrate that our method outperforms existing methods on both tasks.

  • 4 authors
·
Jul 9, 2023

AD-H: Autonomous Driving with Hierarchical Agents

Due to the impressive capabilities of multimodal large language models (MLLMs), recent works have focused on employing MLLM-based agents for autonomous driving in large-scale and dynamic environments. However, prevalent approaches often directly translate high-level instructions into low-level vehicle control signals, which deviates from the inherent language generation paradigm of MLLMs and fails to fully harness their emergent powers. As a result, the generalizability of these methods is highly restricted by autonomous driving datasets used during fine-tuning. To tackle this challenge, we propose to connect high-level instructions and low-level control signals with mid-level language-driven commands, which are more fine-grained than high-level instructions but more universal and explainable than control signals, and thus can effectively bridge the gap in between. We implement this idea through a hierarchical multi-agent driving system named AD-H, including a MLLM planner for high-level reasoning and a lightweight controller for low-level execution. The hierarchical design liberates the MLLM from low-level control signal decoding and therefore fully releases their emergent capability in high-level perception, reasoning, and planning. We build a new dataset with action hierarchy annotations. Comprehensive closed-loop evaluations demonstrate several key advantages of our proposed AD-H system. First, AD-H can notably outperform state-of-the-art methods in achieving exceptional driving performance, even exhibiting self-correction capabilities during vehicle operation, a scenario not encountered in the training dataset. Second, AD-H demonstrates superior generalization under long-horizon instructions and novel environmental conditions, significantly surpassing current state-of-the-art methods. We will make our data and code publicly accessible at https://github.com/zhangzaibin/AD-H

  • 10 authors
·
Jun 5, 2024

How GPT learns layer by layer

Large Language Models (LLMs) excel at tasks like language processing, strategy games, and reasoning but struggle to build generalizable internal representations essential for adaptive decision-making in agents. For agents to effectively navigate complex environments, they must construct reliable world models. While LLMs perform well on specific benchmarks, they often fail to generalize, leading to brittle representations that limit their real-world effectiveness. Understanding how LLMs build internal world models is key to developing agents capable of consistent, adaptive behavior across tasks. We analyze OthelloGPT, a GPT-based model trained on Othello gameplay, as a controlled testbed for studying representation learning. Despite being trained solely on next-token prediction with random valid moves, OthelloGPT shows meaningful layer-wise progression in understanding board state and gameplay. Early layers capture static attributes like board edges, while deeper layers reflect dynamic tile changes. To interpret these representations, we compare Sparse Autoencoders (SAEs) with linear probes, finding that SAEs offer more robust, disentangled insights into compositional features, whereas linear probes mainly detect features useful for classification. We use SAEs to decode features related to tile color and tile stability, a previously unexamined feature that reflects complex gameplay concepts like board control and long-term planning. We study the progression of linear probe accuracy and tile color using both SAE's and linear probes to compare their effectiveness at capturing what the model is learning. Although we begin with a smaller language model, OthelloGPT, this study establishes a framework for understanding the internal representations learned by GPT models, transformers, and LLMs more broadly. Our code is publicly available: https://github.com/ALT-JS/OthelloSAE.

  • 6 authors
·
Jan 13

BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs

With the rapid advancement of low-altitude remote sensing and Vision-Language Models (VLMs), Embodied Agents based on Unmanned Aerial Vehicles (UAVs) have shown significant potential in autonomous tasks. However, current evaluation methods for UAV-Embodied Agents (UAV-EAs) remain constrained by the lack of standardized benchmarks, diverse testing scenarios and open system interfaces. To address these challenges, we propose BEDI (Benchmark for Embodied Drone Intelligence), a systematic and standardized benchmark designed for evaluating UAV-EAs. Specifically, we introduce a novel Dynamic Chain-of-Embodied-Task paradigm based on the perception-decision-action loop, which decomposes complex UAV tasks into standardized, measurable subtasks. Building on this paradigm, we design a unified evaluation framework encompassing five core sub-skills: semantic perception, spatial perception, motion control, tool utilization, and task planning. Furthermore, we construct a hybrid testing platform that integrates static real-world environments with dynamic virtual scenarios, enabling comprehensive performance assessment of UAV-EAs across varied contexts. The platform also offers open and standardized interfaces, allowing researchers to customize tasks and extend scenarios, thereby enhancing flexibility and scalability in the evaluation process. Finally, through empirical evaluations of several state-of-the-art (SOTA) VLMs, we reveal their limitations in embodied UAV tasks, underscoring the critical role of the BEDI benchmark in advancing embodied intelligence research and model optimization. By filling the gap in systematic and standardized evaluation within this field, BEDI facilitates objective model comparison and lays a robust foundation for future development in this field. Our benchmark will be released at https://github.com/lostwolves/BEDI .

  • 6 authors
·
May 23

Large Language Models for Robotics: A Survey

The human ability to learn, generalize, and control complex manipulation tasks through multi-modality feedback suggests a unique capability, which we refer to as dexterity intelligence. Understanding and assessing this intelligence is a complex task. Amidst the swift progress and extensive proliferation of large language models (LLMs), their applications in the field of robotics have garnered increasing attention. LLMs possess the ability to process and generate natural language, facilitating efficient interaction and collaboration with robots. Researchers and engineers in the field of robotics have recognized the immense potential of LLMs in enhancing robot intelligence, human-robot interaction, and autonomy. Therefore, this comprehensive review aims to summarize the applications of LLMs in robotics, delving into their impact and contributions to key areas such as robot control, perception, decision-making, and path planning. We first provide an overview of the background and development of LLMs for robotics, followed by a description of the benefits of LLMs for robotics and recent advancements in robotics models based on LLMs. We then delve into the various techniques used in the model, including those employed in perception, decision-making, control, and interaction. Finally, we explore the applications of LLMs in robotics and some potential challenges they may face in the near future. Embodied intelligence is the future of intelligent science, and LLMs-based robotics is one of the promising but challenging paths to achieve this.

  • 5 authors
·
Nov 13, 2023

Describe, Explain, Plan and Select: Interactive Planning with Large Language Models Enables Open-World Multi-Task Agents

In this paper, we study the problem of planning in Minecraft, a popular, democratized yet challenging open-ended environment for developing multi-task embodied agents. We've found two primary challenges of empowering such agents with planning: 1) planning in an open-ended world like Minecraft requires precise and multi-step reasoning due to the long-term nature of the tasks, and 2) as vanilla planners do not consider the proximity to the current agent when ordering parallel sub-goals within a complicated plan, the resulting plan could be inefficient. To this end, we propose "Describe, Explain, Plan and Select" (DEPS), an interactive planning approach based on Large Language Models (LLMs). Our approach helps with better error correction from the feedback during the long-haul planning, while also bringing the sense of proximity via goal Selector, a learnable module that ranks parallel sub-goals based on the estimated steps of completion and improves the original plan accordingly. Our experiments mark the milestone of the first multi-task agent that can robustly accomplish 70+ Minecraft tasks and nearly doubles the overall performances. Finally, the ablation and exploratory studies detail how our design beats the counterparts and provide a promising update on the ObtainDiamond grand challenge with our approach. The code is released at https://github.com/CraftJarvis/MC-Planner.

  • 5 authors
·
Feb 3, 2023

Time is on my sight: scene graph filtering for dynamic environment perception in an LLM-driven robot

Robots are increasingly being used in dynamic environments like workplaces, hospitals, and homes. As a result, interactions with robots must be simple and intuitive, with robots perception adapting efficiently to human-induced changes. This paper presents a robot control architecture that addresses key challenges in human-robot interaction, with a particular focus on the dynamic creation and continuous update of the robot state representation. The architecture uses Large Language Models to integrate diverse information sources, including natural language commands, robotic skills representation, real-time dynamic semantic mapping of the perceived scene. This enables flexible and adaptive robotic behavior in complex, dynamic environments. Traditional robotic systems often rely on static, pre-programmed instructions and settings, limiting their adaptability to dynamic environments and real-time collaboration. In contrast, this architecture uses LLMs to interpret complex, high-level instructions and generate actionable plans that enhance human-robot collaboration. At its core, the system Perception Module generates and continuously updates a semantic scene graph using RGB-D sensor data, providing a detailed and structured representation of the environment. A particle filter is employed to ensure accurate object localization in dynamic, real-world settings. The Planner Module leverages this up-to-date semantic map to break down high-level tasks into sub-tasks and link them to robotic skills such as navigation, object manipulation (e.g., PICK and PLACE), and movement (e.g., GOTO). By combining real-time perception, state tracking, and LLM-driven communication and task planning, the architecture enhances adaptability, task efficiency, and human-robot collaboration in dynamic environments.

  • 4 authors
·
Nov 22, 2024

Can LLM-Reasoning Models Replace Classical Planning? A Benchmark Study

Recent advancements in Large Language Models have sparked interest in their potential for robotic task planning. While these models demonstrate strong generative capabilities, their effectiveness in producing structured and executable plans remains uncertain. This paper presents a systematic evaluation of a broad spectrum of current state of the art language models, each directly prompted using Planning Domain Definition Language domain and problem files, and compares their planning performance with the Fast Downward planner across a variety of benchmarks. In addition to measuring success rates, we assess how faithfully the generated plans translate into sequences of actions that can actually be executed, identifying both strengths and limitations of using these models in this setting. Our findings show that while the models perform well on simpler planning tasks, they continue to struggle with more complex scenarios that require precise resource management, consistent state tracking, and strict constraint compliance. These results underscore fundamental challenges in applying language models to robotic planning in real world environments. By outlining the gaps that emerge during execution, we aim to guide future research toward combined approaches that integrate language models with classical planners in order to enhance the reliability and scalability of planning in autonomous robotics.

  • 2 authors
·
Jul 31

Octo-planner: On-device Language Model for Planner-Action Agents

AI agents have become increasingly significant in various domains, enabling autonomous decision-making and problem-solving. To function effectively, these agents require a planning process that determines the best course of action and then executes the planned actions. In this paper, we present an efficient on-device Planner-Action framework that separates planning and action execution into two distinct components: a planner agent based on Phi-3 Mini, a 3.8 billion parameter LLM optimized for edge devices, and an action agent using the Octopus model for function execution. The planner agent first responds to user queries by decomposing tasks into a sequence of sub-steps, which are then executed by the action agent. To optimize performance on resource-constrained devices, we employ model fine-tuning instead of in-context learning, reducing computational costs and energy consumption while improving response times. Our approach involves using GPT-4 to generate diverse planning queries and responses based on available functions, with subsequent validations to ensure data quality. We fine-tune the Phi-3 Mini model on this curated dataset, achieving a 97\% success rate in our in-domain test environment. To address multi-domain planning challenges, we developed a multi-LoRA training method that merges weights from LoRAs trained on distinct function subsets. This approach enables flexible handling of complex, multi-domain queries while maintaining computational efficiency on resource-constrained devices. To support further research, we have open-sourced our model weights at https://huggingface.co/NexaAIDev/octopus-planning. For the demo, please refer to https://www.nexa4ai.com/octo-planner.

  • 4 authors
·
Jun 26, 2024 5

LLM+P: Empowering Large Language Models with Optimal Planning Proficiency

Large language models (LLMs) have demonstrated remarkable zero-shot generalization abilities: state-of-the-art chatbots can provide plausible answers to many common questions that arise in daily life. However, so far, LLMs cannot reliably solve long-horizon planning problems. By contrast, classical planners, once a problem is given in a formatted way, can use efficient search algorithms to quickly identify correct, or even optimal, plans. In an effort to get the best of both worlds, this paper introduces LLM+P, the first framework that incorporates the strengths of classical planners into LLMs. LLM+P takes in a natural language description of a planning problem, then returns a correct (or optimal) plan for solving that problem in natural language. LLM+P does so by first converting the language description into a file written in the planning domain definition language (PDDL), then leveraging classical planners to quickly find a solution, and then translating the found solution back into natural language. Along with LLM+P, we define a diverse set of different benchmark problems taken from common planning scenarios. Via a comprehensive set of experiments on these benchmark problems, we find that LLM+P is able to provide optimal solutions for most problems, while LLMs fail to provide even feasible plans for most problems.\footnote{The code and results are publicly available at https://github.com/Cranial-XIX/llm-pddl.git.

  • 7 authors
·
Apr 22, 2023 2

PlanAgent: A Multi-modal Large Language Agent for Closed-loop Vehicle Motion Planning

Vehicle motion planning is an essential component of autonomous driving technology. Current rule-based vehicle motion planning methods perform satisfactorily in common scenarios but struggle to generalize to long-tailed situations. Meanwhile, learning-based methods have yet to achieve superior performance over rule-based approaches in large-scale closed-loop scenarios. To address these issues, we propose PlanAgent, the first mid-to-mid planning system based on a Multi-modal Large Language Model (MLLM). MLLM is used as a cognitive agent to introduce human-like knowledge, interpretability, and common-sense reasoning into the closed-loop planning. Specifically, PlanAgent leverages the power of MLLM through three core modules. First, an Environment Transformation module constructs a Bird's Eye View (BEV) map and a lane-graph-based textual description from the environment as inputs. Second, a Reasoning Engine module introduces a hierarchical chain-of-thought from scene understanding to lateral and longitudinal motion instructions, culminating in planner code generation. Last, a Reflection module is integrated to simulate and evaluate the generated planner for reducing MLLM's uncertainty. PlanAgent is endowed with the common-sense reasoning and generalization capability of MLLM, which empowers it to effectively tackle both common and complex long-tailed scenarios. Our proposed PlanAgent is evaluated on the large-scale and challenging nuPlan benchmarks. A comprehensive set of experiments convincingly demonstrates that PlanAgent outperforms the existing state-of-the-art in the closed-loop motion planning task. Codes will be soon released.

  • 11 authors
·
Jun 3, 2024

One to rule them all: natural language to bind communication, perception and action

In recent years, research in the area of human-robot interaction has focused on developing robots capable of understanding complex human instructions and performing tasks in dynamic and diverse environments. These systems have a wide range of applications, from personal assistance to industrial robotics, emphasizing the importance of robots interacting flexibly, naturally and safely with humans. This paper presents an advanced architecture for robotic action planning that integrates communication, perception, and planning with Large Language Models (LLMs). Our system is designed to translate commands expressed in natural language into executable robot actions, incorporating environmental information and dynamically updating plans based on real-time feedback. The Planner Module is the core of the system where LLMs embedded in a modified ReAct framework are employed to interpret and carry out user commands. By leveraging their extensive pre-trained knowledge, LLMs can effectively process user requests without the need to introduce new knowledge on the changing environment. The modified ReAct framework further enhances the execution space by providing real-time environmental perception and the outcomes of physical actions. By combining robust and dynamic semantic map representations as graphs with control components and failure explanations, this architecture enhances a robot adaptability, task execution, and seamless collaboration with human users in shared and dynamic environments. Through the integration of continuous feedback loops with the environment the system can dynamically adjusts the plan to accommodate unexpected changes, optimizing the robot ability to perform tasks. Using a dataset of previous experience is possible to provide detailed feedback about the failure. Updating the LLMs context of the next iteration with suggestion on how to overcame the issue.

  • 3 authors
·
Nov 22, 2024 2

CookBench: A Long-Horizon Embodied Planning Benchmark for Complex Cooking Scenarios

Embodied Planning is dedicated to the goal of creating agents capable of executing long-horizon tasks in complex physical worlds. However, existing embodied planning benchmarks frequently feature short-horizon tasks and coarse-grained action primitives. To address this challenge, we introduce CookBench, a benchmark for long-horizon planning in complex cooking scenarios. By leveraging a high-fidelity simulation environment built upon the powerful Unity game engine, we define frontier AI challenges in a complex, realistic environment. The core task in CookBench is designed as a two-stage process. First, in Intention Recognition, an agent needs to accurately parse a user's complex intent. Second, in Embodied Interaction, the agent should execute the identified cooking goal through a long-horizon, fine-grained sequence of physical actions. Unlike existing embodied planning benchmarks, we refine the action granularity to a spatial level that considers crucial operational information while abstracting away low-level robotic control. Besides, We provide a comprehensive toolset that encapsulates the simulator. Its unified API supports both macro-level operations, such as placing orders and purchasing ingredients, and a rich set of fine-grained embodied actions for physical interaction, enabling researchers to focus on high-level planning and decision-making. Furthermore, we present an in-depth analysis of state-of-the-art, closed-source Large Language Model and Vision-Language Model, revealing their major shortcomings and challenges posed by complex, long-horizon tasks. The full benchmark will be open-sourced to facilitate future research.

  • 8 authors
·
Aug 5

AgentGen: Enhancing Planning Abilities for Large Language Model based Agent via Environment and Task Generation

Large Language Model (LLM) based agents have garnered significant attention and are becoming increasingly popular. Furthermore, planning ability is a crucial component of an LLM-based agent, involving interaction with the environment and executing actions to complete a planning task, which generally entails achieving a desired goal from an initial state. This paper investigates enhancing the planning abilities of LLMs through instruction tuning, referred to as agent training. Recent studies have demonstrated that utilizing expert-level trajectory for instruction-tuning LLMs effectively enhances their planning capabilities. However, existing work primarily focuses on synthesizing trajectories from manually designed planning tasks and environments. The labor-intensive nature of creating these environments and tasks impedes the generation of sufficiently varied and extensive trajectories. To address this limitation, this paper explores the automated synthesis of diverse environments and a gradual range of planning tasks, from easy to difficult. We introduce a framework, AgentGen, that leverages LLMs first to generate environments and subsequently generate planning tasks conditioned on these environments. Specifically, to improve environmental diversity, we propose using an inspiration corpus composed of various domain-specific text segments as the context for synthesizing environments. Moreover, to increase the difficulty diversity of generated planning tasks, we propose a bidirectional evolution method, Bi-Evol, that evolves planning tasks from easier and harder directions to synthesize a task set with a smoother difficulty curve. The evaluation results derived from AgentBoard show that AgentGen greatly improves LLMs' planning ability, e.g., the AgentGen instruction-tuned Llama-3 8B surpasses GPT-3.5 in overall performance. Moreover, in certain tasks, it even outperforms GPT-4.

  • 9 authors
·
Aug 1, 2024

Teaching LLMs to Plan: Logical Chain-of-Thought Instruction Tuning for Symbolic Planning

Large language models (LLMs) have demonstrated impressive capabilities across diverse tasks, yet their ability to perform structured symbolic planning remains limited, particularly in domains requiring formal representations like the Planning Domain Definition Language (PDDL). In this paper, we present a novel instruction tuning framework, PDDL-Instruct, designed to enhance LLMs' symbolic planning capabilities through logical chain-of-thought reasoning. Our approach focuses on teaching models to rigorously reason about action applicability, state transitions, and plan validity using explicit logical inference steps. By developing instruction prompts that guide models through the precise logical reasoning required to determine when actions can be applied in a given state, we enable LLMs to self-correct their planning processes through structured reflection. The framework systematically builds verification skills by decomposing the planning process into explicit reasoning chains about precondition satisfaction, effect application, and invariant preservation. Experimental results on multiple planning domains show that our chain-of-thought reasoning based instruction-tuned models are significantly better at planning, achieving planning accuracy of up to 94% on standard benchmarks, representing a 66% absolute improvement over baseline models. This work bridges the gap between the general reasoning capabilities of LLMs and the logical precision required for automated planning, offering a promising direction for developing better AI planning systems.

  • 5 authors
·
Sep 13

Classical Planning with LLM-Generated Heuristics: Challenging the State of the Art with Python Code

In recent years, large language models (LLMs) have shown remarkable capabilities in various artificial intelligence problems. However, they fail to plan reliably, even when prompted with a detailed definition of the planning task. Attempts to improve their planning capabilities, such as chain-of-thought prompting, fine-tuning, and explicit "reasoning" still yield incorrect plans and usually fail to generalize to larger tasks. In this paper, we show how to use LLMs to generate correct plans, even for out-of-distribution tasks of increasing size. For a given planning domain, we ask an LLM to generate several domain-dependent heuristic functions in the form of Python code, evaluate them on a set of training tasks within a greedy best-first search, and choose the strongest one. The resulting LLM-generated heuristics solve many more unseen test tasks than state-of-the-art domain-independent heuristics for classical planning. They are even competitive with the strongest learning algorithm for domain-dependent planning. These findings are especially remarkable given that our proof-of-concept implementation is based on an unoptimized Python planner and the baselines all build upon highly optimized C++ code. In some domains, the LLM-generated heuristics expand fewer states than the baselines, revealing that they are not only efficiently computable, but sometimes even more informative than the state-of-the-art heuristics. Overall, our results show that sampling a set of planning heuristic function programs can significantly improve the planning capabilities of LLMs.

  • 3 authors
·
Mar 24 1

Towards a Reinforcement Learning Environment Toolbox for Intelligent Electric Motor Control

Electric motors are used in many applications and their efficiency is strongly dependent on their control. Among others, PI approaches or model predictive control methods are well-known in the scientific literature and industrial practice. A novel approach is to use reinforcement learning (RL) to have an agent learn electric drive control from scratch merely by interacting with a suitable control environment. RL achieved remarkable results with super-human performance in many games (e.g. Atari classics or Go) and also becomes more popular in control tasks like cartpole or swinging pendulum benchmarks. In this work, the open-source Python package gym-electric-motor (GEM) is developed for ease of training of RL-agents for electric motor control. Furthermore, this package can be used to compare the trained agents with other state-of-the-art control approaches. It is based on the OpenAI Gym framework that provides a widely used interface for the evaluation of RL-agents. The initial package version covers different DC motor variants and the prevalent permanent magnet synchronous motor as well as different power electronic converters and a mechanical load model. Due to the modular setup of the proposed toolbox, additional motor, load, and power electronic devices can be easily extended in the future. Furthermore, different secondary effects like controller interlocking time or noise are considered. An intelligent controller example based on the deep deterministic policy gradient algorithm which controls a series DC motor is presented and compared to a cascaded PI-controller as a baseline for future research. Fellow researchers are encouraged to use the framework in their RL investigations or to contribute to the functional scope (e.g. further motor types) of the package.

  • 4 authors
·
Oct 21, 2019 1

ALPINE: Unveiling the Planning Capability of Autoregressive Learning in Language Models

In this paper, we present the findings of our Project ALPINE which stands for ``Autoregressive Learning for Planning In NEtworks." Project ALPINE initiates a theoretical investigation into the development of planning capabilities in Transformer-based language models through their autoregressive learning mechanisms, aiming to identify any potential limitations in their planning abilities. We abstract planning as a network path-finding task where the objective is to generate a valid path from a specified source node to a designated target node. In terms of expressiveness, we show that the Transformer is capable of executing path-finding by embedding the adjacency and reachability matrices within its weights. Our theoretical analysis of the gradient-based learning dynamic of the Transformer reveals that the Transformer is capable of learning both the adjacency matrix and a limited form of the reachability matrix. These theoretical insights are then validated through experiments, which demonstrate that the Transformer indeed learns the adjacency matrix and an incomplete reachability matrix, which aligns with the predictions made in our theoretical analysis. Additionally, when applying our methodology to a real-world planning benchmark, called Blocksworld, our observations remain consistent. Our theoretical and empirical analyses further unveil a potential limitation of Transformer in path-finding: it cannot identify reachability relationships through transitivity, and thus would fail when path concatenation is needed to generate a path. In summary, our findings shed new light on how the internal mechanisms of autoregressive learning enable planning in networks. This study may contribute to our understanding of the general planning capabilities in other related domains.

  • 6 authors
·
May 15, 2024 1

Generating Symbolic World Models via Test-time Scaling of Large Language Models

Solving complex planning problems requires Large Language Models (LLMs) to explicitly model the state transition to avoid rule violations, comply with constraints, and ensure optimality-a task hindered by the inherent ambiguity of natural language. To overcome such ambiguity, Planning Domain Definition Language (PDDL) is leveraged as a planning abstraction that enables precise and formal state descriptions. With PDDL, we can generate a symbolic world model where classic searching algorithms, such as A*, can be seamlessly applied to find optimal plans. However, directly generating PDDL domains with current LLMs remains an open challenge due to the lack of PDDL training data. To address this challenge, we propose to scale up the test-time computation of LLMs to enhance their PDDL reasoning capabilities, thereby enabling the generation of high-quality PDDL domains. Specifically, we introduce a simple yet effective algorithm, which first employs a Best-of-N sampling approach to improve the quality of the initial solution and then refines the solution in a fine-grained manner with verbalized machine learning. Our method outperforms o1-mini by a considerable margin in the generation of PDDL domain, achieving over 50% success rate on two tasks (i.e., generating PDDL domains from natural language description or PDDL problems). This is done without requiring additional training. By taking advantage of PDDL as state abstraction, our method is able to outperform current state-of-the-art methods on almost all competition-level planning tasks.

A Human-Like Reasoning Framework for Multi-Phases Planning Task with Large Language Models

Recent studies have highlighted their proficiency in some simple tasks like writing and coding through various reasoning strategies. However, LLM agents still struggle with tasks that require comprehensive planning, a process that challenges current models and remains a critical research issue. In this study, we concentrate on travel planning, a Multi-Phases planning problem, that involves multiple interconnected stages, such as outlining, information gathering, and planning, often characterized by the need to manage various constraints and uncertainties. Existing reasoning approaches have struggled to effectively address this complex task. Our research aims to address this challenge by developing a human-like planning framework for LLM agents, i.e., guiding the LLM agent to simulate various steps that humans take when solving Multi-Phases problems. Specifically, we implement several strategies to enable LLM agents to generate a coherent outline for each travel query, mirroring human planning patterns. Additionally, we integrate Strategy Block and Knowledge Block into our framework: Strategy Block facilitates information collection, while Knowledge Block provides essential information for detailed planning. Through our extensive experiments, we demonstrate that our framework significantly improves the planning capabilities of LLM agents, enabling them to tackle the travel planning task with improved efficiency and effectiveness. Our experimental results showcase the exceptional performance of the proposed framework; when combined with GPT-4-Turbo, it attains 10times the performance gains in comparison to the baseline framework deployed on GPT-4-Turbo.

  • 2 authors
·
May 28, 2024

Zero-shot Robotic Manipulation with Language-guided Instruction and Formal Task Planning

Robotic manipulation is often challenging due to the long-horizon tasks and the complex object relationships. A common solution is to develop a task and motion planning framework that integrates planning for high-level task and low-level motion. Recently, inspired by the powerful reasoning ability of Large Language Models (LLMs), LLM-based planning approaches have achieved remarkable progress. However, these methods still heavily rely on expert-specific knowledge, often generating invalid plans for unseen and unfamiliar tasks. To address this issue, we propose an innovative language-guided symbolic task planning (LM-SymOpt) framework with optimization. It is the first expert-free planning framework since we combine the world knowledge from LLMs with formal reasoning, resulting in improved generalization capability to new tasks. Specifically, differ to most existing work, our LM-SymOpt employs LLMs to translate natural language instructions into symbolic representations, thereby representing actions as high-level symbols and reducing the search space for planning. Next, after evaluating the action probability of completing the task using LLMs, a weighted random sampling method is introduced to generate candidate plans. Their feasibility is assessed through symbolic reasoning and their cost efficiency is then evaluated using trajectory optimization for selecting the optimal planning. Our experimental results show that LM-SymOpt outperforms existing LLM-based planning approaches.

  • 6 authors
·
Jan 25

Planning Anything with Rigor: General-Purpose Zero-Shot Planning with LLM-based Formalized Programming

While large language models (LLMs) have recently demonstrated strong potential in solving planning problems, there is a trade-off between flexibility and complexity. LLMs, as zero-shot planners themselves, are still not capable of directly generating valid plans for complex planning problems such as multi-constraint or long-horizon tasks. On the other hand, many frameworks aiming to solve complex planning problems often rely on task-specific preparatory efforts, such as task-specific in-context examples and pre-defined critics/verifiers, which limits their cross-task generalization capability. In this paper, we tackle these challenges by observing that the core of many planning problems lies in optimization problems: searching for the optimal solution (best plan) with goals subject to constraints (preconditions and effects of decisions). With LLMs' commonsense, reasoning, and programming capabilities, this opens up the possibilities of a universal LLM-based approach to planning problems. Inspired by this observation, we propose LLMFP, a general-purpose framework that leverages LLMs to capture key information from planning problems and formally formulate and solve them as optimization problems from scratch, with no task-specific examples needed. We apply LLMFP to 9 planning problems, ranging from multi-constraint decision making to multi-step planning problems, and demonstrate that LLMFP achieves on average 83.7% and 86.8% optimal rate across 9 tasks for GPT-4o and Claude 3.5 Sonnet, significantly outperforming the best baseline (direct planning with OpenAI o1-preview) with 37.6% and 40.7% improvements. We also validate components of LLMFP with ablation experiments and analyzed the underlying success and failure reasons.

  • 3 authors
·
Oct 15, 2024

A Grasp Pose is All You Need: Learning Multi-fingered Grasping with Deep Reinforcement Learning from Vision and Touch

Multi-fingered robotic hands have potential to enable robots to perform sophisticated manipulation tasks. However, teaching a robot to grasp objects with an anthropomorphic hand is an arduous problem due to the high dimensionality of state and action spaces. Deep Reinforcement Learning (DRL) offers techniques to design control policies for this kind of problems without explicit environment or hand modeling. However, state-of-the-art model-free algorithms have proven inefficient for learning such policies. The main problem is that the exploration of the environment is unfeasible for such high-dimensional problems, thus hampering the initial phases of policy optimization. One possibility to address this is to rely on off-line task demonstrations, but, oftentimes, this is too demanding in terms of time and computational resources. To address these problems, we propose the A Grasp Pose is All You Need (G-PAYN) method for the anthropomorphic hand of the iCub humanoid. We develop an approach to automatically collect task demonstrations to initialize the training of the policy. The proposed grasping pipeline starts from a grasp pose generated by an external algorithm, used to initiate the movement. Then a control policy (previously trained with the proposed G-PAYN) is used to reach and grab the object. We deployed the iCub into the MuJoCo simulator and use it to test our approach with objects from the YCB-Video dataset. Results show that G-PAYN outperforms current DRL techniques in the considered setting in terms of success rate and execution time with respect to the baselines. The code to reproduce the experiments is released together with the paper with an open source license.

  • 4 authors
·
Jun 6, 2023

Learning Latent Plans from Play

Acquiring a diverse repertoire of general-purpose skills remains an open challenge for robotics. In this work, we propose self-supervising control on top of human teleoperated play data as a way to scale up skill learning. Play has two properties that make it attractive compared to conventional task demonstrations. Play is cheap, as it can be collected in large quantities quickly without task segmenting, labeling, or resetting to an initial state. Play is naturally rich, covering ~4x more interaction space than task demonstrations for the same amount of collection time. To learn control from play, we introduce Play-LMP, a self-supervised method that learns to organize play behaviors in a latent space, then reuse them at test time to achieve specific goals. Combining self-supervised control with a diverse play dataset shifts the focus of skill learning from a narrow and discrete set of tasks to the full continuum of behaviors available in an environment. We find that this combination generalizes well empirically---after self-supervising on unlabeled play, our method substantially outperforms individual expert-trained policies on 18 difficult user-specified visual manipulation tasks in a simulated robotic tabletop environment. We additionally find that play-supervised models, unlike their expert-trained counterparts, are more robust to perturbations and exhibit retrying-till-success behaviors. Finally, we find that our agent organizes its latent plan space around functional tasks, despite never being trained with task labels. Videos, code and data are available at learning-from-play.github.io

  • 7 authors
·
Mar 5, 2019

PilotRL: Training Language Model Agents via Global Planning-Guided Progressive Reinforcement Learning

Large Language Models (LLMs) have shown remarkable advancements in tackling agent-oriented tasks. Despite their potential, existing work faces challenges when deploying LLMs in agent-based environments. The widely adopted agent paradigm ReAct centers on integrating single-step reasoning with immediate action execution, which limits its effectiveness in complex tasks requiring long-term strategic planning. Furthermore, the coordination between the planner and executor during problem-solving is also a critical factor to consider in agent design. Additionally, current approaches predominantly rely on supervised fine-tuning, which often leads models to memorize established task completion trajectories, thereby restricting their generalization ability when confronted with novel problem contexts. To address these challenges, we introduce an adaptive global plan-based agent paradigm AdaPlan, aiming to synergize high-level explicit guidance with execution to support effective long-horizon decision-making. Based on the proposed paradigm, we further put forward PilotRL, a global planning-guided training framework for LLM agents driven by progressive reinforcement learning. We first develop the model's ability to follow explicit guidance from global plans when addressing agent tasks. Subsequently, based on this foundation, we focus on optimizing the quality of generated plans. Finally, we conduct joint optimization of the model's planning and execution coordination. Experiments indicate that PilotRL could achieve state-of-the-art performances, with LLaMA3.1-8B-Instruct + PilotRL surpassing closed-sourced GPT-4o by 3.60%, while showing a more substantial gain of 55.78% comparing to GPT-4o-mini at a comparable parameter scale.

  • 5 authors
·
Aug 1

End-to-end Autonomous Driving with Semantic Depth Cloud Mapping and Multi-agent

Focusing on the task of point-to-point navigation for an autonomous driving vehicle, we propose a novel deep learning model trained with end-to-end and multi-task learning manners to perform both perception and control tasks simultaneously. The model is used to drive the ego vehicle safely by following a sequence of routes defined by the global planner. The perception part of the model is used to encode high-dimensional observation data provided by an RGBD camera while performing semantic segmentation, semantic depth cloud (SDC) mapping, and traffic light state and stop sign prediction. Then, the control part decodes the encoded features along with additional information provided by GPS and speedometer to predict waypoints that come with a latent feature space. Furthermore, two agents are employed to process these outputs and make a control policy that determines the level of steering, throttle, and brake as the final action. The model is evaluated on CARLA simulator with various scenarios made of normal-adversarial situations and different weathers to mimic real-world conditions. In addition, we do a comparative study with some recent models to justify the performance in multiple aspects of driving. Moreover, we also conduct an ablation study on SDC mapping and multi-agent to understand their roles and behavior. As a result, our model achieves the highest driving score even with fewer parameters and computation load. To support future studies, we share our codes at https://github.com/oskarnatan/end-to-end-driving.

  • 2 authors
·
Apr 11, 2022

Scaling Up Natural Language Understanding for Multi-Robots Through the Lens of Hierarchy

Long-horizon planning is hindered by challenges such as uncertainty accumulation, computational complexity, delayed rewards and incomplete information. This work proposes an approach to exploit the task hierarchy from human instructions to facilitate multi-robot planning. Using Large Language Models (LLMs), we propose a two-step approach to translate multi-sentence instructions into a structured language, Hierarchical Linear Temporal Logic (LTL), which serves as a formal representation for planning. Initially, LLMs transform the instructions into a hierarchical representation defined as Hierarchical Task Tree, capturing the logical and temporal relations among tasks. Following this, a domain-specific fine-tuning of LLM translates sub-tasks of each task into flat LTL formulas, aggregating them to form hierarchical LTL specifications. These specifications are then leveraged for planning using off-the-shelf planners. Our framework not only bridges the gap between instructions and algorithmic planning but also showcases the potential of LLMs in harnessing hierarchical reasoning to automate multi-robot task planning. Through evaluations in both simulation and real-world experiments involving human participants, we demonstrate that our method can handle more complex instructions compared to existing methods. The results indicate that our approach achieves higher success rates and lower costs in multi-robot task allocation and plan generation. Demos videos are available at https://youtu.be/7WOrDKxIMIs .

  • 6 authors
·
Aug 15, 2024

Hybrid Systems Neural Control with Region-of-Attraction Planner

Hybrid systems are prevalent in robotics. However, ensuring the stability of hybrid systems is challenging due to sophisticated continuous and discrete dynamics. A system with all its system modes stable can still be unstable. Hence special treatments are required at mode switchings to stabilize the system. In this work, we propose a hierarchical, neural network (NN)-based method to control general hybrid systems. For each system mode, we first learn an NN Lyapunov function and an NN controller to ensure the states within the region of attraction (RoA) can be stabilized. Then an RoA NN estimator is learned across different modes. Upon mode switching, we propose a differentiable planner to ensure the states after switching can land in next mode's RoA, hence stabilizing the hybrid system. We provide novel theoretical stability guarantees and conduct experiments in car tracking control, pogobot navigation, and bipedal walker locomotion. Our method only requires 0.25X of the training time as needed by other learning-based methods. With low running time (10-50X faster than model predictive control (MPC)), our controller achieves a higher stability/success rate over other baselines such as MPC, reinforcement learning (RL), common Lyapunov methods (CLF), linear quadratic regulator (LQR), quadratic programming (QP) and Hamilton-Jacobian-based methods (HJB). The project page is on https://mit-realm.github.io/hybrid-clf.

  • 2 authors
·
Mar 18, 2023

SmartControl: Enhancing ControlNet for Handling Rough Visual Conditions

Human visual imagination usually begins with analogies or rough sketches. For example, given an image with a girl playing guitar before a building, one may analogously imagine how it seems like if Iron Man playing guitar before Pyramid in Egypt. Nonetheless, visual condition may not be precisely aligned with the imaginary result indicated by text prompt, and existing layout-controllable text-to-image (T2I) generation models is prone to producing degraded generated results with obvious artifacts. To address this issue, we present a novel T2I generation method dubbed SmartControl, which is designed to modify the rough visual conditions for adapting to text prompt. The key idea of our SmartControl is to relax the visual condition on the areas that are conflicted with text prompts. In specific, a Control Scale Predictor (CSP) is designed to identify the conflict regions and predict the local control scales, while a dataset with text prompts and rough visual conditions is constructed for training CSP. It is worth noting that, even with a limited number (e.g., 1,000~2,000) of training samples, our SmartControl can generalize well to unseen objects. Extensive experiments on four typical visual condition types clearly show the efficacy of our SmartControl against state-of-the-arts. Source code, pre-trained models, and datasets are available at https://github.com/liuxiaoyu1104/SmartControl.

  • 7 authors
·
Apr 9, 2024

Tree-Planner: Efficient Close-loop Task Planning with Large Language Models

This paper studies close-loop task planning, which refers to the process of generating a sequence of skills (a plan) to accomplish a specific goal while adapting the plan based on real-time observations. Recently, prompting Large Language Models (LLMs) to generate actions iteratively has become a prevalent paradigm due to its superior performance and user-friendliness. However, this paradigm is plagued by two inefficiencies: high token consumption and redundant error correction, both of which hinder its scalability for large-scale testing and applications. To address these issues, we propose Tree-Planner, which reframes task planning with LLMs into three distinct phases: plan sampling, action tree construction, and grounded deciding. Tree-Planner starts by using an LLM to sample a set of potential plans before execution, followed by the aggregation of them to form an action tree. Finally, the LLM performs a top-down decision-making process on the tree, taking into account real-time environmental information. Experiments show that Tree-Planner achieves state-of-the-art performance while maintaining high efficiency. By decomposing LLM queries into a single plan-sampling call and multiple grounded-deciding calls, a considerable part of the prompt are less likely to be repeatedly consumed. As a result, token consumption is reduced by 92.2% compared to the previously best-performing model. Additionally, by enabling backtracking on the action tree as needed, the correction process becomes more flexible, leading to a 40.5% decrease in error corrections. Project page: https://tree-planner.github.io/

  • 10 authors
·
Oct 12, 2023

AutoTAMP: Autoregressive Task and Motion Planning with LLMs as Translators and Checkers

For effective human-robot interaction, robots need to understand, plan, and execute complex, long-horizon tasks described by natural language. Recent advances in large language models (LLMs) have shown promise for translating natural language into robot action sequences for complex tasks. However, existing approaches either translate the natural language directly into robot trajectories or factor the inference process by decomposing language into task sub-goals and relying on a motion planner to execute each sub-goal. When complex environmental and temporal constraints are involved, inference over planning tasks must be performed jointly with motion plans using traditional task-and-motion planning (TAMP) algorithms, making factorization into subgoals untenable. Rather than using LLMs to directly plan task sub-goals, we instead perform few-shot translation from natural language task descriptions to an intermediate task representation that can then be consumed by a TAMP algorithm to jointly solve the task and motion plan. To improve translation, we automatically detect and correct both syntactic and semantic errors via autoregressive re-prompting, resulting in significant improvements in task completion. We show that our approach outperforms several methods using LLMs as planners in complex task domains. See our project website https://yongchao98.github.io/MIT-REALM-AutoTAMP/ for prompts, videos, and code.

  • 6 authors
·
Jun 10, 2023

Hybrid Reasoning for Perception, Explanation, and Autonomous Action in Manufacturing

Industrial processes must be robust and adaptable, as environments and tasks are often unpredictable, while operational errors remain costly and difficult to detect. AI-based control systems offer a path forward, yet typically depend on supervised learning with extensive labelled datasets, which limits their ability to generalize across variable and data-scarce industrial settings. Foundation models could enable broader reasoning and knowledge integration, but rarely deliver the quantitative precision demanded by engineering applications. Here, we introduceControl and Interpretation of Production via Hybrid Expertise and Reasoning (CIPHER): a vision-language-action (VLA) model framework aiming to replicate human-like reasoning for industrial control, instantiated in a commercial-grade 3D printer. It integrates a process expert, a regression model enabling quantitative characterization of system states required for engineering tasks. CIPHER also incorporates retrieval-augmented generation to access external expert knowledge and support physics-informed, chain-of-thought reasoning. This hybrid architecture exhibits strong generalization to out-of-distribution tasks. It interprets visual or textual inputs from process monitoring, explains its decisions, and autonomously generates precise machine instructions, without requiring explicit annotations. CIPHER thus lays the foundations for autonomous systems that act with precision, reason with context, and communicate decisions transparently, supporting safe and trusted deployment in industrial settings.

  • 2 authors
·
Jun 10

SPINE: Online Semantic Planning for Missions with Incomplete Natural Language Specifications in Unstructured Environments

As robots become increasingly capable, users will want to describe high-level missions and have robots infer the relevant details. because pre-built maps are difficult to obtain in many realistic settings, accomplishing such missions will require the robot to map and plan online. while many semantic planning methods operate online, they are typically designed for well specified missions such as object search or exploration. recently, large language models (LLMs) have demonstrated powerful contextual reasoning abilities over a range of robotic tasks described in natural language. however, existing LLM-enabled planners typically do not consider online planning or complex missions; rather, relevant subtasks and semantics are provided by a pre-built map or a user. we address these limitations via spine, an online planner for missions with incomplete mission specifications provided in natural language. the planner uses an LLM to reason about subtasks implied by the mission specification and then realizes these subtasks in a receding horizon framework. tasks are automatically validated for safety and refined online with new map observations. we evaluate spine in simulation and real-world settings with missions that require multiple steps of semantic reasoning and exploration in cluttered outdoor environments of over 20,000m^2. compared to baselines that use existing LLM-enabled planning approaches, our method is over twice as efficient in terms of time and distance, requires less user interactions, and does not require a full map. Additional resources are provided at: https://zacravichandran.github.io/SPINE.

  • 5 authors
·
Oct 3, 2024